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At a high level, this talk focuses on partitioned FS| solvers which are ideally
suited to modern high-performance computation

e Component solvers remain independent
* can use existing solvers
* no need to solve (or precondition) a coupled implicit system

* Can naturally take advantage of disparate time scales
* e.g. mixing implicit and explicit integration

* High levels of algorithmic concurrency
* maps well to modern and emerging computers



Traditional partitioned schemes have suffered from “‘added-mass instabilities”
for solids which are sufficiently light when compared to the fluid

* Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006)
1. advance fluid (using interface velocity/displacement from the solid)
2. advance solid (apply fluid forces to the solid)
3. possibly iterate with under-relaxation to convergence

| force v diagram from
t") ~| fluid structure |— (1) Keyes et.al. 2012
A displ./vel. |
|
underrelaxation

Interface quasi-Newton

e Some analysis of added-mass instabilities can be found in the literature, for example
e Causin, Grebeau, and Nobile, 2005 (stability with relaxation)
» Gretarsson, Kwatra, and Fedkiw 2011 (semi-monolithic formulations)



The origin of added-mass instabilities is that the effect of displaced fluid is not
appropriately accounted for in the numerical algorithms
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The origin of added-mass instabilities is that the effect of displaced fluid is not
appropriately accounted for in the numerical algorithms

in a vacuum in a fluid

fluid contributing
to added mass

force
—
Body simply moves according to Body must displace and entrain fluid to move
Newton’s laws of motion and therefore appears more massive than in

vacuum ... the so called “added mass”



To account for the strongly coupled nature of FSl interface dynamics,
we have developed the idea of an “interface projection”

* At the continuous level, the interface velocity and stress are defined in terms of the
coupled fluid/solid problem

* The job of the interface projection is to define the solution at the interface in terms
of (disparate) predictions from the fluid and solid

* The resultant interface dynamics are then imposed on the fluid and solid domains
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* The resulting schemes will be called Added-Mass Partitioned (AMP)



As a concrete motivating example consider shock structure interaction

* High-speed compressible fluids (Euler equations)
 Compressible elastic solids (linear or nonlinear elasticity)

Example: Mach-2 shock impacting deformable sticks



To understand the dynamics of the interface it is useful to simplify and
consider a |D model problem

solid fluid
Linear Elasticity Euler Equations
O — =0 Op + Ox(pv) =0
pOU — 076 = 0 ¢ (pv) + Bz (pv® 4+ p) = 0
045 — pctzv = 0 O (pE) + 0z (pEv + pv) =0

Interface Coupling Conditions

/

v(z,t) =v(x,t),
5(3_37t) — O'(ZC,t) = —p(iE,t) T Pe

\

Greengard’s Axiom: It never hurts to start by writing down the exact
solution to the problem”




VWVe localize near the interface, and obtain a fluid structure Riemann problem

(FSRP) whose solution can be used for FS| coupling

solid fluid
Tr = O _ * *
T = G(t) r = (v*+a")t
x = St
. xr = (vg + ap)t
T = —cpt [U }
G* -
Lo
Vo Vo
00 | Do
solid fluid T

* This is a specific case of the elastic piston problem with constant states
» Exact solutions to the linear and nonlinear problem can be found



Our added-mass partitioned (AMP) schemes use compatibility interface
conditions and embed solutions to the FSRP as discrete interface conditions

* Along the interface, the solution is projected using solutions to local FSRPs

* The traditional FSI coupling is the large impedance (mass) limit Z> z
e velocity from solid vr = vo

e stress from fluid o; =09 = —po + pe

e Here 2 = PCpand 2 = P0G0 are acoustic impedances



The stability of the discretization varies significantly based on the formulation
of discrete interface conditions

Theorem: For the first-order upwind method and the interface conditions given by

n

[ vy ]n 1 [ 2rvr, + 2rvR + (0R — 01)
2L + 2R

a1 ZrOL + ZL0R + zr2L(VR — VL) |,

the discretization is stable under the constraint X\ = CAA; <1

Theorem: For first-order upwind methods and the interface conditions that take the velocity
from the left and the stress from the right

e

: : : . : cAt , 4
the discretization is stable under the constraint A = — < min (1, H—p_R>
PL

Thus for pr < 3pr. the discretization is stable under the standard CFL limit. The maximum

stable time step decreases to zero as the density ratio increases.




Stability of AMP solver for a variety of fluid/solid densities is demonstrated

(example of solid compression wave impacting fluid cavity)

074 [ 1.07

. light solid
i 5=0.1
I Traditional coupling fails!

49 [ 1.258

ol = p medium solid
: 5=1.0
I Traditional coupling fails!

L heavy solid
_ 5= 10.0

0.0 B .992



For other regimes, the situation is potentially more challenging, e.g. what if we
simply replace the deforming bodies with rigid objects?

Example: Mach-2 shock impacting rigid sticks



For rigid bodies the principle of compatibility interface conditions is the same,
but the details and consequences are more subtle

1

Up, Op
; \ .

:J—I—zvzaf—l—zvf

Vrhor
fo —[ body fluid
Newton’s law of motion Linearized Euler equations

Orp + 00zp + pOyv = 0
Ov + 00,v — (1/p)0,0 =0
oo + 00,0 — ,(3628:,;?} =3

myUy = op + [,

Ty = Vp

* From the theory of characteristics we obtain the stress on the body

Op =0f + z(vf — vb)



The projected force correctly exposes the dependence of the applied stress on
the motion of the body, and thereby reveals the “added mass”

1

Up, Op
; \ .

:J—I—zvzaf—l—zvf

Uf,O'f T

fo —[ Dbody fAuid

Op = 0 + z(vo — vb)
* \We have exposed the dependence of the applied stress on the velocity of the body

* Therefore the equations of motion are well-defined even for zero mass
myOy Hzup|= 00 + 2v0 + fi(t)

 The added mass term occurs naturally and reflects the effect of displaced fluid



The stability of the new AMP scheme is seen to be significantly better than the
traditional scheme

Theorem: For the first-order upwind scheme for fluid domains, the backward Euler integrator
for the rigid body, and the new projection

Op =0 f z(vf — fub)

cAt

the discrete system is stable for my > 0 and x= g <!

Theorem: For the first-order upwind scheme for fluid domains, the backward Euler integrator
for the rigid body, and the traditional projection

Op —O0f

cAt

the discrete system is stable for A= = <1 and At < my(4 — A)/(pc))




Incorporating the AMP projection in the 2D or 3D equations of motion is
straight forward and the result reveals added mass tensors

* In 2D the equations of motion are
mb\.fb — :F-a
Aw = -—-WAw+ T

e After some manipulation the added-mass is revealed

myvy, HA v, +HAw = F,
Aw +[A%, +[A%w = T

* Where the added mass tensors are expressed as surface integrals, for example

AYY :/ zfnnT ds
OB

* Definitions for the analytic forms of the added mass tensors for compressible flow was an
open question (Love 1905, Taylor 1942)



The AMP-FSI algorithm is accurate and stable even for a zero mass rigid body

Mach 2 shock impacting zero mass body with AMR

Time histories of rigid body
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Compatibility coupling for incompressible FSI must deal with the complication
of infinite propagation speed for the incompressibility constraint
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Amazingly, the |D problem can be used as a guide to develop the AMP scheme

—H 0 H

fluid (INS) solid (linear elasticity)

velocity-pressure form

875@—?7:0

PO = —Oyp PO, U — 9,5 = 0

Oyyp = 0

0,6 — pc;dyv =0

Interface Coupling Conditions
v(0,t) = v(0, t)
_p(oat) 5-(07t)



Along the interface one can combine the fluid momentum and solid
characteristic to give a mixed boundary condition for the fluid stress

—H 0 H

Y@

AN

fluid (INS) solid (linear elasticity)

e The fluid momentum is integrated in time
t
()=t =0) == [ o0 )iy
t—

* The characteristic relation in the solid gives

ol (t) + zv' (t) = 6 + z0

e Combining these yields a mixed-integral type boundary condition for the stress




The AMP scheme is found to be stable under the usual time-step constraint

Theorem: The first-order upwind scheme for the solid, and the AMP algorithm

I.n+1 szt I.n+1 _ =—n+l1 — /—n-+1 I.n
— P — Oyp =049y +Zp(Uy " —vy)
0
I.n+1 n+1 | 1 — Y o= —n-+1 —n-+1 I.n+1
U — VU3 m (Zp% T 099 TP )
p

is stable for all material parameters provided 5@ -+ 5\5 <1 and 0 <~y <2

* Velocity weighting is used to avoid ill-conditioning in limiting cases

121 unstable
—1.1 1.1
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The traditional scheme is found to be formally unconditionally unstable!

Theorem: The first-order upwind scheme for the solid, and traditional interface approximation

I.n+1 /l—]n—|—1

Usg — Uy
pl,n—l—l _ _pn—l—l
2 L
is stable if and only if At < — (Ay _ ’%)
Cp 0

* Therefore the traditional scheme is unstable if the mass of the solid in a single cell is less
than the mass of the entire fluid domain

* For coarse meshes the scheme may appear stable, but for sufficiently fine grids the
scheme will experience exponential blowup

* This is a worst case of the 2D analysis



Interestingly, the anti-traditional scheme is found to be formally stable

Theorem: The first-order upwind scheme for the solid, and anti- traditional interface
approximation

I.n+1 nitl

Vg — Vg
I.n+1 __ —n—+1

p — — 099

Ay H
is stable if and only if At < — (\/M2 +8M — M) where M = ppAy
p

* Therefore the anti-traditional scheme is stable if the time step is taken small enough

* For the heavy solid regime however, the stable time step may be impractically small

* Note that there are apparently no instances of this anti-traditional scheme in the literature



In more complex settings, compatibility coupling reveals “interesting”

mathematical structure
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Exact traveling wave solutions for Stokes flow and linear elastic solids are used
to demonstrate stability and second-order accuracy for the AMP scheme in 2D
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Exact traveling wave solutions are used to demonstrate stability and second-
order accuracy for the AMP scheme in 2D
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For this same 2D problem, the traditional scheme is shown to exhibit instability
as the mesh is refined, as predicted by the theory

MP-VE, traveling wave, TP algorithm
h; | p/p =800 | /p =400 | p/p =200 | p/p =100
1/20 stable stable stable stable
1/40 stable stable stable unstable
1/80 stable stable unstable unstable
1/160 stable unstable unstable unstable
1/320 | unstable unstable unstable unstable




Ve have also considered the AMP scheme for the nonlinear incompressible
Navier Stokes equations coupled to rigid solids

* Here we find strong added-mass and added-damping effects, and the AMP projection is
formulated to address both

e Again, second-order accuracy in max norm is demonstrated using MMS and through self
convergence studies



The non-standard operators arising in compatibility-based coupling may
be challenging in the context of energy stable weak-form methods

* On one end of the spectrum are p-refinement methods that introduce interior degrees of
freedom (Solin et. al. 2004, Hesthaven and Warburton (2008)

p
fb(aj‘) — g Ckg[jk T e [337;,5132' + h] basis functions
k=0 1
xW‘I’h
unknowns

* On the other end of the spectrum are spline based methods that impose high-order
continuity but do not introduce interior DOFs (Hughes et. al. 2005)

B-spline basis

i(x) € C* z € |0,1]

08\




There is a relatively unstudied intermediate approach which uses neighbor data
rather than interior DOFs or globalizing high-order continuity constraints

* Over each interval we define a local reconstruction that interpolates data beyond the
interval where the definition is valid (Kormann 2012)

cubic interpolation piecewise cubic
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There is a relatively unstudied intermediate approach which uses neighbor data
rather than interior DOFs or globalizing high-order continuity constraints

* Over each interval we define a local reconstruction that interpolates data beyond the
interval where the definition is valid (Kormann 2012)

» Basis functions can be associated with each unknown ¢’ (z) = %ﬂ(%‘)
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There is a relatively unstudied intermediate approach which uses neighbor data
rather than interior DOFs or globalizing high-order continuity constraints

* Over each interval we define a local reconstruction that interpolates data beyond the
interval where the definition is valid (Kormann 2012)

0

» Basis functions can be associated with each unknown ¢” (z) = 5 —a(x)
J

e Extension to higher-order basis functions is straightforward

p=3 basis p=5 basis

1.2

—O.Es gj —0.?5 g]
p=7 basis p=9 basis

1.2




Using this basis we can pursue discretization using standard variational techniques

* The solution takes the form

ix) = Y, (x)

e Ignoring boundaries for a moment and using the notation (v,w) = /vw dx

(Y, Uzz) = —(Va, Ug)

zp: M(Szp)umxj+a — zp: K(()?,p)uj—l-oé

a=-—p a=—p

e The discrete Fourier spectrum can found by assuming u; = exp(ikx)

p (2,]?) y
g = Do Kaewliod) | 1 oy o
P M P exp(ia) h?




The approximations are found to be extremely accurate and have bounded

stiffness with increasing order
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Generic boundary closures can be obtained by employing one-sided interpolation
or through the use of ghost cells similar to BCs in FD methods

e Extrapolation is straightforward and follows essentially the same logic as traditional FEM
near boundaries. This can be viewed as a modification to the basis functions.

1.2

cubic basis quintic basis

0.6r b 0.5r

phi
o
N
phi

* Alternately additional degrees of freedom can be retained in “ghost cells” while the
discrete solution and all integrals are still take over the physical domain interior



Boundary closures based on compatibility boundary conditions remove stiffness
associated with one-sided closures, but are specific to the PDE and BC

* e.g. consider the scalar wave equation with Neumann BC

Poz = © 9z2
ou
%(be,t) =0

* Repeated differentiation of the BC in time and use of the governing equation yields

031 031

D012 (xbat) — CQ@($bat) =0
0°1 0°1

Saort (Tt = € 55 (@, t) = 0
0’ 0’

=’ ——(xp,t) =0




The observed convergence rates often exceeds the theoretical prediction of p+1,

and often approach the superconvergent rate of 2p

* e.g. consider the scalar wave equation in 2D
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GD can be thought of as a projection from “standard” FEM, e.g. u; + au, = 0

e Classical cubic continuous FEM with 12 elements (36 DoFs)
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GD can be thought of as a projection from “standard” FEM, e.g. u; + au, = 0

e Classical cubic continuous FEM with 12 elements (36 DoFs)
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For unstructured grids, a least squares interpolant is used to define the basis and
the GD operators can be formed using projection from SPB-scheme (in MFEM)
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An unsteady isentropic vortex case illustrates that GD may outperform standard
variational schemes in terms of error per DoF

density
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l 9.9e-01

L? Error
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Summary

* | have discussed our compatibility-based AMP schemes for FSI

* Moving toward FEM, | have developed GD schemes that accommodate CBCs

* \We have briefly seen the relation between GD and classical FEM

Future VWork

* New FSI regimes (incompressible/incompressible, compressible/beams)

e Other multidomain regimes (acoustics, EM, etc ...)

e GD-based solvers for FSI using CBCs



