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At a high level, this talk focuses on partitioned FSI solvers which are ideally 
suited to modern high-performance computation

• Component solvers remain independent 
• can use existing solvers 
• no need to solve (or precondition) a coupled implicit system 

• Can naturally take advantage of disparate time scales 
• e.g. mixing implicit and explicit integration 

• High levels of algorithmic concurrency 
• maps well to modern and emerging computers

fluid solver interface 
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Figure 20: A shock hitting two elastic sticks. A comparision of the solution at t = 9 on the coarse grid G(4)
ds (top) medium

resolution grid G(8)
ds (middle) and fine grid G(16)

ds (bottom).

demonstrate that the multi-dimensional algorithm remains stable even for light solids. A self-convergence
grid refinement study for this case showed the solutions to be converging at the expected rates. A final
example of a shock impacting two deformable sticks illustrated the application of the method to a problem
where the solids undergo large translational motions through the fluid domain.

There are many avenues to follow in future work. The FSI-DCG approach described here can be extended
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• Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006) 
1. advance fluid (using interface velocity/displacement from the solid) 
2. advance solid (apply fluid forces to the solid) 
3. possibly iterate with under-relaxation to convergence 

• Some analysis of added-mass instabilities can be found in the literature, for example 
• Causin, Grebeau, and Nobile, 2005 (stability with relaxation) 
• Gretarsson, Kwatra, and Fedkiw 2011 (semi-monolithic formulations)

Traditional partitioned schemes have suffered from “added-mass instabilities” 
for solids which are sufficiently light when compared to the fluid

2 PRACTICES AND PERILS IN MULTIPHYSICS APPLICATIONS

2.1.1 Interaction of fluids and structures

Numerical simulations that model interaction between incompressible laminar flows and elastic structures require
coupling a description of the fluid—typically the incompressible Navier-Stokes equations or a weakly compress-
ible lattice-Boltzmann equation—with a description of the structures. Sample application areas for this scenario
include blood flow in arteriae, veins, and heart chambers; low Mach number aerodynamics; marine propellers; and
hydroelectric power plants. The unknowns of the involved equations—velocities and pressure for the fluid, dis-
placements for the structure—are associated with different locations in the overall computational domain, resulting
in a surface-coupled problem.

Fluid–structure interaction (FSI) can be simulated in at least two ways. One approach is to solve a large system
of equations for all fluid and structure unknowns as a single system—typically ill-conditioned. Alternatively, in
a partitioned approach, one has separate solvers for the fluid and the structure, together with a suitable coupling
method. In the latter case, boundary conditions for both single physics problems at the coupling surface have to be
defined. The respective interface values are passed from one solver to the other. This approach requires mapping
methods for physical variables between (in general) nonmatching solver grids at coupling surfaces. Important
features desired of such mappings are accuracy, consistency, and conservation of energy and momentum. Two
main classes of mapping methods can be identified: interpolation methods (Farhat et al., 1998b; de Boer et al.,
2007; Jaiman et al., 2006; Bungartz et al., 2010; Scholz et al., 2006), based on geometric relations between the
involved grid points, and mortar methods, in which boundary conditions are formulated in weak form by using
Lagrange multipliers (Farhat et al., 1998b; Baaijens, 2001; Klöppel et al., 2011; Ross, 2006).

The coupling itself can be done with different methods, leading to looser or more tightly coupled timestep-
ping methods; see Figure 2 for two variants. The loosest coupling is a one-way coupling, where the flow solver
computes a force exerted on the structure using a rigid-structure geometry, and structural movements are com-
puted in a postprocessing-like manner based on these forces. This strategy is obviously applicable only for small
and static structure deformations. The most widely used class of iteration schemes is Gauss-Seidel-like coupling
iterations (see Algorithm 1), with variants ranging from a single iteration loop per timestep to repeated iteration-
to-convergence within each timestep, with or without (Aitken) underrelaxation (Irons and Tuck, 1969; Schäfer
et al., 2010; Wall et al., 2001), to interface quasi-Newton methods that efficiently compute approximate Newton
iterations based on sensitivities resulting from Gauss-Seidel iterations (Degroote et al., 2009). To account for what
are usually moderately different timescales in the fluid and the structure, a subcycling in the flow solver can be
used. In the absence of turbulence, spatial scales are essentially the same throughout fluid and structure domains.

The choice of coupling implementation can lead to development of numerical instabilities in multiphysics
codes. For incompressible fluids, the so-called added-mass effect induces instabilities in loosely coupled simula-
tions and in Gauss-Seidel-like iterations: the force exerted by the fluid on a moving structure can be interpreted
as a virtual added mass (see, e.g., (van Brummelen, 2009)) of the structure. For an incompressible flow, each
acceleration or deceleration of the structure causes an immediate change in this added mass (whereas the added
mass change for a compressible flow increases continuously over time). If this change is too large, both loosely
and tightly coupled Gauss-Seidel-like coupling schemes become unconditionally unstable; in other words, a re-
duction of the timestep does not cure the instability (van Brummelen, 2010). In the case of a massless structure,
a reduction of the timestep even worsens instabilities (Degroote et al., 2009). Typically, only a few low-frequency

structure structure

force

displ./vel.

interface quasi−Newton

underrelaxation

t (n+1)t (n)force
fluid fluid

Figure 2: One-way and Gauss-Seidel-like coupling strategies for fluid-structure interaction simulations.
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• At the continuous level, the interface velocity and stress are defined in terms of the 
coupled fluid/solid problem 

• The job of the interface projection is to define the solution at the interface in terms 
of (disparate) predictions from the fluid and solid 

• The resultant interface dynamics are then imposed on the fluid and solid domains

To account for the strongly coupled nature of FSI interface dynamics, 
we have developed the idea of an “interface projection”
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• The resulting schemes will be called Added-Mass Partitioned (AMP)



As a concrete motivating example consider shock structure interaction

• High-speed compressible fluids (Euler equations) 
• Compressible elastic solids (linear or nonlinear elasticity)

 Example: Mach-2 shock impacting deformable sticks



The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 11 / 28
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@t⇢+ @x(⇢v) = 0

@t(⇢v) + @x(⇢v
2 + p) = 0

@t(⇢E) + @x(⇢Ev + pv) = 0
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@tū� v̄ = 0

⇢̄@tv̄ � @x̄�̄ = 0

@t�̄ � ⇢̄c2p@x̄v̄ = 0

Linear Elasticity Euler Equations

Interface Coupling Conditions
(
v̄(x̄, t) = v(x, t),

�̄(x̄, t) = �(x, t) ⌘ �p(x, t) + pe

To understand the dynamics of the interface it is useful to simplify and 
consider a 1D model problem

Greengard’s Axiom: “It never hurts to start by writing down the exact 
solution to the problem”



We localize near the interface, and obtain a fluid structure Riemann problem 
(FSRP) whose solution can be used for FSI coupling

The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance
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• This is a specific case of the elastic piston problem with constant states 
• Exact solutions to the linear and nonlinear problem can be found

wave associated with the C+ characteristic field may be a shock or an expansion fan. The velocity and stress in the solid jump
across the p-wave shock at !x ¼ "cpt. Let ½q$;v$; p$% denote the fluid state adjacent to the interface and let ½!v$; !r$% denote the
solid state between the p-wave and the interface. The interface conditions imply !v$ ¼ v$ and !r$ ¼ "p$ þ pe, and the interface
moves with the constant velocity so that its position is given by x ¼ GðtÞ ¼ v$t ¼ !v$t.

4.1.1. The linearized fluid–solid Riemann problem
We first consider the solution of the fluid–solid Riemann problem in which the fluid equations in (4) are linearized about

the constant initial state ½q0;v0; p0%. To better see the symmetry between the fluid and solid equations for this problem, we
introduce a fluid stress r ¼ "pþ pe and the corresponding constant states r0 ¼ "p0 þ pe and r$ ¼ "p$ þ pe. The linearized
equations are

@t!u" !v ¼ 0
@t !v " ð1=!qÞ@!x !r ¼ 0
@t !r" !qc2p@!x!v ¼ 0
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; for !x < 0;

@tqþ v0@xqþ q0@xv ¼ 0
@tv þ v0@xv " ð1=q0Þ@xr ¼ 0
@trþ v0@xr" q0a

2
0@xv ¼ 0

8
><

>:
; for x > v0t: ð8Þ

The characteristic relations for these hyperbolic equations are

d!u=dt ¼ !v; on d!x=dt ¼ 0;
!z!v ) !r ¼ !z!v0 ) !r0; on d!x=dt ¼ *cp;

!
a20qþ r ¼ a20q0 þ r0; on dx=dt ¼ v0;

zv ) r ¼ zv0 ) r0; on dx=dt ¼ v0 * a0;

(

ð9Þ

where !z ¼ !qcp and z ¼ q0a0 are the acoustic impedances of the solid and fluid, respectively. Using the equations in (9) for the
C+ characteristic in the solid and the C" characteristic in the fluid, along with the interface conditions

!vð!x; tÞ ¼ vðx; tÞ;
!rð!x; tÞ ¼ rðx; tÞ;

!
for x ¼ v0t and !x ¼ 0; ð10Þ

gives !zv$ " r$ ¼ !z!v0 " !r0 and zv$ þ r$ ¼ zv0 þ r0. Whence,

v$ ¼ !v$ ¼
!z!v0 þ zv0

!zþ z
þ r0 " !r0

!zþ z
; ð11Þ

r$ ¼ !r$ ¼
!z"1 !r0 þ z"1r0

!z"1 þ z"1 þ v0 " !v0

!z"1 þ z"1 : ð12Þ

The density of the fluid adjacent to the interface is given by q$ ¼ q0 " ðr$ " r0Þ=a20, which is obtained using the C0 charac-
teristic equation in (9) that holds along particle paths dx=dt ¼ v0 in the fluid. This condition is a linearized form of the en-
tropy condition

q$ ¼ q0ðp$=p0Þ
1=c: ð13Þ

Fig. 2. The x–t diagram for the fluid–solid Riemann problem. The wave on the right may be a shock with speed S or an expansion fan. The interface between
the fluid and solid is given by !x ¼ 0 in the solid and x ¼ v$t ¼ !v$t.

Fig. 1. The x–t diagram for the elastic piston problem with a receding piston.

3522 J.W. Banks et al. / Journal of Computational Physics 231 (2012) 3518–3547



Our added-mass partitioned (AMP) schemes use compatibility interface 
conditions and embed solutions to the FSRP as discrete interface conditions

vI =
z̄v̄0 + zv0
z̄ + z

+
�0 � �̄0

z̄ + z

�I =
z̄�1�̄0 + z�1�0

z̄�1 + z�1
+

v0 � v̄0
z̄�1 + z�1

⇢I = ⇢0(pI/p0)
1/�

• Along the interface, the solution is projected using solutions to local FSRPs 

• The traditional FSI coupling is the large impedance (mass) limit 

• velocity from solid  

• stress from fluid 

• Here                 and                   are acoustic impedances

The interface projection step

Using the linearized FSR solution, the interface values are an impedance
weighted average of the provisional fluid and solid values:

vI =
z̄v̄0 + zv0
z̄ + z +

σ0 − σ̄0
z̄ + z ,

σI =
z̄−1σ̄0 + z−1σ0
z̄−1 + z−1 +

v0 − v̄0
z̄−1 + z−1

Compare: the standard FSI scheme uses the heavy solid limit, z̄ " z,
velocity-from-solid, stress-from-fluid:

vI = v̄0
σI = σ0 = −p + pe

The standard scheme is unstable for light solids.

Note: for hard problems with shocks hitting the interface, there are
advantages to using the full nonlinear solution to the FSR problem.

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 19 / 28

vI = v̄0

�I = �0 = �p0 + pe

z̄ = ⇢̄cp z = ⇢0a0



The stability of the discretization varies significantly based on the formulation 
of discrete interface conditions

 Theorem: For first-order upwind methods and the interface conditions that take the velocity 
from the left and the stress from the right 

the discretization is stable under the constraint                                       

Thus for                the discretization is stable under the standard CFL limit. The maximum  

stable time step decreases to zero as the density ratio increases.


vI
�I

�n
=


vL
�R

�n

0

 Theorem: For the first-order upwind method and the interface conditions given by 

 the discretization is stable under the constraint                                      � =
c�t

�x
< 1


vI
�I

�n
=

1

zL + zR


zLvL + zRvR + (�R � �L)

zR�L + zL�R + zRzL(vR � vL)

�n

0

� =
c�t

�x
< min

 
1,

4

1 + ⇢R

⇢L

!

⇢R < 3⇢L



Stability of AMP solver for a variety of fluid/solid densities is demonstrated
(example of solid compression wave impacting fluid cavity)

p-wave shock

fluid

solid

�2.5 2.5
�2.5

2.5

Figure 14: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G(1)
dc showing the two solid grids and the two fluid grids.
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Figure 15: An elastic shock hitting a fluid filled deformable cylinder showing the density, �, in the fluid domain and the norm
of the solid stress, |�̄|, in the solid domain. Results are shown for the light solid, �r = 0.1, at times t = 0.5, 1.0 and 1.5.
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Figure 16: An elastic shock hitting a fluid filled deformable cylinder showing the density, �, in the fluid domain and the
stress-norm |�̄|, in the solid domain. Results are shown for the medium solid, �r = 1.0, at times t = 0.5, 1.0 and 1.5.

reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for �r = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
su�ers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, �r = 0.1 and �r = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
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Figure 17: An elastic shock hitting a fluid filled deformable cylinder showing the density, �, in the fluid domain and the
stress-norm |�̄|, in the solid domain. Results are shown for the heavy solid, �r = 10., at times t = 0.5, 1.0 and 1.5.

is used. In contrast, the calculations presented here use the interface approximation based on the fluid-solid
Riemann problem and no numerical instability is observed.

To estimate the accuracy of the computed solution, we solve the problem on a sequence of grids of
increasing resolution. Given solutions on three grids of increasing resolution, a posteriori estimates of the
error and convergence rates can be computed using the procedure described in [30]. Estimated L1-norm
errors and convergence rates are given in Table 12 for the medium-density solid case �r = 1 (similar results

are obtained for the light and heavy cases). The rates are computed using the grids G(4)
dc , G(8)

dc and G(64)
dc .

Having the last grid significantly finer than the previous grids generally provides better estimated convergence
rates for wave propagation problems with linear discontinuities in which solutions converge slowly, as is the

case here. As seen from the table, convergence rates of approximately 0.7 for E(1)
v̄ and E(1)

�̄ are reasonably
close to the expected value of 2/3. The convergence rates for the fluid variables of approximately 0.87 are
somewhat less than the expected value of 1 for an isolated fluid calculation, but this is not unexpected here
given that the fluid solution is strongly driven by the shocks in the solid which are converging at a rate
near 0.7.

Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
�̄ r E(1)

� r E(1)
v r E(1)

T r

G(4)
dc 1.7e-4 1.1e-3 1.3e-3 4.1e-3 2.3e-3 4.2e-3

G(8)
dc 7.9e-5 2.1 6.9e-4 1.6 7.9e-4 1.6 2.2e-3 1.8 1.3e-3 1.8 2.3e-3 1.8

G(64)
dc 8.3e-6 9.5 1.5e-4 4.5 1.8e-4 4.3 3.6e-4 6.3 2.1e-4 6.1 3.7e-4 6.2

rate 1.08 0.72 0.71 0.88 0.87 0.88

Table 12: Estimated L1-norm errors and converge rates for the elastic shock hitting a fluid cavity, medium-density solid,
�r = 1.0. Note that the grid spacing on the finest grid is 8 times smaller than the previous resolution.

6.5. A shock impacting two deformable sticks

In this section, we consider the simulation of a fluid shock impacting two deformable sticks as shown in
Figure 19. The main purpose of this computation is to demonstrate the ability of the FSI-DCG approach
to treat problems with large displacements while retaining high-quality grids. We recognize that the use of
a linear elastic model for the solids in this simulation is somewhat questionable from a physical standpoint
since this solid model does not properly treat large strains or rotations, but this does not detract from the
main purpose of this calculation.

The geometry of the problem consists of the large rectangular domain R = [�5, 20]⇥ [�10, 10] with two
embedded solid sticks. Each stick is a smoothed-polygon approximation to the rectangular domain of width
0.5 and height 4. The lower stick is centered at (0,�2.1) and defines the solid domain ⇥̄1 ⇤ [�.25, .25] ⇥
[�4.1,�.1]. The upper stick is centered at (0, 2.1) and defines the domain ⇥̄2 ⇤ [�.25, .25] ⇥ [.1, 4.1]. The

fluid domain at time zero is then ⇥(0) = R� ⇥̄1 � ⇥̄2. Let G(j)
ds denote the composite grid for this geometry

with �s(j) = 1/(10j), approximately. Figure 18 shows closeups of the grid G(4)
ds at three di⇤erent times

during the calculation. The grids next to the interface are hyperbolic grids with normal width 5�s(j) for
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Figure 14: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G(1)
dc showing the two solid grids and the two fluid grids.
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of the solid stress, |�̄|, in the solid domain. Results are shown for the light solid, �r = 0.1, at times t = 0.5, 1.0 and 1.5.
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Figure 16: An elastic shock hitting a fluid filled deformable cylinder showing the density, �, in the fluid domain and the
stress-norm |�̄|, in the solid domain. Results are shown for the medium solid, �r = 1.0, at times t = 0.5, 1.0 and 1.5.

reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for �r = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
su�ers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, �r = 0.1 and �r = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
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For other regimes, the situation is potentially more challenging, e.g. what if we 
simply replace the deforming bodies with rigid objects?

 Example: Mach-2 shock impacting rigid sticks



For rigid bodies the principle of compatibility interface conditions is the same, 
but the details and consequences are more subtle

8
><

>:

@t⇢+ v̂@x⇢+ ⇢̂@xv = 0

@tv + v̂@xv � (1/⇢̂)@x� = 0

@t� + v̂@x� � ⇢̂ĉ2@xv = 0

Linearized Euler equationsNewton’s law of motion

mbv̇b = �b + fb,

ẋb = vb

• From the theory of characteristics we obtain the stress on the body

AMP Schemes for FSI LAB 13-958

x

t

vb,�b

C� : � + zv = �f + zvf

vf ,�f

bodyfb fluid

Figure 1: An illustration of a one-dimensional
fluid/rigid-body problem demonstrating how character-
istic analysis reveals a relation between the solid veloc-
ity, vb, and stress on the body, �b.

associated with strong added-mass effects as
well as the procedure we have developed to
generate AMP interface treatments [8]. Con-
sider the simple problem illustrated in Fig-
ure 1, which consists of a rigid body of mass
mb adjacent to a inviscid compressible fluid.
The velocity of the body obeys Newton’s law
of motion,

mbv̇b = �bAb + fb, (1)

where Ab is the cross-sectional area of the
body, fb is an external body force, and �b is
the force applied to the body at the fluid/solid

interface. At first glance, it would appear impossible to solve for the time evolution of the velocity
vb when the mass mb vanishes, because the equation of motion apparently becomes singular. How-
ever, the characteristic structure of the fluid PDE [54] can be used to expose the dependence of the
applied stress on the motion of the body, revealing that the traction on the body is

�b = �f + zf [vf � vb] ,

where zf = ⇢fcf is the fluid impedance and where �f and vf are the fluid stress and velocity,
respectively, at the solid/fluid interface. Inserting this form of the stress into the equations of
motion (1) reveals

mbv̇b + zfAbvb = �fAb + zfAbvf + fb, (2)

where the added mass term zfAbvb has been moved to the left-hand side. Equation (2) can be used
to solve for vb even when mb = 0 (provided zfAb > 0). By using an ODE integration scheme that
treats the added mass term zfAbvb implicitly, equation (2) can be used to evolve the rigid body
with a time step that need not go to zero as mb goes to zero. The theoretical stability bounds for
the newly developed scheme can be summarized as follows:

Theorem 1 The AMP-FSI partitioned method using an upwind discretization for a linearized in-
viscid fluid, trapezoidal integration for the rigid body equations, and the AMP interface projection
scheme is stable for bodies of any mass (mb � 0) under the usual fluid CFL time step restriction.

That is to say that even for zero-mass rigid bodies in compressible flow, a case with an infinite time-
scale separation between the two domains, a fully-partitioned numerical method can be realized.

In multiple space dimensions, the procedure remains essentially unchanged, but the details
become somewhat more involved. This extension was presented in [8], and stable AMP algorithms
for 2D rigid body/compressible FSI were developed for general geometry using overlapping grids [55].
This is the first known partitioned algorithm that remains stable for all solid masses and moments
of inertia. Example calculations showing the evolution of zero-mass rigid bodies impacted by a
shock wave are shown in Figure 2. This work also revealed the analytic forms of the added-mass
tensors for compressible flow, resolving an unanswered question from the times of Love and Taylor
in the early 20th century [56–58].
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• We have exposed the dependence of the applied stress on the velocity of the body 

• Therefore the equations of motion are well-defined even for zero mass 

• The added mass term occurs naturally and reflects the effect of displaced fluid

mbv̇b + zvb = �0 + zv0 + fb(t)
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Figure 1: An illustration of a one-dimensional
fluid/rigid-body problem demonstrating how character-
istic analysis reveals a relation between the solid veloc-
ity, vb, and stress on the body, �b.

associated with strong added-mass effects as
well as the procedure we have developed to
generate AMP interface treatments [8]. Con-
sider the simple problem illustrated in Fig-
ure 1, which consists of a rigid body of mass
mb adjacent to a inviscid compressible fluid.
The velocity of the body obeys Newton’s law
of motion,

mbv̇b = �bAb + fb, (1)

where Ab is the cross-sectional area of the
body, fb is an external body force, and �b is
the force applied to the body at the fluid/solid
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viscid fluid, trapezoidal integration for the rigid body equations, and the AMP interface projection
scheme is stable for bodies of any mass (mb � 0) under the usual fluid CFL time step restriction.

That is to say that even for zero-mass rigid bodies in compressible flow, a case with an infinite time-
scale separation between the two domains, a fully-partitioned numerical method can be realized.

In multiple space dimensions, the procedure remains essentially unchanged, but the details
become somewhat more involved. This extension was presented in [8], and stable AMP algorithms
for 2D rigid body/compressible FSI were developed for general geometry using overlapping grids [55].
This is the first known partitioned algorithm that remains stable for all solid masses and moments
of inertia. Example calculations showing the evolution of zero-mass rigid bodies impacted by a
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The projected force correctly exposes the dependence of the applied stress on 
the motion of the body, and thereby reveals the “added mass”



The stability of the new AMP scheme is seen to be significantly better than the 
traditional scheme

 Theorem: For the first-order upwind scheme for fluid domains, the backward Euler integrator 
for the rigid body, and the new projection 

the discrete system is stable for               and 

 Theorem: For the first-order upwind scheme for fluid domains, the backward Euler integrator 
for the rigid body, and the traditional projection 

the discrete system is stable for                  and 

� =
c�t

�x
< 1mb � 0

� =
c�t

�x
< 1 �t < mb(4� �)/(⇢c�)
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• In 2D the equations of motion are  

• After some manipulation the added-mass is revealed 

• Where the added mass tensors are expressed as surface integrals, for example 

• Definitions for the analytic forms of the added mass tensors for compressible flow was an 
open question (Love 1905, Taylor 1942)

mbv̇b = F ,

A!̇ = �WA! + T

Incorporating the AMP projection in the 2D or 3D equations of motion is 
straight forward and the result reveals added mass tensors

mbv̇b +Avvvb +Av!! = eF ,

A!̇ +A!vvb +A!!! = eT

Avv =

Z

@B
zfnn

T ds



The AMP-FSI algorithm is accurate and stable even for a zero mass rigid body
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The AMP-FSI algorithm is very powerful and is stable for even the case of a 
zero mass rigid body



Compatibility coupling for incompressible FSI must deal with the complication 
of infinite propagation speed for the incompressibility constraint

D.A. Serino et al. / Journal of Computational Physics 399 (2019) 108923 3

Fig. 1. Top left: Initial grid is composed of a (blue) background grid and (green) deforming interface-fitted grids representing the fluid domain. The ‘RPI’ 
shaped solid domain is composed of (red) background grids, (purple) interface-fitted grids, and (pink) annular grids around interior cores where the 
displacement is set to zero. Bottom left: Solution at t = 15 described by streamlines in the fluid domain and shaded contours of the magnitude of the solid 
displacement. Right: Enlarged view of the grid after solid deformation. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

ible flow, for example, AMP schemes have been developed for thin elastic structures [4] (as noted above) and for rigid 
solids [11–13]. The first AMP schemes were developed for compressible flow [14,15], and were subsequently extended into 
a general 2D framework using the DCG approach for FSI problems involving inviscid compressible flows and linear elastic 
solids [5]. For the case of inviscid compressible flow, added-mass effects are localized due to finite propagation speeds of 
disturbances in the fluid [16], and this leads to a somewhat simpler treatment of the coupling conditions in the corre-
sponding AMP scheme relative to the incompressible case considered here. Extensions of the scheme in [5] to FSI problems 
coupling inviscid compressible flow and rigid solids is described in [17], with the case of nonlinear elastic solids detailed 
in [18].

In addition to the work cited above, there are other approaches to addressing added-mass-type instabilities in both 
partitioned [19–21] and monolithic FSI solvers. For partitioned schemes, a typical strategy is to use under-relaxed sub-
iterations, and previous research has shown that the number of necessary sub-iterations can be reduced by the use of 
Aitken acceleration or quasi-Newton methods, see [22,23]. Additionally, sub-iteration schemes based on Robin-Neumann 
or Robin-Robin coupling, as opposed to the traditional Dirichlet-Neumann coupling, have also been shown to yield per-
formance gains [24–33]. In related research, added-mass effects can also be treated by adding fictitious mass terms in 
the structure equations [34,35], artificial compressibility in the fluid equations [36–38], or using a semi-monolithic ap-
proach [39]. For difficult problems with large added-mass effects, monolithic schemes have been used to eliminate the need 
for sub-iterations [40,41], and the performance of monolithic schemes has improved significantly through the application of 
multigrid [42–45].

The remaining sections of the paper are organized as follows. The equations governing the FSI problem are described in 
Section 2, and the AMP algorithm is described in Section 3. In the latter section, we begin with a discussion of the AMP 
interface conditions at a continuous level, which is followed by a detailed discussion of the AMP scheme. The description 
of the AMP scheme focuses on the time-stepping of the solid and fluid solvers, and the treatment of the interface condi-
tions, which are independent of the details of the spatial approximations. Section 4 provides a description of the spatial 
approximations using deforming composite grids (DCG), as shown in Fig. 1 for example. Numerical results confirming the 
stability and accuracy of the scheme are discussed in Section 5. Some of the results use new exact solutions of benchmark 
FSI problems, which are described in the appendices. Conclusions are given in Section 6.

2. Governing equations and interface conditions

We consider the coupled evolution of an incompressible fluid and a linear elastic solid. The fluid occupies the domain 
x ∈ !(t), where x = (x1, x2, x3) is a vector of physical coordinates and t is time. The equations for the solid are written in 
terms of the Lagrangian coordinate x̄ = (x̄1, ̄x2, ̄x3) for a reference configuration x̄ ∈ !̄0 at t = 0. (An overbar is used here 
and elsewhere to denote quantities associated with the solid.) The fluid and solid are coupled at an interface described by 
x ∈ "(t) in physical space and x̄ ∈ "̄0 in the corresponding reference space. Fig. 1 illustrates these geometric features using 
a model fluid-structure interaction problem.



velocity-pressure form

Amazingly, the 1D problem can be used as a guide to develop the AMP scheme
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2.2. Deforming elastic solids

We solve the equations of elasticity written as a system in first-order form where the dependent variables
are displacement, velocity, and stress. In terms of the reference coordinate x̄ and time t these equations are
written

ūt = v̄ (8)

⇢̄v̄t = rx̄�̄ (9)

�̄t = S(rx̄v̄) (10)

where �̄ = S(rx̄ū) is the stress-strain relationship. Here we consider linear elastic models and so S(rx̄ū) =
�(rx̄ · ū)I + µ(rx̄ū +rx̄ūT ). These equations of elasticity are solved in a static reference frame, and the
region of physical space occupied by the solid is determined using x(x̄, t) = x̄+ ū(x̄, t).

2.3. Fluid-solid interface conditions

The matching conditions at a fluid solid (no-slip) interface, @B, are the usual kinematic and dynamic
conditions,

v(x, t) = v̄(x, t), x 2 @B, (11)

nT
�̄(x, t) = nT �̄(x, t), x 2 @B. (12)

3. Derivation and analysis of added-mass terms

We present two distinct kinds of added-mass terms. The first has its origin in the pressure coupling,
and the second comes from the viscous terms. In order to show how the two added-mass terms present
themselves, we provide a detailed description of two simple model problems.

3.1. One-dimensional elastic solid and inviscid incompressible fluid

Consider a model problem in one dimension that couples an elastic solid with an inviscid incompressible
fluid as shown in Figure 1. Let ⇢, v(x, t) and �(x, t) = �p(x, t) denote, respectively, the (constant) density,

fluid (INS) solid (linear elasticity)
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Figure 1: Schematic of the one-dimensional FSI model problem. A deformable solid body sits next to an incompress-
ible fluid. The boundary between the two domains is located at x = 0 and lies mid-way between the ghost points of
the fluid and solid grids with index i = 0. The first grid point inside the domain is indexed with i = �1 on the left
and i = 1 on the right.

velocity and stress in the fluid. Let ⇢̄, v̄(x, t) and �̄(x, t) denote the the (constant) density, velocity and
stress in the solid. The governing equations for the solid in the left domain are given by
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Along the interface one can combine the fluid momentum and solid 
characteristic to give a mixed boundary condition for the fluid stress

• The fluid momentum is integrated in time 

• The characteristic relation in the solid gives 

• Combining these yields a mixed-integral type boundary condition for the stress

�I(t) + z̄vI(t) = �̄ + z̄v̄
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themselves, we provide a detailed description of two simple model problems.
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Consider a model problem in one dimension that couples an elastic solid with an inviscid incompressible
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velocity and stress in the fluid. Let ⇢̄, v̄(x, t) and �̄(x, t) denote the the (constant) density, velocity and
stress in the solid. The governing equations for the solid in the left domain are given by
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The AMP scheme is found to be stable under the usual time-step constraint

 Theorem: The first-order upwind scheme for the solid, and the AMP algorithm 

is stable for all material parameters provided                       and 0  � < 2
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The traditional scheme is found to be formally unconditionally unstable!

 Theorem: The first-order upwind scheme for the solid, and traditional interface approximation 

is stable if and only if 

• Therefore the traditional scheme is unstable if the mass of the solid in a single cell is less 
than the mass of the entire fluid domain 

• For coarse meshes the scheme may appear stable, but for sufficiently fine grids the 
scheme will experience exponential blowup 

• This is a worst case of the 2D analysis
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Interestingly, the anti-traditional scheme is found to be formally stable

 Theorem: The first-order upwind scheme for the solid, and anti- traditional interface 
approximation 

is stable if and only if                                               , where

• Therefore the anti-traditional scheme is stable if the time step is taken small enough 

• For the heavy solid regime however, the stable time step may be impractically small 

• Note that there are apparently no instances of this anti-traditional scheme in the literature
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Moving on to Step 3 in the AMP algorithm, the interface traction, denoted by (�n)I , is defined to be
that from the fluid at time t,

(�n)I = �pn+ ⌧n, x 2 �, (27)

since the fluid velocity and pressure have already incorporated the primary AMP interface conditions. The
interface velocity, denoted by vI , can be defined either from the fluid velocity or can be computed from the
characteristic relations in (12), which may be written in the form

nTv = nT v̄ +
1

z̄p
nT (�̄n� �n), x 2 �, (28)

eTmv = eTmv̄ +
1

z̄s
eTm(�̄n� �n), m = 1, 2, x 2 �. (29)

The choice given by (28) and (29) is the better conditioned approximation for the case of heavy solids, while
defining vI from the fluid velocity is better for light solids. To smoothly accommodate both limits, we define
the interface velocity as an impedance-weighted average of the two choices, namely

nTvI =
zf

zf + z̄p
nTv +

z̄p

zf + z̄p
nT v̄ +

1

zf + z̄p
nT

�
�̄n� (�n)I

�
, x 2 �, (30)

eTmvI =
zf

zf + z̄s
eTmvf +

z̄s

zf + z̄s
tTmv̄ +

1

zf + z̄s
tTm

�
�̄n� (�n)I

�
, m = 1, 2, x 2 �. (31)

Here, zf = ⇢vf is the fluid impedance, where vf is some suitable measure of the velocity in the fluid, as
discussed further in Section 6. Note that in practice, the algorithm is found to be very insensitive to the
particular choice of vf . This insensitivity is also confirmed in the theoretical results in Section 6. Also note
the form of the impedance weighted averaged in (30) and (31) are the same form as those appearing in the
added mass algorithm for compressible fluids [1]. Finally, the interface values vI and (�n)I are used to
assign boundary conditions on the solid in Step 4 of the AMP algorithm.

4. FSI Model problems

Three FSI model problems, of increasing complexity, are now defined. Model problem MP-IA, for an
inviscid incompressible fluid and acoustic solid (defined below), is used in the two-dimensional analysis of
partitioned schemes in Section 6, as well as being the basis for the one-dimensional model problem discussed
in Section 5. The second model problem, MP-VA, includes the e↵ects of viscosity in the fluid but retains the
acoustic solid. Model problem MP-VE includes viscosity in the fluid and treats a linearly elastic solid. Exact
traveling wave solutions to these model problems are given in Appendix A, while numerical simulations are
given in Section 8. In all cases the fluid domain is the rectangular region ⌦F = (0, L) ⇥ (�H, 0), the solid
domain is ⌦S = (0, L)⇥ (0, H̄) and the interface is � = {(x, y) |x 2 (0, L), y = 0}, see Figure 1. We consider
solutions that are periodic in the x-direction with period L.

solid: ⌦S

fluid: ⌦F

interface: �

y = H̄

x = 0 x = L
y = �H

y = 0

Figure 1: The geometry for the 2D FSI model problems.

9

• The AMP interface condition for the pressure is
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In more complex settings, compatibility coupling reveals “interesting” 
mathematical structure
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Figure 4: Traveling wave solution for a viscous incompressible fluid and elastic solid, model problem MP-VE, at
t = 0.5. Top row: shaded contours of the computed solution for � = ⇢̄/⇢ = .05. Bottom row: shaded contours for
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given in Figure 6. The numerical solutions and corresponding max-norm errors are computed for a sequence
of decreasing grid spacings, as was done previously in Section 8.1, and the convergence rates for the solution
components are estimated.

The results of this convergence study are given in Figures 7, 8 and 9 for the model problems MP-IA, MP-
VA and MP-VE, respectively. For the case of an inviscid fluid and acoustic solid supporting vertical motion
only (MP-IA), the comparison between the computed solutions and the exact solutions is made at t = 1.0.
The results show that the scheme is stable and close to second-order accurate in the max-norm. Since the
discretization of the fluid equations uses central finite di↵erences, a small amount of artificial dissipation is
added, proportional to h

2
j , to the fluid momentum equation to smooth boundary layers in the error that

otherwise degrade the max-norm convergence rates slightly (the scheme is stable without dissipation). For
the cases of a viscous fluid (MP-VA and MP-VE) with µ = .02, solutions decay in time and the comparison
is made at t = 0.3. For both of these viscous cases, one with an acoustic solid supporting vertical motion
only and the other with a compressible elastic solid allowing motion in both directions, the results show that
the AMP algorithm is stable and close to second-order accurate in the max-norm.

8.3. Traditional partitioned scheme

The table in Figure 10 indicates the stability of the traditional partitioned (TP) algorithm for the model
problem MP-VE for di↵erent values of � = ⇢̄/⇢. The stability was determined experimentally by integrating
the equations for a large number of time steps, and looking for exponential blowup. For heavy enough solids
one might expect the TP algorithm to be stable. However, from the theory for the model problem discussed
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Exact traveling wave solutions for Stokes flow and linear elastic solids are used 
to demonstrate stability and second-order accuracy for the AMP scheme in 2D
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Exact traveling wave solutions are used to demonstrate stability and second-
order accuracy for the AMP scheme in 2D



For this same 2D problem, the traditional scheme is shown to exhibit instability 
as the mesh is refined, as predicted by the theory

MP-VE, traveling wave, TP algorithm
hj ⇢̄/⇢ = 800 ⇢̄/⇢ = 400 ⇢̄/⇢ = 200 ⇢̄/⇢ = 100

1/20 stable stable stable stable
1/40 stable stable stable unstable
1/80 stable stable unstable unstable
1/160 stable unstable unstable unstable
1/320 unstable unstable unstable unstable



We have also considered the AMP scheme for the nonlinear incompressible 
Navier Stokes equations coupled to rigid solids

• Here we find strong added-mass and added-damping effects, and the AMP projection is 
formulated to address both 

• Again, second-order accuracy in max norm is demonstrated using MMS and through self 
convergence studies



• On one end of the spectrum are p-refinement methods that introduce interior degrees of 
freedom (Solin et. al. 2004, Hesthaven and Warburton (2008) 

• On the other end of the spectrum are spline based methods that impose high-order 
continuity but do not introduce interior DOFs (Hughes et. al. 2005)
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The non-standard operators arising in compatibility-based coupling may 
be challenging in the context of energy stable weak-form methods



• Over each interval we define a local reconstruction that interpolates data beyond the 
interval where the definition is valid (Kormann 2012)

There is a relatively unstudied intermediate approach which uses neighbor data 
rather than interior DOFs or globalizing high-order continuity constraints
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There is a relatively unstudied intermediate approach which uses neighbor data 
rather than interior DOFs or globalizing high-order continuity constraints



• Over each interval we define a local reconstruction that interpolates data beyond the 
interval where the definition is valid (Kormann 2012) 

• Basis functions can be associated with each unknown  

• Extension to higher-order basis functions is straightforward
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There is a relatively unstudied intermediate approach which uses neighbor data 
rather than interior DOFs or globalizing high-order continuity constraints



• The solution takes the form 

• Ignoring boundaries for a moment and using the notation    

• The discrete Fourier spectrum can found by assuming

Using this basis we can pursue discretization using standard variational techniques

ũ(x) =
X
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vw dx
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The approximations are found to be extremely accurate and have bounded 
stiffness with increasing order 
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Generic boundary closures can be obtained by employing one-sided interpolation 
or through the use of ghost cells similar to BCs in FD methods
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• Extrapolation is straightforward and follows essentially the same logic as traditional FEM 
near boundaries. This can be viewed as a modification to the basis functions. 

• Alternately additional degrees of freedom can be retained in “ghost cells” while the 
discrete solution and all integrals are still take over the physical domain interior

cubic basis quintic basis



• e.g. consider the scalar wave equation with Neumann BC 

• Repeated differentiation of the BC in time and use of the governing equation yields

Boundary closures based on compatibility boundary conditions remove stiffness 
associated with one-sided closures, but are specific to the PDE and BC
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@x5
(xb, t) = 0

@7ū

@x@t6
(xb, t) = c6

@7ū
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• e.g. consider the scalar wave equation in 2D

The observed convergence rates often exceeds the theoretical prediction of p+1, 
and often approach the superconvergent rate of 2p

J.W. Banks et al. / Journal of Computational Physics 372 (2018) 864–892 875

Fig. 4. On the left we plot the error for N = 69 and p = 7 at T f = 1.25 (top left) and T f = 100.25 (bottom left). On the right we plot the max norm error 
of the solution at T f = 1.25 (top right) and T f = 100.25 (bottom right) for various p and N . Reference lines are drawn at p + 1 (top right) and 2p (bottom 
right).

For the extrapolation boundary closure, the time step is chosen to satisfy !t = " 1
c

!x!y
!x+!y , where " = .25 is the usual 

safety factor (often called the CFL number), and the results are presented in Fig. 4. For simulations of short time, the 
approximations are shown to converge on the expected order of p + 1, and the errors are clearly largest near the upper 
and lower boundaries where physical boundary conditions are applied. For long time simulations, these large boundary 
errors are no longer dominant, and the error appears much more uniform throughout the domain. In addition, for the long 
time simulation, the numerical error appears to converge near the 2p rate for coarse grids and small p, an effect which is 
most pronounced for p ≤ 7. For larger p, the convergence rate is apparently between p + 1 and 2p. These observations are 
consistent with the one dimensional results discussed in [1].

The same series of tests is repeated using the ghost basis approach, again with the time step determined using " = 0.25, 
and the results are presented in Fig. 5. Comparison with the results from the extrapolation closure, reveals that the ghost 
basis approach behaves in a qualitatively similar manner. In particular, the method still yields the theoretically predicted 
rate of p + 1 for short times, and for longer times the method appears to yield the superconvergent 2p rate for smaller p
and coarser grids. In fact, the results using the ghost basis closure reveal the late-time superconvergence more clearly than 
the preceding extrapolation closure.

Although we do not have any hard analysis which predicts the superconvergence, our intuition is that it can be explained 
by the dispersion properties of the method. As propagating waves spend a relatively short time in the vicinity of the 
boundary, we expect that the dispersion error will be dominated by the error resulting from the higher order accurate 
volume formulas. Similar results have been observed and analyzed by Gustafsson and Wahlund [20] for high order staggered 
grid schemes applied to waves in discontinuous media. The complete analysis of this phenomenon, and in particular its 
effect on the approximation of elastic boundary waves noted in the subsequent section, is an interesting topic for future 
research.

Finally, a similar series of tests is repeated using the compatibility closure. Due to the smaller spectral radius of the 
discretization matrices, as discussed in [1], the time step can be taken somewhat larger, and is computed using " = .9. 
The results are presented in Fig. 6, and as in the one dimensional cases, results computed using the compatibility closures 
are both quantitatively and qualitatively superior to the other closures. In particular, superconvergence at a rate near 2p
is observed for both short and long final times, and the numerical errors are smooth in all cases and show no boundary 
dominance.

J.W. Banks et al. / Journal of Computational Physics 372 (2018) 864–892 877

Fig. 6. On the left we plot the error for N = 69 and p = 7 at t f = 1.25 (top left) and t f = 100.25 (bottom left). On the right we plot the max norm error 
of the solution at t f = 1.25 (top right) and t f = 100.25 (bottom right) for various p and N . Reference lines are drawn at 2p for both convergence plots.

Table 2
Estimated L1, L2, and L∞ convergence rates computed using Richardson extrapolation on a series of grids using N = 30, 60, 120.
p Ghost Basis Extrapolation Compatibility

L1 L2 L∞ L1 L2 L∞ L1 L2 L∞

1 1.98 1.88 2.42 1.98 1.88 2.42 1.98 1.88 2.42
3 5.28 5.13 4.81 5.49 5.33 5.12 5.41 5.27 5.08
5 7.90 7.59 6.89 7.75 7.18 6.07 8.38 8.20 8.19
7 9.85 9.31 8.34 9.33 8.81 8.07 10.97 10.80 10.85
9 11.21 10.45 9.81 10.41 9.74 9.21 13.29 13.12 13.16

The problem defined in (28) is solved numerically using the three boundary closure procedures and schemes defined 
using p = 1 : 2 : 9. The final time is taken to be T f = 1.25, and the time step is chosen to satisfy !t = " 1

c
!x!y

!x+!y where 
" = .25 for ghost basis and extrapolation, and " = .9 for compatibility. An equally spaced grid with, N = Nx = Ny =
30, 60, 120 is used, and the three grid solutions are then used in the Richardson extrapolation procedure discussed in [12]
to estimate the rate of convergence. In computing the solution differences and subsequent norms, the coarsest grid is used, 
and simple injection is used to transfer the finer grid to the coarser grid.

Estimated convergence rates using L1, L2, and L∞ norms for the various p are given in Table 2. For all three boundary 
closures, the observed rate is typically faster than p + 1, but slower than the superconvergent 2p. Furthermore, the scheme 
using compatibility closures is seen to consistently outperform the other two generic closures in terms of the computed 
convergence rates. In addition to an estimated rate, one can also compute the estimated error as a function of x and y, as 
discussed for example in [11]. Color contours of this estimated error are displayed in Fig. 7, where the estimate is produced 
using the L∞ norm, the plots correspond to the error in the finest grid, N = 120, and we show p = 7. In agreement with 
the prior observations, the approximation from the compatibility closure does indeed have the smallest estimated error, and 
shows no discernible boundary effects. In addition for the compatibility closure, the error in the reflected wave from the 
boundaries does not appear to have been amplified by the discrete treatment of the boundary condition. On the other hand, 
the result from the ghost basis closure has some similar features, but effects associated with the boundaries are clearly 
present and the error is roughly 4 times larger than that for compatibility. The extrapolation closure shows even stronger 
effects associated with the boundaries, and the absolute magnitude of the error is approximately 3 times that of the ghost 
basis and 12 times that of the compatibility.

extrapolation compatibility



GD can be thought of as a projection from “standard” FEM, e.g. 
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• Classical cubic continuous FEM with 12 elements (36 DoFs) 

• GD with 12 “elements” (12 DoFs)



• Classical cubic continuous FEM with 12 elements (36 DoFs) 

• GD with 36 “elements” (36 DoFs)

GD can be thought of as a projection from “standard” FEM, e.g. 
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For unstructured grids, a least squares interpolant is used to define the basis and 
the GD operators can be formed using projection from SPB-scheme (in MFEM)

(a) Stencil for p = 0 (b) Stencil for p = 1 (c) Stencil for p = 2

Figure 2: Stencil construction

number of elements in N j
k is greater than or equal to np. Figure 2 illustrates518

stencils that result when degree p = 0, p = 1, and p = 2 basis functions are519

used.520

Remark 9. Other methods can be used to define Nk. For example, a stencil521

may be defined by all elements whose centers are inside the circle of radius r522

centered at the kth element’s centroid.523

5.3. Spatial accuracy verification using the steady isentropic vortex524

We begin with a verification of spatial accuracy. In order to isolate the525

spatial errors from the temporal errors, we first consider a steady problem,526

namely the steady isentropic vortex. The vortex flow consists of circular527

streamlines and a radially varying density and pressure. While simple, the528

isentropic vortex has the advantage of o↵ering an exact solution.529

The steady isentropic vortex problem is defined on a quarter annulus530

domain ⌦ = {(r, ✓), |1  r  3, 0  ✓  ⇡
2}. The mesh for the domain531

is generated in the manner described in [25]. First, a uniform triangular532

mesh is defined in polar-coordinate space by splitting N ⇥N quadrilaterals533

into 2N2 triangles. Subsequently, the triangles are mapped to physical space534

using a degree p+ 1 mapping for a degree p discretization which follows the535

same approach in [24]. Figure 3(a) shows a sample mesh for N = 10, and536

Figure 3(b) illustrates the numerical density from a p = 3 discretization that537

has been prolonged to the quadrature points of the mesh.538

27

p=0 p=1 p=2



An unsteady isentropic vortex case illustrates that GD may outperform standard 
variational schemes in terms of error per DoF

(a) SBP discretization (b) DGD discretization

Figure 8: L2
error in the density for the SBP and DGD discretizations of the unsteady

vortex problem

Figure 9: L2
density error versus number of degrees of freedom for the DGD and SBP

discretizations of the unsteady vortex

34

(a) Example mesh (b) Density initial condition

Figure 7: Mesh and initial density condition for the unsteady vortex problem

p = 1 and p = 4) or exceeding p+2. Previous studies have demonstrated that628

tensor product Galerkin di↵erence schemes [1, 2] can achieve superconvergent629

solution errors, i.e. solution errors that exceed p+1 rates. To the best of our630

knowledge, this is the first demonstration of such superconvergence for an631

unstructured GD scheme. Furthermore, with the exception of p = 1, Figure 9632

shows that the DGD discretization outperforms the SBP discretization of the633

same order when error is plotted versus degrees of freedom.634

Remark 11. As with tensor-product Galerkin-Di↵erence (GD) discretiza-635

tions, solution superconvergence depends on the boundary treatment. This636

is why the steady vortex results are closer to p + 1 rates in Figure 4(b).637

By constrast, the periodic mesh considered here requires no special bound-638

ary treatment. Improving the accuracy of GD operators near the boundary639

represents an on-going e↵ort in the community.640

5.5. Verification of entropy conservation/dissipation641

In this section, we use the unsteady isentropic vortex problem to ver-642

ify that total entropy is conserved, in the case of an entropy-conservative643

scheme, or dissipated, in the case of an entropy-stable scheme. The sim-644

ulation parameters and configuration are largely the same as they were in645

previous example. One notable di↵erence is that the solution is advanced646

33



• I have discussed our compatibility-based AMP schemes for FSI 

• Moving toward FEM, I have developed GD schemes that accommodate CBCs 

• We have briefly seen the relation between GD and classical FEM

Summary

• New FSI regimes (incompressible/incompressible, compressible/beams) 

• Other multidomain regimes (acoustics, EM, etc …) 

• GD-based solvers for FSI using CBCs

Future Work


