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Definition



High Order Numerical Schemes for PDEs

• Consider a PDE with exact solution u(x,t).

• A numerical scheme with grid spacing h (and time step Δt) produces an approximation uh.

• The scheme is said to be of order p if there exists a constant C, independent of h, such that for an 

appropriate norm

| 𝑢 − 𝑢ℎ| ≤ 𝐶ℎ𝑝 𝑎𝑠 ℎ → 0,

• Higher p implies faster convergence as the grid is refined.

• High-order schemes achieve a given accuracy with fewer grid points.

• Common examples:  

• High-order finite difference methods

• Finite volume schemes with p-th order reconstruction

• Discontinuous Galerkin methods
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High Order Numerical Schemes for PDEs
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High Order Numerical Schemes for PDEs

• Are sometimes said to be….

• Very difficult to analyze, understand, code 

and parallelize

• Accurate but really slow

• For single phase incompressible flows 

only

• Really only good for TBLs on flat 

plates!
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By Wenzel, Rist, Kloker at IAG

By Atak, Beck, Munz at IAG
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(Almost) Real World Problems



Multiphase, Multiscale, Multimethod: Rocket Engine

• Spacecraft propulsion / Raptor Engine
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• Cryogenic fuel and oxidizer

• Full-flow staged combustion cycle

• Preburners provide oxygen- and methane-

rich gas

• Non-equilibrium: Vaporization in preburners

• Compressibility: Extreme ambient 

conditions

• Close understanding vital

• Achieve stable combustion  

• Avoid cavitation in fuel lines
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• Shock-Droplet Interaction

• Droplet in compressible turbulence
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A.



Chicaco Tribune via https://www.newspapers.com/clip/14788830/

american-eagle-flight-4184-crashes-in-in/

Stefano Fornasier via http://tesi.cab.unipd.it/50432/1/STEFANO_FORNASIER 

_1147354_assignsubmission_file_Fornasier_Stefano_1056548.pdf

Icing on Wings

?

Turbulent Boundary Layer



• High sand concentration, compressible flow (Ma=0.8), 

Martian atmospheric conditions

• Modulation of shock structures, strengths and wake 

turbulence by particles

• DGSEM N4, four-way coupling Euler-Lagrange

Sandstorm on Mars
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Copyright by NASA
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Multiphase, Multiscale, Multimethod: Wake / HTP interaction under buffet
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Multiphase, Multiscale, Multimethod: Wake / HTP interaction under buffet
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Multiphase, Multiscale, Multimethod: Wake / HTP interaction under buffet



23



24



25



26



27



28

• Approx. 1 Billion DOF, N=7, 70 CTU

• One of a kind simulation for previously not accessible problems
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Problems we are interested in…

• Are “beyond the flat plate”.

• Dominated by “Multi-X” physics.

• Require “Multi-Model” numerics.

• On the edge of what is currently possible.

• Require the resolution powers of HO 

schemes!
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Building Block I: High Order Schemes
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For a smooth solution and a consistent scheme of order N, we have an error bound

N=1, 64 DOF N=15, 64 DOFDNS
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For a smooth solution and a consistent scheme of order N, we have an error bound
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For a sufficiently smooth solution and an appropriate numerics, HO schemes are fast 

HO schemes are 

accurate, but can 

they be fast?



38

Number of points per wavelength for a given error: Measure of information efficiency

643 DOF

nppw ≈ 16

FV, N=1

643 DOF

nppw ≈ 4

DG, N=7
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1 Billion DOF

nppw ≈ 4

256 Billion DOF

nppw ≈ 16



Discontinuous Galerkin Schemes

• Different Roads to High Order: Higher Derivatives, wider 

stencils: From local to global

• Discontinuous Galerkin schemes combine useful properties 

for multiscale problems

• Basic ideas: 

• High order polynomial basis with compact support 

• L2 projection is optimal 

• Hybrid FE and FV scheme

• This gives flexibility, locality, conservation and stability (FV) 

and accuracy (FE)
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Discontinuous Galerkin Schemes

• A hyperbolic / parabolic conservation law of the form

• Mapping to a suitable reference space 

• Variational formulation and weak DG form per element
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Discontinuous Galerkin Schemes: Spectral Element

• Ansatz: Tensorproduct formulation of 1D-Lagrange Polynomials

• Collocation of integration and interpolation on LGL or LG-nodes
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Cardinal Property and Collocation

Two triple sums for 

the mass matrix: 

Efficiency?

Single product per 

DOF



• Ansatz: Tensorproduct formulation of 1D-Lagrange Polynomials

• Collocation of integration and interpolation on LGL or LG-nodes

• Tensorproduct structure of the Ansatz transfers to the operator

• In Multi-D: Line-by-line operations

Discontinuous Galerkin Schemes: Spectral Element
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1D Operator along “1”-direction

Volume integral Surface integral: Riemann solvers



Discontinuous Galerkin Spectral Element Method (DG-SEM)

• DG-SEM:

• Type of grid cells: Hexahedrons (curved elements, unstructured, hanging nodes)

• Set of basis functions: Tensor product, Lagrange polynomials at

Gauß / Gauß-Lobatto points

𝑈ℎ(𝜉, 𝑡)σ𝑖,𝑗=1
𝑁 Ƹ𝑈𝑖,𝑗 𝑡 𝜓𝑖

𝑁(𝜉1)𝜓𝑗
𝑁(𝜉2)

• Numerical integration: Collocation approach (SEM approach) 

• Time approximation: Explicit Runge-Kutta, IMEX 

• Numerical flux: Riemann solver, BR1/2

• Stability De-Aliasing, Split form (entropy / energy stable fluxes)

• Shock-capturing: Finite volume sub-cells, h/p adaptivity
45

Tensorproduct

restricts to 

(approximately) 

flat plates.



Recent developments
By my PostDocs Anna Schwarz & Jens Keim et al. 

• Entropy-stable DGSEM on heterogeneous grids

• Hexahedra, prisms, tetrahedra, pyramids: Tensor-product on collapsed reference 

elements
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Recent developments
By Anna Schwarz & Jens Keim et al. 

• Entropy and kinetic energy stable 

formulation on Legendre–Gauss nodes

• Modal formulation in combination with a 

weight-adjusted mass matrix for time 

stepping

• Excellent weak and strong scaling behavior

• Based on and extended from T. Montoya & 

D. Zingg, J. Chan and others

• Together with Christian Rohde 

47

• Preprint: Entropy stable high-order discontinuous Galerkin spectral-element methods on curvilinear, hybrid meshes, Keim

et al., arXiv:2507.04334



Building Block II: Flexibility, Efficiency 
and Robustness
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For a smooth solution and a consistent scheme of order N, we have an error bound

Put differently, HO schemes can leverage the smoothness of the underlying solution

What if the solution is not smooth (enough)?



Adaptivity

P-REFINEMENT

• For smooth, underresolved solutions

• Higher ansatz order: Reduced numerical 

dissipation and dispersion

• Reduced stability

H-REFINEMENT
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• For non-smooth solutions

• Lower ansatz order: Higher numerical 

dissipation and dispersion

• Enhanced stability 



hp-Adaptive Hybrid DG/FV Approach

SMOOTH REGIONS

• Method of choice: High order DGSEM

• Piecewise polynomial solution

• Local p-refinement / coarsening

• Governed by modal decay indicator

University of Stuttgart 53

Mavriplis, C.: Nonconforming Discretizations and a Posteriori Error Estimators for Adaptive Spectral Element Techniques.



hp-Adaptive Hybrid DG/FV Approach

DISCONTINUITIES

• Method of choice: Limited Second order 

Finite Volume method on an embedded 

grid

• Piecewise linear solution representation

• Local h-refinement

University of Stuttgart 54

Dumbser et al.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws
Sonntag and Munz: Shock capturing for discontinuous Galerkin methods using finite volume subcells
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• See Tackling Compressible Turbulent Multi-Component Flows with Dynamic hp-Adaptation by Mossier, 

Oestringer, Keim, Mavriplis, Beck and Munz. 10.13140/RG.2.2.24216.92163 for convergence plots and 

free-stream preservation on non-conforming, h/p adaptive grids

University of Stuttgart 56
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Shocks and Discontinuities
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Projection of discontinuity (shock, interface) onto smooth function (polynomials) induces 

Gibb’s oscillations

HO schemes and 

discontinuities (shocks, 

phase interface etc) do 

not work well



Shock Capturing for HO schemes

• Nonlinear limiters (TVD, slope, moment): Locally reduce order near shocks while 

retaining high-order accuracy in smooth regions

• Disadvantages: loss of formal order near extrema; excessive dissipation; difficult design in 

multiple dimensions

• ENO / WENO schemes: ENO: adaptive stencil selection (Harten et al.), WENO: nonlinear 

weighted stencil combination (Jiang–Shu)

• Disadvantages: high computational cost; complex implementation; accuracy degradation at critical 

points; parameter sensitivity
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Shock Capturing for HO schemes

• Artificial viscosity / filtering: Controlled dissipation near discontinuities

• Disadvantages: problem-dependent tuning; smearing of shocks; reduced accuracy if dissipation is 

poorly localized

• • Discontinuous Galerkin (DG) limiting strategies: Limiters, subcell finite-volume methods, 

MOOD-type a posteriori limiting

• Disadvantages: algorithmic complexity; high memory (and CPU) cost

• Essential reading: 
1. A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy,  "Uniformly High Order Accurate Essentially Non-Oscillatory Schemes",  J. Comput. Phys., 1987.

2. G.-S. Jiang, C.-W. Shu,  "Efficient Implementation of Weighted ENO Schemes",  J. Comput. Phys., 1996.

3. C.-W. Shu,  "Essentially Non-Oscillatory and Weighted ENO Schemes",  Acta Numerica, 2009.

4. B. Cockburn, C.-W. Shu,  "Runge–Kutta Discontinuous Galerkin Methods",  J. Comput. Phys., 2001.

5. M. Dumbser, O. Zanotti, A. Hidalgo, D. S. Balsara,  "ADER-WENO Finite Volume Schemes with A Posteriori Subcell Limiting",  J. Comput. Phys., 2014.
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Comparison of Shock-Capturing Methods

Method Accuracy 

(smooth)

Shock resolution Robustness Computational 

cost

Nonlinear limiters 

(TVD, slope)

Moderate Good High Low

ENO / WENO High Very good High High, restriction to 

structured grids

Artificial viscosity / 

filtering

Moderate–Low Moderate Moderate Low

DG limiters / 

subcell methods

Very high Very good High Very high



Comparison of Shock-Capturing Methods

Method Accuracy 
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Shock resolution Robustness Computational 
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Nonlinear limiters 

(TVD, slope)
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structured grids

Artificial viscosity / 

filtering

Moderate–Low Moderate Moderate Low, but trial and 

error

DG limiters / 
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Very high Very good High Very high



• Stable numerical approximation 

through Shock Capturing: improves 

stability, decreases accuracy: use 

sparingly!

• Detecting the occurrence of shocks: 

non-trivial, empiricism, many 

parameters

• For HO methods: Just detecting a 

“troubled cell” is not good enough: We 

need localization on the element 

subscale

Data-informed Shock Capturing for High Order Methods
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• Is there a shock?

• Where exactly is it?

• How much dissipation 

is to be added, and 

where?



• Multiscale-CNNs for edge detection: Supervised 

learning on analytical data

• Consistent subscale localization, contiguous shock 

fronts: On different grids, for different problems 

(same model)

• On ”bad but practical” grids: stable & accurate

Data-informed Shock Capturing for High Order Methods

64



• Artificial viscosity approach:

• Shape, amplitude and position of  AV need to be specified: Empiricism and trial and error!

• SotA: In DG and related methods: element-wise constant AV with a linear continuous 

reconstruction, PDE- or filterbased smoothing methods

• We seek: A highly localized, smooth distribution

• Use prediction of ”shocked nodes” (binary edge map) and smooth with high order Radial Basis 

functions (RBF) interpolation

• This leads to a global, but weakly coupled Vandermonde matrix.

Sub-element Shock Capturing through data-informed AV

65



• A novel, highly accurate and local shock capturing

• Shock localization drives a high order artificial viscosity field 

• Smooth AV field through RBF interpolation

• SotA: constant or linear fields, shocks smeared over at least 2 elements

• Now: Polynomial fields, shocks captured in a single element 

Sub-element Shock Capturing through data-informed AV

66

A successful augmentation and improvement of CFD for compressible flows with ML 



Sub-element Shock Capturing through data-informed AV

67

A successful augmentation and improvement of CFD for compressible flows with ML 



Comparison of Shock-Capturing Methods
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Discontinuities and Underresolution: h/p/d-adaptivity

• Hybrid discretization operator: TVD FV scheme on 

subgrid

• 1. Conservative switching between DG and FV 

operator based on h/p indicators; efficient 

implementation on (N+1)3 DOF, CFL-consistent 

implementation on  (2N+1)3 DOF 

• 2. Convex blending on Gauss-Lobatto nodes; entropy 

stability and global conservation

69

Hennemann, et al: A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations
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P-Adaptive DG scheme with FV on h-refined subgrid

Convex blending of DG and FV scheme on LGL nodes
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WMLES of a plunging NACA 64A-110 airfoil

• Plunging motion replicated with moving mesh approach

• Plunging Amplitude:

• Ramping function 𝐹 𝑡 to restart from stationary state

• Algebraic wall model for Spalding’s law of the wall

ALE formulation of the compressible NSE

ℎ 𝑡 = ℎ0 sin 2𝑘𝐹 𝑡 𝑡

Boundary Cond. Value

M 0.72

Re 9.3 × 105

amplitude ℎ0 [𝑐] 0.05 𝑐

nondim. freq. 𝑘 1

Geometric Trip 𝑥 = 0.05 𝑐

DOFs 3.9 × 108
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Reasons for adaptivity



Hybrid DG / FV scheme for compressible turbulence
Taylor-Green vortex at Ma=1.25
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• NATO AVT-352  

• Paper in Physics of Fluids: Comparison 

of high-order numerical methodologies 

for the simulation of the supersonic 

• Compressible turbulence

• Scale resolution

• Shock capturing



Hybrid DG / FV scheme for compressible turbulence
Taylor-Green vortex at Ma=1.25
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Hydrogen / air injection mixing

• Supersonic injection of hydrogen into air

• Chocked nozzle flow: shocktrain

• NPR = 10
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N_DG= [2,4], 50 Mio DoF, 0.3 Mio CPUh

N_DG= 3, 224 Mio DoF, 1.5 Mio CPUh

Mixing of H2 in air



Building Block III: Multi-X



Multi-Method, Multi-Phase, Multi-Code,….

• Arbitrary Lagrangian-Eulerian for mesh movement, coupled for FSI with CG-FEM.

• Direct and hybrid Aeroacoustics 
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Multi-Method, Multi-Phase, Multi-Code,….

• Intrusive and non-intrusive UQ incl. HPC scheduler

8383

Intrusive / SG

Non-Intrusive / NISP, 

MLMC



Multi-Method, Multi-Phase, Multi-Code,….

• Sharp and diffuse interface method for compressible multiphase flows
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Prediction Erosion in Jet Engines

87

Henning, C., Brodbeck, M., Koch, C., Staudacher, S. and Ricken, T. (2021), Phase-field model for erosion 

processes. Proc. Appl. Math. Mech., 20: e202000282. https://doi.org/10.1002/pamm.202000282

https://doi.org/10.1002/pamm.202000282


Numerical Aspects

• One-, two- and four way coupling to fluid phase, Maxey-Riley-Gatignol model

• Accurate wall intersections for curved boundaries through ray tracing

• Hybrid (MPI distributed / MPI shared) parallelization for particle load balancing
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Numerical Aspects

• Conservative projection operators: sliding mesh for rotor / 

stator interaction

• SotA Wall-interaction models are insufficient: Data-driven, 

physics-conditioned rebound models through neural 

networks trained on exp. data

89
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ML-driven, time-resolved erosion simulations

• Wall-Modelled LES

• Erosion modelled on impact energy 

• Time-resolved mesh deformation through 

ALE
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Conservative sliding mesh

Shock Capturing

WM-LES

1,2 or 4-way coupled 

particles

ML-Driven Particle/Wall 

interaction

High order Geometry 

Representation

Erosion modelling and mesh 

deformation via ALE

Particle Load Balancing

By Dr. P. Kopper



High Performance Computing

• CPU-based systems: HAWK, SuperMUC, LUMI, Leonardo, 

Mare Nostrum, EuroHPC machines,..

Complete Hawk

• GPU-based systems: HAWK-AI, JUWELS-Booster, 

JEDI, JUPITER, HUNTER, LUMI-G, FRONTIER,..

• FLEXI and Galæxi are the lighthouse codes for compressible flows at the EuroHPC Center of Excellence for Exascale CFD 



Simulation software: FLEXI / GALAEXI

• High-order accurate open source solver1 with excellent scaling behavior

• Discontinuous Galerkin spectral element method (DG-SEM)

• Focus on DNS/LES of multiscale- and multiphysics problems 

governed by the compressible Navier-Stokes equations

• Additional features

• Lagrangian particle tracking (LES/DNS of particle laden flows)

• Direct & hybrid acoustics

• Conservative sliding mesh interface for stator/rotor flow

• Mesh deformation and mesh moving based on ALE formulation

• hp-adaptivity

• Intrusive and non-intrusive methods for uncertainty quantification

• Management framework for optimal scheduling on HPC systems

• A solver-in-the-loop framework for reinforcement learning

94

1www.flexi-project.org
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Observations

• ML / AI methods will not replace PDE solvers

• ML / AI methods will augment PDE solvers, especially for sub-

models: hybrid CFD/ML

• A priori performance of ML is vastly superior to a posteriori

• We have successfully combined ML and DG for

• A limiting strategy for FV (RL)

• Flow control (RL)

• Particle / Wall models (SL)

• Non-linear eddy viscosity models (SL)

• Subelement shock capturing and HO artificial viscosity

• LLMs?
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A posteriori-optimal LES models
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The Scale Gap in Turbulence
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• Define a convolution kernel G (in physical or wave space)

• Properties: linear, isotropic, homogeneous, commutable

• Filtered / large scale solution 

• Filtering the (incomp.) Navier-Stokes-Equations s.t. these properties

• Closure problem for the explicitly filtered incompressible NSE:

Large Eddy Simulation 
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Large Eddy Simulation: Explicit Filtering 

• A priori application of different filter kernels on a Cartesian grid
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Explicit and implicit filtering for LES

• Explicit filtering 

• Separate       and  

• Grid convergence under 

• Discretization scheme not (very) relevant

• homogeneity and isotropy, boundary 

conditions, realizability, commutation…

• Implicit filtering

• Joined        and

• Grid convergence not possible

• Discretization scheme defines the filter 

kernel 

• Discretization parameters and errors

• Additional computational commutation 

error: Non-linear for a non-linear scheme!

102

• Filter width     , discretization / grid spacing

0.5% on google scholar 99.5% on google scholar, 100% for “industrial” LES
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• Computational commutation error can have the same order of magnitude and scaling as the 

turbulent stress fluxes themselves [GH06]

• “the commutation error arising from the implicit part of the filter has not been well investigated.” 

(Moser, 2021)

• Computational commutation error is a non-linear function of the discretization and solution

• Optimization-based approach: A posteriori optimal LES

[GH06]: Geurts, Bernard J., and Darryl D. Holm. "Commutator errors in large-eddy simulation." 

Journal of physics A: mathematical and general 39.9 (2006): 2013.
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Optimized discretization-

consistent closure schemes



Markov Decision Process (MDP)

• Extends Markov chains with actions & rewards

• Discrete-time stochastic control process defined by the tuple of actions, states, rewards and discounts

• Markovian IFF memoryless:

• Formally solved by a policy: mapping from state-action space to the probability of taking action a when 

in state s: 
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Markov Decision Process (MDP)

115

Solved for the optimal policy, e.g. by reinforcement learning
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Example: RL for Flow Control



A posteriori optimization

• a posteriori LES, “solver-in-the-loop”,..

• Not optimize for a closure term, but the LES 

solution

• Formulate optimization as an MDP with a 

continuous action space, solve by 

Reinforcement learning method (PPO)

• Environment: Implicitly filtered HO DGSEM

• Reward / Goal: Spectrum

• Agent: Convolutional / Residual / Graph NN

• No DNS data; optimization requires LES 

runs only
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Optimization Details

• Policy gradient based Reinforcement learning (PPO)

• Gradient ascend to update parameters of agent to maximize reward function J

• Policy gradient:

• Approximate expectation by ensemble average of trajectories of MDP

• TRPO: 
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Reinforcement learning framework – ReLeXI1: NRG, HLRS & HPE

• Distribution on hybrid HPC systems via the SmartSim Library2

• LES instances interactively distributed across multiple CPU nodes („Workers“)

• Communication via in-memory database with the Redis library

• Excellent scaling across CPU / GPU threads

119

1Kurz et al., Relexi—A scalable open source reinforcement learning framework for high-performance computing. Software Impacts, 2022
2https://github.com/CrayLabs/SmartSim



State of the Art: Closure Models

University of Stuttgart 120



State of the Art: Closure Models on HIT

University of Stuttgart 121



State of the Art: Closure Models on HIT

University of Stuttgart 122
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A posteriori optimal LES models: pushing the second frontier

Optimized closures for HIT



Two modelling scenarios: Explicit
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Implicit and explicit SGS modeling: Optimal Smagorinsky constant



Results: Explicit Closure with optimized Cs
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Results: Explicit Closure with optimized Cs
N=5 for different resolutions
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Results: Explicit Closure with optimized Cs
N=5 for different resolutions

129

Lower resolution: 

more eddy visc.



• Project Subfilter Force Vector (from DNS and the

perfect LES idea) onto suitable orthogonal basis

• First basis vector: Viscous flux vector, so coefficient a

is the optimal eddy viscosity (actually this tests the

Boussinesq hypothesis)

Validity of Boussinesq hypothesis

130



Results: Explicit Closure with optimized Cs
Mean Eddy viscosity field for Cs2

131

• Average the RL-predicted eddy

viscosity coefficient over time

• Observation: „downwards“ oriented

parabolas in each grid cell

• RL-optimized closure recognizes

filter footprint
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Inner-element convex blending of 

DG and FV I developed for Shock 

capturing by Henneman et al. 



Two modelling scenarios: Implicit
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Implicit and explicit SGS modeling: Optimal Operator Blending 



Results: Implicit Closure with optimized Blending
N=5 for different resolutions
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Results: Implicit Closure with optimized Blending

137
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A posteriori optimal LES models: pushing the second frontier

Current Progress



Structure Preserving Closures
Joint work with B. Sanderse

• Symmetries of the NSE (Lie groups):

• Time translation

• Rotation

• Reflection

• Generalized Galilean transformation

• Scaling transformation

• (Pressure translation)
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Structure Preserving Closures
Joint work with B. Sanderse

• Graph Convolutional Neural Networks

• Embed rotational invariance

• Trained via RL

• Achieved reward comparable to CNN

140



Structure Preserving Closures
Channel flow

• Reward: TBL profile 

• Trained via RL

141
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High Order Numerical Schemes for PDEs

• Are sometimes said to be….

• Very difficult to analyze, understand, code 
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• Accurate but really slow

• For single phase incompressible flows 

only

• Really only good for TBLs on flat 

plates!
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By Wenzel, Rist, Kloker at IAG

By Atak, Beck, Munz at IAG



High Order Numerical Schemes for PDEs

• Are sometimes said to be….

• Very difficult to analyze, understand, code 

and parallelize

• Accurate but really slow

• For single phase incompressible flows only

• Really only good for TBLs on flat plates!

• High order schemes open up new 

possibilities and regimes in numerical fluid 

mechanics!
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By Mossier, Appel, Keim, Beck at IAG

By Schwarz, Keim, Kopper, Blind at IAG



Thank you!
Thank you for your interest and thanks to all my colleagues and co-workers, in particular all 

present and former members of the Numerics Research Group!
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