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The FIAT paradigm

FIAT (the FInite element Automatic Tabulator) is the Firedrake
component that tabulates finite element bases on quadrature points.

FIAT can be used by general clients, and is used by legacy FEniCS.

Aim for today: to show you how FIAT implements complicated finite
elements with highly desirable properties.
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The FIAT paradigm

FIAT uses Ciarlet’s definition of a finite element

A finite element is a triple (K,P ,L) where
▶ K is a cell (simplex, tensor product, or simplicial complex),

▶ P is the local function space,

▶ L = {ℓi} is a basis of functionals spanning the dual space P ∗.

We denote {ℓi} as the degrees of freedom, and they glue together across
elements to give the right continuity (H1, H(div), etc.)

▶ ℓi(v) = v(x): evaluation at a point,

▶ ℓi(v) = s · ∇v(x): directional derivative at a point,

▶ ℓi(v) =
∫
f vq ds: integral moment on a facet (quadrature),

▶ etc.
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The FIAT paradigm

FIAT constructs the primal basis {ϕj} from a set of degrees of freedom
{ℓi}, satisfying ℓi(ϕj) = δij .

We construct {ϕj} from a set {qk} spanning P (e.g. orthonormal
polynomials),

ϕj =
∑
k

Ajkqk.

The Kronecker property leads to the generalized Vandermonde system,

ℓi(ϕj) = δij =
∑
k

Ajkℓi(qk).

The matrix of expansion coefficients is then A = V −⊤, where Vij = ℓi(qj).
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Macroelements

Here are some macroelements.

Piso
1 − P2 P2-Alfeld

HCT Reduced HCT Johnson–Mercier
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Macroelements

FIAT macroelements are implemented as Ciarlet triples.

1. Generalize cell types to simplicial complexes, and implement
different splittings (Iso, Alfeld, Powell-Sabin).

2. Define piecewise polynomial spaces on simplicial complexes, with
constraints that impose the relevant continuity (Ck, or normal
continuity).

3. Specify the degrees of freedom on either the entities of split cell or
the unsplit parent cell entities.

Construct composite quadrature rules on the split cell.
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Macroelements

Why Macroelements?

▶ To achieve the lowest order possible.

Space Lowest p macro Lowest p non-macro

H(div, sym) (2D) 1 (JM) 3 (AW)
H1 div-free (2D) 2 (Alfeld) 4 (SV)

H2 (2D) 3 (HCT) 5 (Argyris)
H1 div-free (3D) 3 (Alfeld) 6 (SV)

▶ But I like high-order.

• Cheaper low-order coarse spaces.
• Equivalent low-order-refined preconditioners for high-order.

▶ To avoid extra inter-element continuity (super-smoothness).

• Discretizations of H2 and H(div, sym) are significantly easier to
implement in 3D with macroelements.
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Macroelements

Avoiding super-smoothness: save 3 DOFs per vertex

Bell Argyris Arnold–Winther

Reduced HCT HCT Johnson–Mercier
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Macroelements

C1 triangles (C1 tetrahedron is WIP)

Quadratic Powell-Sabin 6 Quadratic Powell-Sabin 12

Reduced HCT HCT3 HCT4
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Macroelements

The biharmonic PDE solved with (non-nested) multigrid.

from firedrake import *

mh = MeshHierarchy(UnitSquareMesh (4, 4), 3)

mesh = mh[-1]

V = FunctionSpace(mesh , "HCT -red", 3)

u = Function(V)

v = TestFunction(V)

F = (inner(grad(grad(u)), grad(grad(v)))*dx

- inner(1, v)*dx)

# Clamped bcs: u = du/dn = 0

bcs = [DirichletBC(V, 0, "on_boundary")]

solve(F == 0, u, bcs=bcs , solver_parameters ={

"snes_type": "ksponly",

"ksp_monitor": None ,

"ksp_type": "cg",

"pc_type": "mg",

"mg_levels_pc_type": "jacobi",

}) # 6-digit residual reduction in 10 V-cycles
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Macroelements

Stokes flow with lowest order (try this at home!)

from firedrake import *

mesh = UnitSquareMesh (4, 4)

# CG/DG Macroelement variants (works for any degree/cell type!)

V = VectorFunctionSpace(mesh , "CG", 2, variant="alfeld")

Q = FunctionSpace(mesh , "DG", 1, variant="alfeld")

Z = V * Q

# Incompressible Stokes flow

z = Function(Z)

u, p = split(z)

v, q = TestFunctions(Z)

F = (inner(grad(u), grad(v))*dx - inner(p, div(v))*dx

- inner(div(u), q)*dx)

bcs = [DirichletBC(Z.sub (0), 0, (1, 2, 3)),

DirichletBC(Z.sub(0), Constant ([1, 0]), (4,))]

solve(F == 0, z, bcs=bcs)

print("Divergence error", norm(div(u))) # 3.8E-15
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Macroelements

Stokes elements

One of the biggest challenges in finite elements was the construction of
low-order, H1-conforming, inf-sup stable, and divergence-free elements for
Stokes flow.

Element Lowest p conforming inf-sup div-free

Raviart-Thomas [0, 1) ✗ ✓ ✓

Bernardi-Raugel [1, d) ✓ ✓ ✗

Taylor-Hood 2 ✓ ✓ ✗

SV non-macro 2d ✓ ✓ ✓

SV macro d ✓ ✓ ✓
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Macroelements

Stokes macroelements in 2D

The Stokes complex gives velocity elements from stream function elements

HCTred P P0
curl div

P = curl(HCTred) + xP0

Arnold–Qin

HCT P C0P1(Kr)
curl div

P = curl(HCT) + xC0P1(Kr)

div div

div

Alfeld–Sorokina
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Macroelements

Stokes macroelements in any dimension

The stream function element is not always available.

C1 ?? P P0
grad curl div

Guzman & Neilan (2018) give Stokes macroelements in any dimension by
enriching a simpler space with div-free face bubbles (FB) on an Alfeld split.

▶ P = [P1]
d + FB.

▶ P = Alfeld–Sorokina+ FB.
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Macroelements

Constructing symmetric-tensor valued, H(div)-conforming discretizations
for stress-displacement formulations of elasticity has been another
long-stading challenge in finite elements.

The Johnson–Mercier macroelement offers a simpler alternative to
non-macroelements, and it is much easier to implement.

Johnson–Mercier

P. D. Brubeck (Oxford) FIAT: bases and fast solvers for FEM November 12, 2024 17 / 41



Macroelements

Mixed problems with split and unsplit elements.

from firedrake import *

mesh = UnitCubeMesh (8, 8, 8)

# Stress -displacement formulation of linear elasticity

S = FunctionSpace(mesh , "JM", 1)

V = VectorFunctionSpace(mesh , "DG", 1)

Z = S * V

z = Function(Z)

sig , u = split(z)

tau , v = TestFunctions(Z)

F = ((inner(sig , tau) - (1/3)*tr(sig)*tr(tau))*dx

+ inner(u, div(tau))*dx

+ inner(div(sig), v)*dx)

# Traction boundary conditions

sigbc = Constant ([[0, 0, 0], [0, 0, 0], [-0.1, 0, 0]])

bcs = [DirichletBC(Z.sub (0), 0, (3, 4, 5, 6)),

DirichletBC(Z.sub(0), sigbc , (2,))]

solve(F == 0, z, bcs=bcs)

File("stress.pvd").write(*z.subfunctions)

P. D. Brubeck (Oxford) FIAT: bases and fast solvers for FEM November 12, 2024 18 / 41



Macroelements

Mixed problems with split and unsplit elements.

Stress-displacement using JM1 ⊂ H(div, sym)× DG1 ⊂ L2
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Macroelements

Transformation of finite elements

Elements that have some normal/tangential or derivative degrees of
freedom are not affine-equivalent, and physical basis functions are
obtained by carefully recombining reference basis functions.

F∗

Pushing forward the HCT derivative nodes in physical space does not produce the
reference derivative nodes.
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Macroelements

Macroelements are great

▶ FIAT natively supports macroelements.

▶ Cheaper discretizations for the biharmonic, Stokes,
and mixed elasticity.

▶ If you love low-order, you will love macroelements.

▶ If you love high-order, you will love macroelements.
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High-order elements on simplices

Part 3

High-order elements on simplices
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High-order elements on simplices

Why high-order FEM on simplices?

High-order finite element discretizations converge rapidly and expose
high-arithmetic intensity.

They expose structure enabling fast operator application via
sum-factorization and fast solvers via the fast diagonalization method
(FDM). This is not so obvious for simplices.

Simplicial meshes offer great geometric flexibility and adaptivity.
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High-order elements on simplices

FIAT release paper (on arXiv)

FIAT: improved performance and accuracy for high-order finite elements
(B., Kirby, Laakmann & Mitchell, 2024).

▶ Faster element instantiation and tabulation.

▶ Cheaper quadrature schemes (Xiao & Gimbutas, 2010).

▶ Better Lagrange-type degrees of freedom (Isaac, 2020).

▶ Textbook integral-type degrees of freedom for H(div)/H(curl).
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High-order elements on simplices

Better conditioned degrees of freedom for Lagrange
interpolation

Originally, FIAT only supported non-equispaced 1D GL/GLL elements.
Good interpolation points are typically expensive to compute on simplices.

Firedrake now uses the points from (Isaac, 2020) by default. These are
recursively defined from the 1D GL/GLL families.

Equispaced Recursive GLL Recursive GL
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High-order elements on simplices

Fast solvers for high-order discretizations

Consider the discrete Poisson problem Ax = b.

Fast solver: Conjugate gradients + p-robust domain decomposition

Construct subdomains around mesh vertices and use the lowest-order
element as the coarse space. Only requires O(1) CG iterations (Schöberl,
Melenk, Pechstein & Zaglmayr, 2008).

Two vertex-star subdomains, ⋆v

Vh,p = Vh,1 +
∑

v∈vertices
Vh,p

∣∣∣
⋆v
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High-order elements on simplices

Vh,p = Vh,1 +
∑

v∈vertices
Vh,p

∣∣∣
⋆v

Central challenge

How do you solve the vertex-star problems? They get denser and denser as
p increases. (O(p7) assembly, O(p9) factorization, O(p6) application.)

First step

Define new finite elements that give much sparser discrete operators, for
some problems.
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High-order elements on simplices

Main contribution

In this talk, we present fast iterative solvers for the Riesz maps

find u ∈ H(grad) :(v,u) + (grad v, gradu)= (v, f) ∀v ∈ H(grad)

find u ∈ H(curl) : (v,u) + (curlv, curlu) = (v, f) ∀v ∈ H(curl)

find u ∈ H(div) : (v,u) + (divv, divu) = (v, f) ∀v ∈ H(div)

on unstructured triangular/tetrahedral meshes with very high polynomial
degree.
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High-order elements on simplices

New degrees of freedom that decouple the interior and
interface.

Lagrange

nz = 31112

1

202

286

Nedéléc

nz = 31366

1

420

780

Raviart–Thomas

nz = 235

1

220

715
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High-order elements on simplices

p-robust solver for the Riesz maps on Ω = [0, 1]d.

KSP: Conjugate Gradients

PC: Two-level vertex-star additive Schwarz

p-fine: Interior-facet additive fieldsplit

Interior: point-Jacobi

Facet: PCASM/PCPATCH

p-coarse (p = 1): Cholesky
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High-order elements on simplices

p-robust solver for the Riesz maps on Ω = [0, 1]d.

CG iteration counts (rel. tol. = 10−8).

d p H(grad) H(curl) H(div)

2 4 20 24 24
7 20 23 23

10 20 23 23
14 20 23 23

3 4 23 39 19
7 23 42 19

10 23 42 19

Additive space decompositions on the interface Schur complement

▶ Vertex-star + Lowest-order

▶ Edge-star + Vertex-star on gradH(grad) + Lowest-order

▶ Edge-star + Lowest-order
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High-order elements on simplices

Building a new element for H(grad, [−1, 1])

Standard CG element: degrees of freedom (DOFs) are pointwise evaluations.

Key idea for new element

Choose new DOFs to promote orthogonality in (·, ·)L2 and (·, ·)H(grad).

We choose the DOFs as:

• Point evaluation at the vertices (H(grad)-conforming)

• Fast diagonalization method (FDM): find {ŝi}i=1:(p−1) ⊂ Pp(Î) s.t.

(ŝ′i, ŝ
′
j)Î = λiδij , (ŝi, ŝj)Î = δij , ŝi(−1) = ŝi(1) = 0.

Define DOFs to be integral moments against these eigenfunctions.

For 1D Poisson and mass matrices, the interior-interior block is diagonal!
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• Point evaluation at the vertices (H(grad)-conforming)

• Fast diagonalization method (FDM): find {ŝi}i=1:(p−1) ⊂ Pp(Î) s.t.

(ŝ′i, ŝ
′
j)Î = λiδij , (ŝi, ŝj)Î = δij , ŝi(−1) = ŝi(1) = 0.

Define DOFs to be integral moments against these eigenfunctions.

For 1D Poisson and mass matrices, the interior-interior block is diagonal!
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High-order elements on simplices

1D stiffness and mass are sparse in the FDM basis.
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(a) variant="gll"

nz = 64

(b) Â – "gll"

nz = 64

(c) B̂ – "gll"
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(f) B̂ – "fdm"
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High-order elements on simplices

The fast diagonalization method on tensor-product cells

On the interior of a quad/hex, the FDM basis is the discrete analogue of
the eigenbasis in the method of separation of variables.

A =

{
By ⊗Ax +Ay ⊗Bx d = 2,

Bz ⊗By ⊗Ax +Bz ⊗Ay ⊗Bx +Az ⊗By ⊗Bx d = 3.

216 343

nz = 29791

216

343

(a) Agrad, standard

216 343

nz = 2107

216

343

(b) Agrad, FDM

216 343

nz = 4708

216

343

(c) chol(Agrad), FDM
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High-order elements on simplices

That’s great . . .

. . . but what about simplices?
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High-order elements on simplices

Simplicial finite elements for the De Rham complex

Key idea for new elements

Define DOFs as in (Demkowicz et al., 2000) on a reference symmetric
simplex ∆d with a careful choice of polynomials that promote
orthogonality in (·, ·)L2 and (·, ·)H(d).

H(grad) H(curl) H(div) L2

CGp Ned1p RTp DGp−1

grad curl div

grad curl div
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High-order elements on simplices

Simplicial FDM degrees of freedom for H(grad,∆d)

Point evaluation at vertices(∆d): ℓVj (v) = v(xj),

for each sub-entity S ∈ edges(∆d) ∪ faces(∆d) ∪ interior(∆d):

ℓSj (v) = (gradS ϕS
j , gradS v)S ,

where {ϕS
j } is a basis for Pp,0(S) = {v ∈ Pp(S) : v = 0 on ∂S}, s.t.

(gradS ϕS
j , gradS ϕS

i )S = δij , (ϕS
j ,ϕ

S
i )S = λjδij .

The eigenbases {ϕS
j } are numerically computed offline and only once on

the reference interval, triangle, and tetrahedron.
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High-order elements on simplices

The stiffness and mass matrices A,B have diagonal interior-interior block!
The stiffness matrix does not couple the interior and interface.

A, H(grad,∆2), Hier.

nz = 588

1

30

66

(Beuchler & Schöberl, 2006)

A, H(grad,∆2), FDM

nz = 648

1

30

66

This work, p = 10

B, H(grad,∆2), FDM

nz = 2520

1

30

66

This work, p = 10

The sparsity does not carry over to generally mapped elements. Our
preconditioner discards any coupling between interior DOFs.
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High-order elements on simplices

The stiffness and mass matrices A,B have diagonal interior-interior block!
The stiffness matrix does not couple the interior and interface.

A, H(grad,∆3), Hier.

nz = 18182

1

202

286

(Beuchler & Pillwein, 2007)

A, H(grad,∆3), FDM

nz = 31112

1

202

286

This work, p = 10

B, H(grad,∆3), FDM

nz = 57052

1

202

286

This work, p = 10

The sparsity does not carry over to generally mapped elements. Our
preconditioner discards any coupling between interior DOFs.
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High-order elements on simplices

The basis functions assemble the Schur complement on ∆d. We assemble
a preconditioner that removes the interior DOFs from the patch problems.

A, Lagrange, 24 cells with interiors

nz = 99551

1

1105

A, FDM, 24 cells without interiors

nz = 66406

1

625
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High-order elements on simplices

Simplicial FDM degrees of freedom for H(curl,∆d)

Tangential moments along E ∈ edges(∆d):

ℓEj (v) = (qj , v · τ)E , qj ∈ Pp(E),

and for each sub-entity S ∈ faces(∆d) ∪ interior(∆d):

ℓS,0j (v) = (gradS ϕS
j , v)S ,

ℓS,1j (v) = (curlS ΦS
j , curlS v)S ,

where {curlS ΦS
j } is a basis for curlS X, X = [Pp(S)]

d ∩H0(curl,S), s.t.

(curlS ΦS
j , curlS ΦS

i )S = δij , (ΦS
j , Φ

S
i )S = λjδij , ΦS

j × n = 0 on ∂S.
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High-order elements on simplices

Simplicial FDM degrees of freedom for H(div,∆d)

Normal moments on F ∈ faces(∆d):

ℓFj (v) = (qj , v · n)F , qj ∈ Pp(F ),

and on the interior(∆d) = K:

ℓK,0
j (v) = (curl ΦK

j , v)K ,

ℓK,1
j (v) = (divΨK

j , div v)K ,

where {divΨK
j } is a basis for divY, Y = [Pp(K)]d ∩H0(div,K), s.t.

(divΨK
j , divΨK

i )K = δij , (ΨK
j , ΨK

i )K = λjδij , ΨK
j · n = 0 on ∂K.
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High-order elements on simplices

The stiffness and mass matrices A,B have diagonal interior-interior block!
The stiffness matrix does not couple the interior and interface.

A, H(curl,∆2), FDM

nz = 63

1

30

120

A, H(curl,∆3), FDM

nz = 31366

1

420

780

A, H(div,∆3), FDM

nz = 235

1

220

715
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High-order elements on simplices

The stiffness and mass matrices A,B have diagonal interior-interior block!
The stiffness matrix does not couple the interior and interface.

B, H(curl,∆2), FDM

nz = 3918

1

30

120

B, H(curl,∆3), FDM

nz = 334940

1

420

780

B, H(div,∆3), FDM

nz = 132599

1

220

715

P. D. Brubeck (Oxford) FIAT: bases and fast solvers for FEM November 12, 2024 40 / 41



High-order elements on simplices

Conclusion

▶ FIAT offers a general framework to construct finite elements.

▶ We implemented macroelements, enabling higher continuity,
divergence-free modes, and tensor symmetry at low polynomial
degree.

▶ We presented simplicial high-order sparsity-promoting bases as a
cheaper alternative to statically-condensed patch solvers.
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