CHyPS: An MFEM-Based Material Response Solver for Hypersonic Thermal Protection Systems

April 26, 2022 FEM@LLNL Seminar Series

Robert Chiodi

Center for Hypersonics & Entry Systems Studies University of Illinois at Urbana-Champaign

Challenges of Hypersonic Flight

Hypersonic flight leads to a wealth of technical challenges

- Speeds exceeding 4,000 miles per hour
- Surface temperatures exceeding that of the sun
- Communication blackout due to gas ionization
- Vehicle guidance and control
- ... and many more

IRY SYSTEMS STUDIE

Center for Hypersonics and Entry-Systems Studies

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES

Material Response during Hypersonic Flight

CHESS CENTER FOR HYPERSONICS HIRY SYSTEMS STUDIES

CHESS Experimental Capabilities

Newly completed Plasmatron-X

CHESS Computational Capabilities

Time-accurate simulation of a Plasmatron facility

My Background is not in FEM...

Requirements for a New Material Response Tool

Goal: A state of the art material response solver that can perform full-vehicle simulations and readily couple to external solvers to add additional physics

Tool features required for full-vehicle simulation

- Scalability to large problems and core counts
- Faithful representation of vehicle geometry features
- Robustness to low quality meshes
- Correct level of abstraction and flexibility for physical model

Targeting cases where coupled response is important

- Material response of control surfaces and thin-ablators
- Boundary layer stability and transition on ablating surfaces
- Development of small-dimension models for guidance and control

Macroscopic illustration

Microscopic illustration

Governing Physics

SEM of carbon preform prior to phenolic impregnation [1]

Governing Physics

CHESS

ENTER FOR HYPERSONIC & ENTRY SYSTEMS STUDIES

[1] Lachaud et al. IJHMT. 2015

Volume-Averaging over a Representative Elementary Volume

Smallest volume that is representative of the bulk properties of the whole

Phase indicator functions:

$$H(\vec{x}) = \begin{cases} 1, & \vec{x} \in \text{phase} \\ 0, & \vec{x} \notin \text{phase} \end{cases}$$

For a fiber/matrix composite, three total phases

Volume fraction:

$$\epsilon_{i} = \frac{\int_{\Omega} H_{i}(\vec{x}) d\vec{x}}{\int_{\Omega} d\vec{x}} \text{ or } \epsilon_{i} = \frac{\int_{\Omega_{i}} d\vec{x}}{\int_{\Omega} d\vec{x}}$$

Average solid density:

$$\rho_{s} = \frac{\sum_{i \in N_{p}} \int_{\Omega_{i}} \rho_{i} \, d\vec{x}}{\int_{\Omega} \, d\vec{x}} = \sum_{i \in N_{p}} \epsilon_{i} \, \rho_{i}$$

Governing Equations

Solid mass conservation:

Gas mass conservation equation with ideal gas law and Darcy's law assumption

Gas mass/momentum conservation:

$$\frac{\partial}{\partial t} \left(\frac{\epsilon_g M P_g}{RT} \right) - \nabla \cdot \left(\frac{P_g M}{RT\mu} K \nabla P_g \right) = \sum_{\substack{i \in [1, N_p], \\ k \in [1, N_{sp}]}} \pi_{i,k}, \qquad \vec{u}_g = -\frac{K}{\epsilon_g \mu} \nabla P_g$$

Energy conservation:

$$\left(\sum_{i \in [1,N_p]} \epsilon_i \rho_i c_{p,i}\right) \frac{\partial T}{\partial t} - \nabla \cdot \kappa \nabla T = -\sum_{i \in [1,N_p]} h_i \frac{\partial \epsilon_i \rho_i}{\partial t} - \frac{\partial \left(\epsilon_g \rho_g h_g - \epsilon_g P_g\right)}{\partial t} - \nabla \cdot \left(\epsilon_g \rho_g h_g \vec{u}_g\right)$$

Pyrolysis chemistry:

CHESS

ENTER FOR HYPERSONIC

$$\frac{\partial X_{i,j}}{\partial t} = \left(1 - X_{i,j}\right)^{m_{i,j}} T^{n_{i,j}} A_{i,j} \exp\left(-\frac{\mathsf{E}_{i,j}}{RT}\right), \qquad \pi_{i,k} = \sum_{j \in [1,P_i]} \zeta_{i,j,k} \epsilon_{i,0} \rho_{i,0} F_{i,j} \frac{\partial X_{i,j}}{\partial t}$$

Ablative Boundary Condition

Ablative Boundary Condition

Ablative Boundary Condition

Ablative surface boundary condition from local equilibrium assumption

Provides Neumann boundary condition (heat flux) for energy equation $q_{cond} = q_{conv} - \rho V H_w + q_{rad,in} - q_{rad,out} + \dot{m}_{pg} H_{pg} + \dot{m}_{ca} H_{ca}$

B' table is used to compute \dot{m}_{ca} and H_w as a function of $f(P, T, \dot{m}_{pg})$

 \dot{m}_{ca} directly controls the ablative surface recession

Governing Equations - ALE

An Arbitrary Lagrangian Eulerian (ALE) used to allow moving mesh

Employ the conservative direct ALE method of Ivančić et al. 2019¹

Consider the heat equation $\frac{\partial u}{\partial t}\Big|_{\hat{x}} - \alpha \nabla^2 u - \vec{w} \cdot \nabla u = f$ in weak form with backward Euler time-integration

$$\int_{\widehat{\Omega}} \widehat{\psi} \widehat{u}_{n+1} \widehat{J}_{n+1} \, d\widehat{x} - \int_{\widehat{\Omega}} \widehat{\psi} \widehat{u}_n \widehat{J}_n \, d\widehat{x} + d_{n,n+1} (\widehat{u}_{n+1}, \widehat{\psi}) - b_{n,n+1} (\widehat{u}_{n+1}, \widehat{\psi}) - \mathcal{M}_{n,n+1} (\widehat{u}_{n+1}, \widehat{\psi}) = 0$$

$$d_{n,n+1}(\hat{u}_k,\hat{\psi}) = \Delta t \int_{\widehat{\Omega}} \alpha \frac{1}{\hat{\mathcal{J}}_{n,n+1}(\Delta t)} \hat{F}_{n,n+1}(\Delta t) \hat{F}_{n,n+1}^T(\Delta t) \widehat{\nabla} \hat{\psi} \cdot \widehat{\nabla} \hat{u}_k d\hat{x}$$

$$b_{n,n+1}(\hat{f}_k,\hat{\psi}) = \Delta t \int_{\widehat{\Omega}} \hat{\psi} \hat{f}_k \hat{\mathcal{J}}_{n,n+1}(\Delta t) d\hat{x}$$

$$\mathcal{M}_{n,n+1}\big(\hat{u}_k,\hat{\psi}\big) = \int_{\widehat{\Omega}} \hat{\psi} \left[\int_0^{\Delta t} \hat{F}_{n,n+1}(t) \hat{w}_{n,n+1}(t) dt \right] \widehat{\nabla} \hat{u}_k d\hat{x} + \int_{\widehat{\Omega}} \hat{\psi} \hat{u}_k \widehat{\nabla} \cdot \left[\int_0^{\Delta t} \hat{F}_{n,n+1}(t) \hat{w}_{n,n+1}(t) dt \right] d\hat{x}$$

Multi-Stage BilinearForm

Created a Multi-Stage BilinearForm to implement the direct ALE method

• Assumes integrating over $t \in [t_o, t_o + \Delta t]$ and known nodal displacement

Integrators are added to specific time-stages of the BilinearForm

- Added independently for each time stage
- Can include both domain and boundary integrators

Each time-stage has an associated GridFunction denoting nodal locations

- Nodes set on Mesh before building of each time-stage
- References to nodes stored, allowing external update of locations

Governing Equations - ALE

Implementation

Implemented in the Coupled Hypersonic Protection System (CHyPS) Simulator

Discontinuous Galerkin spatial discretization via MFEM library [1]

Crank-Nicolson, Forward Euler, and Backward Euler time integration available

Custom time-integration currently used, would like to return to MFEM ODE solvers

Tensor properties for conductivity and permeability

Coupling to external solvers using the preCICE library

Ablation Test Case Series

Series of test cases developed over the last decade for code comparison

- Makes available open-results for a field dominated by national defense
- Feature Theoretical Ablative Composite for Open Testing (TACOT)
- Provide gradual increase in physical and computational complexity

Ablation Test Case 2

- Mimics the 1D heating of a sample in an arc jet facility
- Will compare against the Porous-Material Analysis Toolbox Based on OpenFOAM (PATO)

Ablative BC, Temperature computed via energy balance

Heat for 60 s Radiative cooling for 60 s Material: TACOT Length: 50 mm Insulated Impermeable

x

Ablative BC, Temperature computed via energy balance

Heat for 60 s Radiative cooling for 60 s

Material: TACOT Length: 50 mm Insulated Impermeable

CHESS

ENTER FOR HYPERSONICS

Ablative BC, Temperature computed via energy balance

CHESS

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES

[1] Lachaud et al. 5th Ablation Workshop. 2012

Ablative BC, Temperature computed via energy balance

CHESS

ENTER FOR HYPERSONICS

[1] Lachaud et al. 5th Ablation Workshop. 2012

Ablative BC, Temperature computed via energy balance

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES

29

CHESS

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES 30

t = 20 s

Pyrolysis State

Gas Pressure and Velocity

ENTER FOR HYPERSONICS

High-Order Solutions

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES 34

CENTER FOR HYPERSONICS 8 ENTRY SYSTEMS STUDIES

CENTER FOR HYPERSONICS & ENTRY SYSTEMS STUDIES

CENTER FOR HYPERSONICS 8 ENTRY SYSTEMS STUDIES

ENTER FOR HYPERSONICS

Coupling with External Flow Solvers

Mini-Arc Jet Case

Coupling with External Flow Solvers

Use PlasCom2 to generate the external flow solution

Coupling with External Flow Solvers

ENTRY SYSTEMS STUDIES

Material Response after 10 Seconds

[1] Modest & Mazumder. Radiative Heat Transfer. 2021 [2] Marschall et al. AIAA Thermophysics. 2001

Conclusions

- Design of next-generation thermal protection systems and hypersonic vehicles will benefit greatly from computational studies
- Macroscopic volume averaged approach to simulating reactive porous materials aimed at enabling full-vehicle simulations
- Code-to-code comparison has been performed against NASA's PATO code
- Continued work will be done to leverage use of high-order solutions

