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Challenges of Hypersonic Flight

X-51 Waverider (Mach 5) HTV-2 (Mach 20+) Stardust (Mach 43)

SCRAMJET Tactical Boost Glide Reentry Capsule

Hypersonic flight leads to a wealth of technical challenges
• Speeds exceeding 4,000 miles per hour
• Surface temperatures exceeding that of the sun
• Communication blackout due to gas ionization
• Vehicle guidance and control
• … and many more
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Material Response during Hypersonic Flight

NASA NASA
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CHESS Experimental Capabilities

Water/Glycol HX

Console

Generator Test 
Chamber

Vacuum 
System

Instrumentation 
System

Newly completed Plasmatron-X
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CHESS Computational Capabilities

DOE SPARTA DSMC

Solution for 
electric field in 
torch

Time-accurate simulation of a Plasmatron facility

???
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My Background is not in FEM…
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Requirements for a New Material Response Tool

Goal: A state of the art material response solver that can perform full-vehicle 
simulations and readily couple to external solvers to add additional physics

Tool features required for full-vehicle simulation
• Scalability to large problems and core counts
• Faithful representation of vehicle geometry features 
• Robustness to low quality meshes
• Correct level of abstraction and flexibility for physical model

Targeting cases where coupled response is important
• Material response of control surfaces and thin-ablators
• Boundary layer stability and transition on ablating surfaces
• Development of small-dimension models for guidance and control



11
[1] Lachaud & Mansour. Journal of Thermophysics and Heat Transfer. 2014



SEM of carbon preform
prior to phenolic impregnation [1]

Governing Physics
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[1] Lachaud et al. IJHMT. 2015
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Gas properties

Material properties (" ∈ [1, '!])

Bulk properties

Volume fraction !!
Pressure "!
Enthalpy ℎ!
Density $!
Viscosity %!

Volume fraction !"
Density $"
Specific heat &#,"
Enthalpy ℎ"
Pyrolysis specie production '",%

Temperature ( (thermal equilibrium)
Conductivity )
Permeability *

Governing Physics
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[1] Lachaud et al. IJHMT. 2015

NASA MSL Heat Shield
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Volume fraction:

%& =
∫' (& *⃗ +*⃗
∫' +*⃗

or %& =
∫'! +*⃗
∫' +*⃗

Volume-Averaging over a 
Representative Elementary Volume
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Ω
Smallest volume that is representative of the bulk 
properties of the whole

Phase indicator functions:

( *⃗ = /1, *⃗ ∈ phase
0, *⃗ ∉ phase

For a fiber/matrix composite, three total phases

Average solid density:

:( =
∑&∈*" ∫'# :& +*⃗

∫' +*⃗
= <

&∈*"
%& :&

Ω!

Ω"



Governing Equations
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Solid mass conservation:

Gas mass/momentum conservation:

Energy conservation:

Pyrolysis chemistry:

*+#,#
*- = − 0

$ ∈ [',)&']
1#,$

*
*-

++23+
45 − ∇ ⋅ 3+2

4589∇3+ = 0
# ∈ ',)' ,
$ ∈ ',)&'

1#,$ , :+ = − 9
++8

∇3+

0
# ∈ ',)'

+#,#;!,#
*5
*- − ∇ ⋅ <∇5 = − 0

# ∈ ',)'
ℎ#
*+#,#
*- − * ++,+ℎ+ − ++3+

*- − ∇ ⋅ (++,+ℎ+:+)

=>&,%
=? = 1 − >&,% +!,% A,!,% B&,% exp −E&,%EA , $&,- = <

% ∈ [#,/!]
F&,%,-%&,1:&,1G&,%

=>&,%
=?

[1] Lachaud et al. IJHMT. 2017

Gas mass conservation 
equation with ideal gas law 
and Darcy’s law assumption



Ablative Boundary Condition
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Ablative Boundary Condition
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Ablative Boundary Condition
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Ablative surface boundary condition from local equilibrium assumption

Provides Neumann boundary condition (heat flux) for energy equation

H2 table is used to compute İ34 and (5 as a function of J K, A, İ6!

İ34 directly controls the ablative surface recession

[1] Lachaud et al. IJHMT. 2017

Surface

Convective Flux Advective Flux Radiative Heating Radiative Cooling

Conductive Flux Pyrolysis Gas Flux Char Ablation Flux

+()*+ $,-, +-./,"* +-./,)01

+()*/ /̇#!-#! /̇(.-(.

L37,8 = L37,9 − :M(5 + L:48,&, − L:48,7;< + İ6!(6! + İ34(34
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Governing Equations - ALE

An Arbitrary Lagrangian Eulerian (ALE) used to allow moving mesh

Employ the conservative direct ALE method of Ivančić et al. 20191

Consider the heat equation  O=;
=< >?

− P∇$# − R ⋅ ∇# = J in weak form with 

backward Euler time-integration

0
23
1234*45 56*45 7 38 − 023

1234* 56* 7 38 + 7*,*45 34*45, 12 − <*,*45 34*45, 12 −ℳ*,*45 34*45, 12 = 0

7*,*45 34% , 12 = ΔA0
23
B

1
56*,*45 ΔA

1D*,*45 ΔA 1D*,*456 ΔA E∇ 12 ⋅ E∇34%7 38

<*,*45 5H% , 12 = ΔA0
23
12 5H% 56*,*45 ΔA 7 38

ℳ*,*45 34% , 12 = 0
23

12 0
7

81
1D*,*45 A IJ*,*45 A 7A E∇34%7 38 + 023

1234%E∇ ⋅ 0
7

81
1D*,*45 A IJ*,*45 A 7A 7 38

[1] Ivančić et al., SIAM J. Sci. Comput. 2019
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Multi-Stage BilinearForm

Created a Multi-Stage BilinearForm to implement the direct ALE method
• Assumes integrating over - ∈ [-,, -, + Δ-] and known nodal displacement

Integrators are added to specific time-stages of the BilinearForm
• Added independently for each time stage
• Can include both domain and boundary integrators

Each time-stage has an associated GridFunction denoting nodal locations
• Nodes set on Mesh before building of each time-stage
• References to nodes stored, allowing external update of locations

A = A)

A = A) + 0.5ΔA

A = A) + ΔA

Integrators & 
Node Locations

0

1

2

Set Node
Position

Assemble
Time Stage
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Governing Equations - ALE

Deformation
A

Deformation
B

# *, ? = 16 1 + 12 sin $? * 1 − * X(1 − X)

@ -
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r

2.01.51.00.50.0
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0.3

Time (s)

Deformation results coincident
with fixed mesh



Implemented in the Coupled Hypersonic Protection System (CHyPS) Simulator

Discontinuous Galerkin spatial discretization via MFEM library [1]

Crank-Nicolson, Forward Euler, and Backward Euler time integration available
• Custom time-integration currently used, would like to return to MFEM ODE solvers

Tensor properties for conductivity and permeability

Coupling to external solvers using the preCICE library

Implementation

22[1] mfem.org
[2] precice.org
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Ablation Test Case Series

Series of test cases developed over the last decade for code comparison
• Makes available open-results for a field dominated by national defense
• Feature Theoretical Ablative Composite for Open Testing (TACOT)
• Provide gradual increase in physical and computational complexity

Ablation Test Case 2

Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

8

• Mimics the 1D heating of a sample in an arc jet facility 
• Will compare against the Porous-Material Analysis 

Toolbox Based on OpenFOAM (PATO)

[1] Lachaud et al. 5th Ablation Workshop. 2012



Ablation Test Case 2.3
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Temperature

320 K 3000 K

Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

[1] Lachaud et al. 5th Ablation Workshop. 2012



Ablation Test Case 2.3
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Temperature

320 K 3000 K

Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

[1] Lachaud et al. 5th Ablation Workshop. 2012



Ablation Test Case 2.3

26

Probe x (mm)

Surface 0.0

1 1.0

2 2.0

3 4.0

4 8.0

5 12.0

6 16.0

7 24.0

5 (K)

Time (s)

Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

[1] Lachaud et al. 5th Ablation Workshop. 2012

CHyPS
PATO



Ablation Test Case 2.3
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Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

[1] Lachaud et al. 5th Ablation Workshop. 2012

CHyPS
PATO

Probe x (mm)

Surface 0.0

1 1.0

2 2.0

3 4.0

4 8.0

5 12.0

6 16.0

7 24.0



Ablation Test Case 2.3
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St
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Time (s)
Virgin

Char

Material: TACOT
Length: 50 mm

Heat for 60 s
Radiative cooling for 60 s

Insulated
Impermeable

Ablative BC, Temperature computed via energy balance

[1] Lachaud et al. 5th Ablation Workshop. 2012

CHyPS
PATO

Probe x (mm)

Surface 0.0

1 1.0

2 2.0

3 4.0

4 8.0

5 12.0

6 16.0

7 24.0



,.:.A/
kg / (m2 s)

Mapping of 
stagnation value

ℎ@
MJ / kg

Axisymmetric Mini Arc Jet Case
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5∘

25.4 mm

31.75 mm

Axis
Insulated,
Impermeable

Insulated,
Impermeable

Ablative Boundary Condition
1(4⃗, 5) = 101325 Pa

TACOT
<$ = 300 K

1$ = 101325 Pa

CHyPS
20 elements along radius
50 elements along height
DG, M = 1 polynomials

PATO
40 elements along radius
100 elements along height
Finite-volume method

Time (s)

= (mm)

Time (s)
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Axisymmetric Mini Arc Jet Case

Temperature

300 K 2500 K1400 K

Gas Pressure

101325 Pa 102350 Pa
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Axisymmetric Mini Arc Jet Case

Gas Pressure and Velocity

101325 Pa 102350 Pa

Pyrolysis State

? = 20 s

0 1
Virgin Char
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Axisymmetric Mini Arc Jet Case
B

C
0 mm

25.4 mm

31.75 mm0 mm 20 mm

Probe Locations

Probe > (mm) ? (mm) Probe > (mm) ? (mm)
1 0 1.4 7 20 1.4

2 0 2.4 8 20 2.4

3 0 3.4 9 20 3.4

4 0 4.4 10 20 4.4

5 0 5.4 11 20 5.4

6 0 10.4 12 20 10.4

5 (K)

5 (K)

Time (s)

Increasing
Depth

Increasing
Depth

= = 0 mm

= = 20 mm
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NASA MSL Heat Shield

5∘

25.4 mm

31.75 mm

Axis
Insulated,
Impermeable

Insulated,
Impermeable

Ablative Boundary Condition
1(4⃗, 5) = 101325 Pa

TACOT
<$ = 300 K

1$ = 101325 Pa



High-Order Solutions
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5 (K)

Time (s)

10 element \ = 3 solution compared to 100 element \ = 1
3.67x faster time to solution

\ = 3
\ = 1



High-Order Meshes
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TACOT
A1 = 300 K

K1 = 101325 Pa

Boundary Condition:

:a@bA =
0.3 E − *

2E

ℎ@ = 1.5MJkg

K = 101325 Pa

E = 20 mm



High-Order Meshes
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Refined Linear Mesh
2100 Elements

Coarse Mesh (Linear)
176 Elements



Radial Sweep

1 ……..... 6

High-Order Meshes
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7
8
9

Side Sweep Probe x (mm) y(mm)
1 -9.50 0.0

2 -9.25 0.0

3 -9.00 0.0

4 -8.75 0.0

5 -8.50 0.0

6 -8.25 0.0

7 -7.07 6.82

8 -7.07 6.57

9 -7.07 6.32

(0,0)

Not to scale



High-Order Meshes
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5 (K)

Time (s) Time (s)

5 (K)

Radial Sweep Side Sweep

Coarse Linear Mesh
Refined Linear Mesh

Both use \ = 2 for 
internal solution



High-Order Meshes
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Refined Linear Mesh
2100 Elements

Coarse Mesh (Quadratic)
176 Elements



High-Order Meshes
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5 (K)

Time (s) Time (s)

5 (K)

Radial Sweep Side Sweep

Coarse Quadratic Mesh
Refined Linear Mesh

Both use \ = 2 for 
internal solution

Same result achieved 8.2x quicker



Future Work
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Coupling with External Flow Solvers

Mini-Arc Jet Case



Future Work
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Coupling with External Flow Solvers

Use PlasCom2 to generate the external flow solution



Future Work
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Coupling with External Flow Solvers



Future Work
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Internal Radiation using P1 Approximation
1
3i ∇ ⋅

1
j − B#k(3

∇l − l = −4$nB , − 2 − %%
2

3j − B#k(
op ⋅ ∇l + l = 4$nB5

effective thermal 
conductivities

plain thermal 
conductivities

[1] Modest & Mazumder. Radiative Heat Transfer. 2021
[2] Marschall et al. AIAA Thermophysics. 2001

q = − 1
3j − B#k( ∇l



Future Work
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Insulation Estimation for Experimental Samples

TACOT

Insulator

Cross-section after
10 s of heating
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Conclusions

• Design of next-generation thermal protection systems and hypersonic 
vehicles will benefit greatly from computational studies

• Macroscopic volume averaged approach to simulating reactive porous 
materials aimed at enabling full-vehicle simulations

• Code-to-code comparison has been performed against NASA’s PATO code
• Continued work will be done to leverage use of high-order solutions

Temperature

320 K 2500 K

Simulation of micro arc jet

Iron


