Numerical Solvers for Viscous Contact Problems in Glaciology

Gonzalo Gonzalez de Diego Photograph: Kverkfjoll Glacier Cave, Iceland (from worldlandforms.com)
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Mathematical modelling of ice sheets

Ice sheets are large masses of ice that cover most of Antarctica and
Greenland. Together, these ice sheets hold a volume of ice that would
raise the sea level by 65m if they were to melt. (rarinotti et ai. 2019)

Understanding ice sheet dynamics requires a combined knowledge of
many processes:

e how it melts,

how ice flows,

how it slides over its bedrock,

how meltwater affects the dynamics of the ice sheets,

Elephant Foot Glacier, NE Greenland
(Copernicus Sentinel-2A data, August 2016)
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Viscous contact problems in glaciology

In glaciology one encounters viscous contact problems. These are time-dependent viscous flow problems
where the fluid is in contact with a solid surface from which it can detach and reattach.

Two examples in glaciology:

Marine ice sheets Subglacial cavitation
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Subglacial cavitation

At the ice-bedrock interface, cavities may form along obstacles due to high water pressures and fast sliding
velocities.

Why is subglacial cavitation important?

 Fundamental mechanism in glacier sliding —» 7, = f(u;),

 Linked cavities establish a subglacial hydrology system.

(Figure from I. Hewitt)

5 of 26



Subglacial cavitation

Goal: Develop a robust and accurate numerical scheme for
viscous contact problems.

Motivation: Only other computational results with Elmer/Ice:

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, F02027, doi:10.1029/2006JF000576, 2007

Finite-element modeling of subglacial cavities and
related friction law

0. Gagliardini." D. Cohen.” P. Riback.’ and T. Zwinger’

{_J nn — pm)/ Pi

« No recognition of variational inequality structure.

« Numerical computation of stresses appear inaccurate and
unstable.

(Gagliardini et al. 2007)
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Mathematical modelling of subglacial cavitation

We model the formation of subglacial cavities by

solving the subglacial boundary layer problem in
two dimensions:

. . .. pi overburden ice pressure
Stokes equations with contact boundary conditions: P

r—2
—V - (a|Du|""*Du) + Vp = f in Q) Th up
V -u =0 Fa
u-n<0
Onn < —Dw on I',(1).
(‘u, . n) (gnn + pw) =0 water pressure Py
Free boundary equation:
Oh = — [1 + (&ch)z} —12 . n,
h > b.
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Numerical considerations

Sketch of our algorithm

Set initial geometry Q°
for k=0,1,2,... do

Solve Stokes equations on Q% — u*.

Deform domain — QF+1,

end

Next slides:

» Solving the Stokes equations with contact
boundary conditions.

» Coupling the Stokes equations to the free
boundary equation.

Solve free boundary equation with «*.
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Numerical considerations

Weak formulation — The PDE can be rewritten as a variational inequality.

Find (u,p) € K x Q such that
f a|Du|""*Du : D(v — u)dz — f pV:-(v—u)dz > f(v—u) YweK
Q Q

/q(V-u)dsz Vg € QQ
Q

where K ={veV:v-n<0 onl,}
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Numerical considerations

The weak formulation can be written as an equivalent minimization problem:

Find w € K that minimises

1

J(v) = -

r

/ a/Dv|" dx — f(v)
Q

Wheref{:{vEV:v-ng() onl',, V.-v=0}

Discretization:

» \elocity and pressure spaces?

» Formulation of the inequality constraint v-n <0 on I', atthe discrete level?
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Numerical considerations

Discretization of the variational inequality with Taylor-Hood elements, implemented in @' _‘Tirgdrak‘e

@
velocity space V;, = CG, pressure space Q, = CGq
(continuous piecewise quadratic vector polynomials) (continuous piecewise linear polynomials)
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Numerical considerations

We formulate the inequality constraint in terms of a discrete normal trace operator

’Yh:Vh_>Zh

Find u,, € K , that minimises

1

j(’”h):;

/ a|Doy|" dx — f(vp)
Q

where K, = {vp, € Vi {vpvp <0 on 'y V- v, =0}

Yhon(z) = (vi, - n)(2)

YhOle = (Vh - M) (T0)

YhU|e = |1;| J.vn-n

on every point of the attached region on midpoints x,, of edges e

average-wise on edges
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Numerical considerations

Most natural approach: enforce the inequality constraint on every point of the attached region:

Find uj, € K n, that minimises

T(on) = 7 [ alDv["do = fwn)
WhereKo'h:{vh eEVp:vp-m<0 onl,, V- -v,=0}
We can solve this system with e.g. a penalty method.
Our experience: inaccurate evolution of the free boundary!
(a) t=0.1 (b) t=02 (c) t=0.5 (d) t=1.0

0.1 0.1

0.1

0.1

—0.14

0+

0+ 0
—0.14 —0.14

Evolution of cavity with
penalty method
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Numerical considerations

We obtain much better numerical results by enforcing an edge-wise average discrete inequality constraint

Find u, € K n that minimises

T(o) = 1 [ alDvif" o~ f(wn

WhereKih:{thVh:%fevh-ngO V edges e on I, Vh-’vhzo}

We solve this system numerically by enforcing the inequality constraint with a Lagrange multiplier.

hble = 7 [ovn o m

average-wise on edges 14 of 26



A numerical algorithm for subglacial cavitation

Discrete Stokes variational inequality with a Lagrange multiplier:

Find (wn,ph, An) € Vi X Qpn X DGo(T',) such that

/ oz]Duh\r_zDuh . D’Uh dx — / ph(v . ’Uh) dx —/ )\h('vh . n) ds = f(vh) Yv € Vh
Q Q) r

a

/ qh(v-uh)dfﬂ =0 Vg, € Qy
Q

1 1
—/uh-ngO, Anle <0, )\h|€<—/uh-n§0>:0 YV edges e on I',

€ €

B s
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A numerical algorithm for subglacial cavitation

Discrete Stokes variational inequality with a Lagrange multiplier:

Find (wn,ph, An) € Vi X Qpn X DGo(T',) such that

ph(V . ’Uh) dx — / )\h('vh . n) ds = f(vh) Yv €V,

/ o:]Duh\r_zDuh : Dvy, dx —/
Q 'y

Q

/ qh(v-uh)dfﬂ =0 Vg, € Qy
Q

f [—)\h + (uh . n)]+ ppds =0 Vup € DGO(FG)
'

f]-l— - maX{O:f}

ne=c )t w :
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A numerical algorithm for subglacial cavitation

Discrete free boundary equation

We consider a forward Euler FD discretization
Oh = — [1+ (0,h)?] P un

ktl _ pk ~1/2
" N L (@h%); +1) 7 [uf -nls

Two considerations:

e Choice of [u} - n]; should be compatible with our choice of
discrete normal trace operator.

- Stabilisation due to the advective nature of the problem

Och = — [1 + (0,h)?] Paun

= —ud,h + .

direction of flow

o
»
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A numerical algorithm for subglacial cavitation

Discrete free boundary equation

Our discrete free boundary formulation:

hi_‘ﬂ-l-l . hiﬂ I 2 —1/2 1 L
= () 1] {H/uhn]

Remarks:

- We set
k 1 k k
[up, - ml; = ] up, - M= YU e,
T e;

because we enforce a piece-wise constant version of the contact
boundary conditions exactly.

- For each node, we take the edge upstream to implement a form of
upwinding that stabilizes the problem!

direction of flow

o
»
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Numerical results

Computation of steady states —

Fix u,, p; and p,, - evolve in time to steady cavity

p; overburden ice pressure

BERRREREERREE

water pressure Puw

cavity roof
bed

Onn + Pw
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Numerical results

Our method Elmer/Ice (cagliardini et al. 2007)
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Numerical results

As a numerical example, we compute a friction law

Ty = f(upy Pi — Pw)

over a sinusoidal bedrock by finding steady states for different pairs (us, pi — pw) and computing

Th :/ (Unn —|-pw)n$ ds.
I'y

pi overburden ice pressure

Up

water pressure Puw
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Numerical results

/\/\\

Th

Pi — Pw

/

Pi — Pw

f\f
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Numerical computation of steady grounding line configurations

Marine ice sheets flow from the continent and into the ocean, where the go afloat the grounding line.

Example — the Antarctic ice sheet:

Ice velocity
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Numerical computation of steady grounding line configurations

Our setup - the parallel slab marine ice sheet:

Tp= C’|ub|1/”_1ub

Up

A

s 19

Y.

Lg

Objective: Explore steady flux-thickness relationship ¢(z) :/ udz <— h(x,) for different flow
regimes. 0

» Effect of bedrock geometry?

 Single or multi-valued function?
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Numerical computation of steady grounding line configurations

Derive approximate flux-thickness relationship with depth-integrated models

Sliding-dominated flow Shear-dominated flow

i

o

— Stokeseq. — SIA  — SSA
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Conclusions

Some comments.

» Accurate computations of viscous contact problems are achieved by enforcing a discrete piecewise constant
contact boundary condition exactly and evolving the free boundary with edge-averaged normal
velocities in a stable manner.

» We evolve the system in time to find steady states — this is time consuming and, at times, not robust.

Future improvements?
Solve the variational inequality and the free boundary simultaneously:
* more stable time-stepping schemes,

« possibility of solving directly for steady states with e.g. Newton’s method.
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Thank you very much for your attention!

Elephant Foot Glacier, NE Greenland (Copernicus Sentinel-2A data, August 2016)
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