
Numerical Solvers for Viscous Contact Problems in Glaciology

Gonzalo Gonzalez de Diego Photograph: Kverkfjöll Glacier Cave, Iceland (from worldlandforms.com)



About me

PhD – Ice sheets

Photo: NASA Operation IceBridge Photo: Stephen Alvarez/Getty

Postdoc – Sea ice

I. Hewitt P. Farrell
G. Stadler

2 of 26



Mathematical modelling of ice sheets

Ice sheets are large masses of ice that cover most of Antarctica and 
Greenland. Together, these ice sheets hold a volume of ice that would 
raise the sea level by 65m if they were to melt. (Farinotti et al. 2019) 

Understanding ice sheet dynamics requires a combined knowledge of 
many processes: 

• how it melts, 

• how ice flows,

• how it slides over its bedrock, 

• how meltwater affects the dynamics of the ice sheets, 

• …

Elephant Foot Glacier, NE Greenland

(Copernicus Sentinel-2A data, August 2016)
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Viscous contact problems in glaciology

In glaciology one encounters viscous contact problems. These are time-dependent viscous flow problems 
where the fluid is in contact with a solid surface from which it can detach and reattach. 

Two examples in glaciology:

(ice)

(bedrock)

(ice)

(bedrock)

Marine ice sheets Subglacial cavitation
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Subglacial cavitation

At the ice-bedrock interface, cavities may form along obstacles due to high water pressures and fast sliding 
velocities.

Why is subglacial cavitation important?

• Fundamental mechanism in glacier sliding → 𝜏𝑏 = 𝑓 𝑢𝑏 ,

• Linked cavities establish a subglacial hydrology system.

(ice)

(bedrock)

(Figure from I. Hewitt)

(ice)

(bedrock)
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Subglacial cavitation

Goal: Develop a robust and accurate numerical scheme for 
viscous contact problems.

Motivation: Only other computational results with Elmer/Ice:

• No recognition of variational inequality structure.

• Numerical computation of stresses appear inaccurate and 
unstable.

(Gagliardini et al. 2007)

6 of 26



Mathematical modelling of subglacial cavitation

We model the formation of subglacial cavities by 
solving the subglacial boundary layer problem in 
two dimensions:

Stokes equations with contact boundary conditions:

Free boundary equation:

on
water pressure

overburden ice pressure

in          ,
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Numerical considerations

Sketch of our algorithm

Set initial geometry

for k = 0,1,2,…  do

 Solve Stokes equations on

 Solve free boundary equation with

 Deform domain

end

Next slides:

• Solving the Stokes equations with contact 

boundary conditions.

• Coupling the Stokes equations to the free 

boundary equation.
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Numerical considerations

Weak formulation – The PDE can be rewritten as a variational inequality. 

 

9 of 26



Numerical considerations

The weak formulation can be written as an equivalent minimization problem:

Discretization:

• Velocity and pressure spaces?

• Formulation of the inequality constraint                                  at the discrete level? 
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Numerical considerations

Discretization of the variational inequality with Taylor-Hood elements, implemented in

velocity space Vh = 𝐂𝐆2
(continuous piecewise quadratic vector polynomials)

pressure space Qh =  CG1
(continuous piecewise linear polynomials)
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Numerical considerations

We formulate the inequality constraint in terms of a discrete normal trace operator 

on midpoints 𝑥𝑚 of edges 𝑒 average-wise on edgeson every point of the attached region 12 of 26



Numerical considerations

Most natural approach: enforce the inequality constraint on every point of the attached region:

We can solve this system with e.g. a penalty method.

Our experience: inaccurate evolution of the free boundary!

Evolution of cavity with 

penalty method
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Numerical considerations

We obtain much better numerical results by enforcing an edge-wise average discrete inequality constraint

average-wise on edges

We solve this system numerically by enforcing the inequality constraint with a Lagrange multiplier.
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A numerical algorithm for subglacial cavitation

Discrete Stokes variational inequality with a Lagrange multiplier:
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A numerical algorithm for subglacial cavitation

Discrete Stokes variational inequality with a Lagrange multiplier:
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A numerical algorithm for subglacial cavitation

Discrete free boundary equation

We consider a forward Euler FD discretization

Two considerations:

• Choice of                  should be compatible with our choice of 
discrete normal trace operator.

• Stabilisation due to the advective nature of the problem

direction of flow
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A numerical algorithm for subglacial cavitation

Discrete free boundary equation

Our discrete free boundary formulation:

Remarks:

- We set 

because we enforce a piece-wise constant version of the contact 

boundary conditions exactly.

- For each node, we take the edge upstream to implement a form of 

upwinding that stabilizes the problem!

direction of flow
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Numerical results

Computation of steady states – 

Fix 𝑢𝑏, 𝑝𝑖 and 𝑝𝑤 - evolve in time to steady cavity

overburden ice pressure

(ice)

(bedrock)

water pressure

bed

cavity roof
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Numerical results

Elmer/Ice (Gagliardini et al. 2007)Our method
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Numerical results

As a numerical example, we compute a friction law

over a sinusoidal bedrock by finding steady states for different pairs                          and computing  

(ice)

(bedrock)

overburden ice pressure

(ice)

(bedrock)

water pressure
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Numerical results
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Numerical computation of steady grounding line configurations 

Marine ice sheets flow from the continent and into the ocean, where the go afloat the grounding line.

Example – the Antarctic ice sheet:

23 of 26



Numerical computation of steady grounding line configurations 

Our setup - the parallel slab marine ice sheet:

Objective: Explore steady flux-thickness relationship                                                      for different flow 

regimes. 

• Effect of bedrock geometry?

• Single or multi-valued function?
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Numerical computation of steady grounding line configurations 

Derive approximate flux-thickness relationship with depth-integrated models

Shear-dominated flowSliding-dominated flow

Stokes eq. SIA SSA
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Conclusions

Some comments.

• Accurate computations of viscous contact problems are achieved by enforcing a discrete piecewise constant 
contact boundary condition exactly and evolving the free boundary with edge-averaged normal 
velocities in a stable manner.

• We evolve the system in time to find steady states – this is time consuming and, at times, not robust.

Future improvements? 

Solve the variational inequality and the free boundary simultaneously:

• more stable time-stepping schemes,

• possibility of solving directly for steady states with e.g. Newton’s method.

26 of 26



Thank you very much for your attention!
Elephant Foot Glacier, NE Greenland (Copernicus Sentinel-2A data, August 2016)


	Slide 1
	Slide 2: About me
	Slide 3: Mathematical modelling of ice sheets
	Slide 4: Viscous contact problems in glaciology
	Slide 5: Subglacial cavitation
	Slide 6: Subglacial cavitation
	Slide 7: Mathematical modelling of subglacial cavitation
	Slide 8: Numerical considerations
	Slide 9: Numerical considerations
	Slide 10: Numerical considerations
	Slide 11: Numerical considerations
	Slide 12: Numerical considerations
	Slide 13: Numerical considerations
	Slide 14: Numerical considerations
	Slide 15: A numerical algorithm for subglacial cavitation
	Slide 16: A numerical algorithm for subglacial cavitation
	Slide 17: A numerical algorithm for subglacial cavitation
	Slide 18: A numerical algorithm for subglacial cavitation
	Slide 19: Numerical results
	Slide 20: Numerical results
	Slide 21: Numerical results
	Slide 22: Numerical results
	Slide 23: Numerical computation of steady grounding line configurations 
	Slide 24: Numerical computation of steady grounding line configurations 
	Slide 25: Numerical computation of steady grounding line configurations 
	Slide 26: Conclusions
	Slide 27

