DPG Fundamentals

UW formulation

$$\left\{\begin{array}{l} u \in D(A) \\ Au = f \end{array} \Rightarrow \left\{\begin{array}{l} u \in L^2(\Omega) \\ (u, A^*v) = (f, v) \ v \in D(A^*) \end{array} \Rightarrow \left\{\begin{array}{l} u \in L^2(\Omega), \ \hat{u} \in \hat{U} \\ (u, A^*v) + \langle \hat{u}, v \rangle = (f, v) \ v \in H_{A^*}(\Omega_h) \end{array}\right.\right\}$$

Inf--sup constant γ depends upon boundedness below constant α and scaling parameter β in the adjoint graph norm

$$\begin{array}{l} \alpha \|\boldsymbol{u}\| \leq \|\boldsymbol{A}\boldsymbol{u}\|, \, \boldsymbol{u} \in \boldsymbol{D}(\boldsymbol{A}) \\ \|\boldsymbol{v}\|_{V}^{2} := \|\boldsymbol{A}^{*}\boldsymbol{v}\|^{2} + \beta^{2}\|\boldsymbol{v}\|^{2} \end{array} \right\} \quad \Rightarrow \quad \gamma \geq [1 + (\frac{\beta}{\alpha})^{2}]^{-1/2}$$

(Ideal) DPG reproduces the stability of the continuous problem

$$\underbrace{\|\boldsymbol{u} - \boldsymbol{u}_h\|^2}_{L^2 - \text{error}} \leq \underbrace{[1 + (\frac{\beta}{\alpha})^2]}_{\text{stability constant}} \{\underbrace{\inf_{\boldsymbol{w}_h \in \boldsymbol{U}_h} \|\boldsymbol{u} - \boldsymbol{w}_h\|^2}_{\text{field BA error}} + \underbrace{\inf_{\hat{\boldsymbol{w}}_h \in \hat{\boldsymbol{U}}_h} \|\hat{\boldsymbol{u}} - \hat{\boldsymbol{w}}_h\|^2}_{\text{trace BA error}} \}$$

Full Envelope UW Formulation for Linear Waveguide Problem (1)

Def. Full envelope operator

 $\widetilde{A}\widetilde{u} := e^{ikz}A(e^{-ikz}\widetilde{u})$

Thm. Full envelope operator inherits boundedness below constant from the original operator

$$\|Au\| \ge \alpha \|u\| \quad \Leftrightarrow \quad \|\widetilde{A}\widetilde{u}\| \ge \alpha \|\widetilde{u}\|$$

Proof:

$$\|\widetilde{A}\widetilde{u}\| = \|e^{ikz}A(e^{-ikz}\widetilde{u})\| = \|A(e^{-ikz}\widetilde{u})\| \ge \alpha \|e^{-ikz}\widetilde{u}\| = \alpha \|\widetilde{u}\|$$

Thm. The boundedness below constant depends inversely linearly upon waveguide length L (the subject of this talk)

$$|Au\| \ge \underbrace{\frac{\alpha_0}{L}}_{=:\alpha} \|u\|$$

¹M. Melenk, L. Demkowicz, and S. Henneking, "Stability analysis for electromagnetic waveguides. Part 1: Acoustic and homogeneous electromagnetic waveguides.," Oden Institute, The University of Texas at Austin, Austin, TX 78712, Tech. Rep. 2, 2023

L. D., M. Melenk, S. Henneking and J. Badger

Positive Effect of Small β on Pollution

Pollution error in a 3D rectangular waveguide for ultraweak DPG Maxwell with test norm: $\|v\|_{V(\Omega_h)}^2 = \|\operatorname{curl} F - i\omega\epsilon G\|^2 + \|\operatorname{curl} G + i\omega F\|^2 + \beta^2 \left(\|F\|^2 + \|G\|^2\right).$

ANALYSIS OF A NON-HOMOGENEOUS EM WAVEGUIDE PROBLEM(2)

L. Demkowicz^a, M. Melenk^b, S. Henneking^a and J. Badger^a

^aOden Institute, The University of Texas at Austin

^b Technical University of Vienna

Sponsored by Air Force Grant # FA9550-19-1-0237

FEMLLNL Seminar Series Livermore, Apr 25, 2023

²L. Demkowicz, M. Melenk, S. Henneking, and J. Badger, "Stability analysis for acoustic and electromagnetic waveguides. Part 2: Non-homogeneous waveguides.," Oden Institute, The University of Texas at Austin, Austin, TX 78712, Tech. Rep. 3, 2023

Outline

Eigensystems

- 2 Homogeneous Waveguide
- **3** Cylindrical Waveguide
- Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

6 Estimation

Eigensystems

Let
$$E = (\underbrace{E_1, E_2}_{=E_t}, E_3), \ e_z = (0, 0, 1).$$
 We will use the 2D identities:

$$e_{z} \times (e_{z} \times E_{t}) = -E_{t}$$

$$e_{z} \times (\nabla \times E_{3}) = \nabla E_{3} \qquad e_{z} \times \nabla E_{3} = -\nabla \times E_{3}$$

$$\operatorname{curl}(e_{z} \times E_{t}) = \operatorname{div} E_{t} \qquad \operatorname{div}(e_{z} \times E_{t}) = -\operatorname{curl} E_{t}.$$

The original system of equations,

$$\nabla \times E - i\omega H = f$$
 $\nabla \times H + i\omega \epsilon E = g$

translates into:

$$\nabla \times E_{3} + e_{z} \times \frac{\partial}{\partial z} E_{t} - i\omega H_{t} = f_{t}$$

$$\operatorname{curl} E_{t} - i\omega H_{3} = f_{3}$$

$$\nabla \times H_{3} + e_{z} \times \frac{\partial}{\partial z} H_{t} + i\omega \epsilon E_{t} = g_{t}$$

$$\operatorname{curl} H_{t} + i\omega \epsilon E_{3} = g_{3}.$$
(1.1)

Eigensystems

Let
$$E = (\underbrace{E_1, E_2}_{=E_t}, E_3), e_z = (0, 0, 1).$$
 We will use the 2D identities:

$$e_{z} \times (e_{z} \times E_{t}) = -E_{t}$$

$$e_{z} \times (\nabla \times E_{3}) = \nabla E_{3} \qquad e_{z} \times \nabla E_{3} = -\nabla \times E_{3}$$

$$\operatorname{curl}(e_{z} \times E_{t}) = \operatorname{div} E_{t} \qquad \operatorname{div}(e_{z} \times E_{t}) = -\operatorname{curl} E_{t}.$$

The original system of equations,

$$\nabla \times E - i\omega H = f$$
 $\nabla \times H + i\omega \epsilon E = g$

Multiplying the first and third equations by $i\omega e_z \times$, we obtain:

$$\begin{cases} \nabla i\omega E_3 - \frac{\partial}{\partial z} i\omega E_t + \omega^2 e_z \times H_t &= i\omega e_z \times f_t \\ & \operatorname{curl} E_t - i\omega H_3 &= f_3 \\ \nabla i\omega H_3 - \frac{\partial}{\partial z} i\omega H_t - \omega^2 e_z \times \epsilon E_t &= i\omega e_z \times g_t \\ & \operatorname{curl} H_t + i\omega \epsilon E_3 &= g_3. \end{cases}$$
(1.1)

Waveguide Problem and Its Adjoint

The eigensystem corresponding to the first order system operator, and $e^{i\beta z}$ ansatz in z:

$$E_t \in H_0(\operatorname{curl}, D), E_3 \in H_0^1(D)$$

$$H_t \in H(\operatorname{curl}, D), H_3 \in H^1(D)$$

$$i\omega \nabla E_3 + \omega^2 e_z \times H_t = -\omega\beta E_t$$

$$\operatorname{curl} E_t - i\omega H_3 = 0$$

$$i\omega \nabla H_3 - \omega^2 e_z \times \epsilon E_t = -\omega\beta H_t$$

$$\operatorname{curl} H_t + i\omega\epsilon E_3 = 0.$$
(1.2)

The system corresponding to the adjoint:

$$F_{t} \in H(\operatorname{div}, D), F_{3} \in H^{1}(D)$$

$$G_{t} \in H_{0}(\operatorname{div}, D), G_{3} \in H^{1}_{0}(D)$$

$$\nabla \times F_{3} + \omega^{2} e_{z} \times \epsilon G_{t} = -\omega\beta F_{t}$$

$$i\omega(\operatorname{div} F_{t} - \epsilon G_{3}) = 0$$

$$\nabla \times G_{3} - \omega^{2} e_{z} \times F_{t} = -\omega\beta G_{t}$$

$$i\omega(\operatorname{div} G_{t} + F_{3}) = 0.$$
(1.3)

Eigensystems

Eliminating E_3 and H_3 from system (1.2), we obtain a simplified but second order "EH system" for E_t, H_t only.

$$E_{t} \in H_{0}(\operatorname{curl}, D), \operatorname{curl} E_{t} \in H^{1}(D)$$

$$H_{t} \in H(\operatorname{curl}, D), \frac{1}{\epsilon} \operatorname{curl} H_{t} \in H_{0}^{1}(D)$$

$$-\nabla(\frac{1}{\epsilon} \operatorname{curl} H_{t}) + \omega^{2} e_{z} \times H_{t} = -\omega\beta E_{t}$$

$$\nabla(\operatorname{curl} E_{t}) - \omega^{2} e_{z} \times \epsilon E_{t} = -\omega\beta H_{t}.$$
(1.4)

Similarly, eliminating F_3 and G_3 from system (1.3), we obtain a second order "FG system" for F_t , G_t only.

$$\begin{cases}
F_t \in H(\operatorname{div}, D), \frac{1}{\epsilon} \operatorname{div} F_t \in H_0^1(D) \\
G_t \in H_0(\operatorname{div}, D), \operatorname{div} G_t \in H^1(D) \\
-\nabla \times \operatorname{div} G_t + \omega^2 e_z \times \epsilon G_t = -\omega\beta F_t \\
\nabla \times (\frac{1}{\epsilon} \operatorname{div} F_t) - \omega^2 e_z \times F_t = -\omega\beta G_t.
\end{cases}$$
(1.5)

One can check that the operator in (1.5) corresponds to the adjoint of operator in (1.4). Notice how

the BCs on E_3, G_3 have been inherited by $\operatorname{curl} H_t$ and $\operatorname{div} F_t$.

ć

Reduction to single variable eigensystems

Assume $\beta \neq 0$. Solving (1.4)₂ for H_t ,

$$H_t = -\frac{1}{\omega\beta} [\nabla \operatorname{curl} E_t - \omega^2 e_z \times \epsilon E_t]$$

$$\operatorname{curl} H_t = \frac{\omega}{\beta} \operatorname{curl} (e_z \times \epsilon E_t) = \frac{\omega}{\beta} \operatorname{div} \epsilon E_t$$
(1.6)

and substituting it into $(1.4)_1$, we obtain an "E eigenvalue problem" for E_t alone.

$$\begin{cases} E_t \in H_0(\operatorname{curl}, D), \operatorname{curl} E_t \in H^1(D), \frac{1}{\epsilon} \operatorname{div} \epsilon E_t \in H_0^1(D) \\ \nabla \times \operatorname{curl} E_t - \omega^2 \epsilon E_t - \nabla(\frac{1}{\epsilon} \operatorname{div} \epsilon E_t) = -\beta^2 E_t. \end{cases}$$
(1.7)

Similarly, solving $(1.4)_1$ for E_t ,

$$E_t = -\frac{1}{\omega\beta} \left[-\nabla (\frac{1}{\epsilon} \operatorname{curl} H_t) + \omega^2 e_z \times H_t \right]$$

$$\operatorname{curl} E_t = -\frac{\omega}{\beta} \operatorname{curl} (e_z \times H_t) = -\frac{\omega}{\beta} \operatorname{div} H_t$$
(1.8)

and substituting it into $(1.4)_2$, we obtain an "H eigenvalue problem" for H_t alone.

$$\begin{cases} H_t \in H(\operatorname{curl}, D) \cap H_0(\operatorname{div}, D), \ \frac{1}{\epsilon} \operatorname{curl} H_t \in H_0^1(D), \ \operatorname{div} H_t \in H^1(D) \\ \epsilon \nabla \times (\frac{1}{\epsilon} \operatorname{curl} H_t) - \omega^2 \epsilon H_t - \nabla(\operatorname{div} H_t) = -\beta^2 H_t. \end{cases}$$
(1.9)

Note that BC: $n \times E_t = 0$ implies BC: $n \cdot H_t = 0$.

Same for the Adjoint Problem

Solving (1.5) $_2$ for G_t ,

$$G_t = -\frac{1}{\omega\beta} [\nabla \times (\frac{1}{\epsilon} \operatorname{div} F_t) - \omega^2 e_z \times F_t]$$

div $G_t = \frac{\omega}{\beta} \operatorname{div}(e_z \times F_t) = -\frac{\omega}{\beta} \operatorname{curl} \epsilon F_t$ (1.10)

and substituting it into $(1.5)_1$, we obtain an ``F eigenvalue problem'' for F_t alone.

$$\begin{cases} F_t \in H_0(\operatorname{curl}, D) \cap H(\operatorname{div}, D), \ \frac{1}{\epsilon} \operatorname{div} F_t \in H_0^1(D), \ \operatorname{curl} F_t \in H^1(D) \\ \nabla \times \operatorname{curl} F_t - \omega^2 \epsilon F_t - \epsilon \nabla(\frac{1}{\epsilon} \operatorname{div} F_t) = -\gamma^2 F_t. \end{cases}$$
(1.11)

Note that BC: $n \cdot G_t = 0$ implies BC: $n \times F_t = 0$. Similarly, solving (1.5)₁ for F_t ,

$$F_t = -\frac{1}{\omega\beta} [-\nabla \times \operatorname{div} G_t) + \omega^2 e_z \times \epsilon G_t]$$

div $F_t = -\frac{\omega}{\beta} \operatorname{div} (e_z \times \epsilon G_t) = -\frac{\omega}{\beta} \operatorname{curl} \epsilon G_t$ (1.12)

and substituting it into $(1.5)_2$, we obtain an "G eigenvalue problem" for G_t alone.

$$\begin{cases} G_t \in H_0(\operatorname{div}, D), \operatorname{div} G_t \in H^1(D), \frac{1}{\epsilon} \operatorname{curl} \epsilon G_t \in H_0^1(D) \\ \nabla \times (\frac{1}{\epsilon} \operatorname{curl} \epsilon G_t) - \omega^2 \epsilon G_t - \nabla(\operatorname{div} G_t) = -\gamma^2 G_t. \end{cases}$$
(1.13)

Lemma (1)

- (a) Let $((E_t, H_t), -\omega\beta)$ be an eigenpair for EH system (1.4). Then $(E_t, -\beta^2)$ solves the E problem (1.7), and $(H_t, -\beta^2)$ solves the H problem (1.9).
- (b) Conversely, if $(E_t, -\beta^2)$ is an eigenpair for the E problem (1.7), and we define H_t by

$$H_t = rac{1}{\omega(\pm eta)} \left(- oldsymbol{
abla} \operatorname{curl} E_t + \omega^2 e_{\mathbf{z}} imes \epsilon E_t
ight)$$

then $((E_t, H_t), -\omega(\pm\beta))$ is an eigenpair for EH system (1.4). Each eigenpair for E problem (1.7) generates two eigenpairs for EH problem (1.4).

(c) Similarly, if $(H_t, -\beta^2)$ is an eigenpair for H problem (1.9), and we define E_t by:

$$E_t = rac{1}{\omega(\pm\beta)} \left({oldsymbol
abla}(rac{1}{\epsilon} \operatorname{curl} H_t) - \omega^2 e_{\mathrm{z}} imes H_t
ight)$$

then $((E_t, H_t), -\omega(\pm\beta))$ is an eigenpair for EH system (1.4). Each eigenpair for H problem (1.9) generates two eigenpairs for EH problem (1.4).

In particular, Lemma 1 implies that E and H eigenproblems have the same eigenvalues β^2 .

Lemma (2)

- (a) Let $((F_t, G_t), \omega \gamma)$ be an eigenpair for FG system (1.5). Then $(G_t, -\gamma^2)$ solves G problem (1.13) and $(F_t, -\gamma^2)$ solves F problem (1.11).
- (b) Conversely, if $(F_t, -\gamma^2)$ is an eigenpair for F problem (1.11), and we define G_t by

$$G_t = rac{1}{\omega(\pm \gamma)} \left(- \boldsymbol{\nabla} \operatorname{curl} F_t + \omega^2 \boldsymbol{e}_{\mathbf{z}} \times \epsilon F_t
ight)$$

then $((F_t, G_t), \omega(\pm \gamma))$ is an eigenpair for FG system (1.5). Each eigenpair for F problem (1.11) generates two eigenpairs for FG system (1.5).

(c) Similarly, if $(G_t, -\gamma^2)$ is an eigenpair for G problem (1.13), and we define F_t by:

$$F_t = rac{1}{\omega(\pm \gamma)} \left(oldsymbol{
abla} (rac{1}{\epsilon} \operatorname{curl} G_t) - \omega^2 e_{\mathrm{z}} imes G_t
ight)$$

then $((F_t, G_t), \omega(\pm \gamma))$ is an eigenpair for FG system (1.5). Each eigenpair for G problem (1.13) generates two eigenpairs for FG system (1.5).

In particular, Lemma 2 implies that F and G eigenproblems have the same eigenvalues γ^2 .

Lemma (3)

 $(E_t, -\beta^2)$ is an eigenpair for E problem (1.7) if an only if $(G_t := e_z \times E_t, -\beta^2)$ is an eigenpair for G problem (1.13). Similarly, $(H_t, -\beta^2)$ is an eigenpair for H problem (1.9) if and only if $(F_t := e_z \times H_t, -\beta^2)$ is an eigenpair for F problem (1.11). In particular, this implies that all four individual eigenproblems share the same eigenvalues.

Outline

Eigensystems

- 3 Cylindrical Waveguide
- Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

6 Estimation

Homogeneous Waveguide

For $\epsilon = 1$, the *E* problem (1.7) reduces to ($E = E_t$):

$$\sum_{i=iAE} E \in H_0(\operatorname{curl}, D), \operatorname{curl} E \in H^1(D), \operatorname{div} E \in H^1_0(D)$$

$$(2.14)$$

We get the same equation for the H problem (1.9) but with different BCs ($H = H_t$):

 $H \in H(\operatorname{curl}, D) \cap H_0(\operatorname{div}, D), \operatorname{curl} H \in H_0^1(D), \operatorname{div} H \in H^1(D).$

Lemma (4. Helmholtz decompositions)

Let $D \subset \mathbb{R}^2$ be a simply connected domain. For every $E \in L^2(D)^2$ there exist a unique $\phi \in H^1_0(D)$ and a unique $\psi \in H^1(D), \int_D \psi = 0$, such that

$$E = \nabla \phi + \nabla \times \psi \,. \tag{2.15}$$

Similarly, for every $H \in L^2(D)^2$ there exist a unique $\phi \in H^1_0(D)$ and a unique $\psi \in H^1(D), \int_D \psi = 0$, such that

$$H = \boldsymbol{\nabla} \times \boldsymbol{\phi} + \boldsymbol{\nabla} \boldsymbol{\psi} \,. \tag{2.16}$$

Homogeneous Waveguide

Consider now the eigenvalue problem (2.14) and Helmholtz decomposition of *E*. Boundary condition $E_t = 0$ implies that $\frac{\partial \psi}{\partial n} = 0$ on ∂D . Substituting (2.15) into (2.14), we obtain:

$$\nabla \times (\underbrace{-\Delta \psi + (\beta^2 - \omega^2)\psi}_{=:\Psi}) + \nabla (\underbrace{-\Delta \phi + (\beta^2 - \omega^2)\phi}_{=:\Phi}) = 0.$$
(2.17)

The equation above represents the Helmholtz decomposition of zero function. Uniqueness of ϕ and ψ in the Helmholtz decomposition implies now that $\Phi = \Psi = 0$. Let (λ_i, ϕ_i) and (μ_j, ψ_j) be the Dirichlet and Neumann eigenpairs of the Laplacian in domain D. Vanishing of Φ and Ψ implies that there exist i, j such that

$$\phi=\phi_i,\,\omega^2-\beta^2=\lambda_i\quad\text{and}\quad\psi=\psi_j,\omega^2-\beta^2=\mu_j\,.$$

If the Dirichlet and Neumann eigenvalues are distinct, eigenvector E must reduce to either gradient or curl. This is the case, e.g., for a circular domain D. In the case of a common Dirichlet and Neumann eigenvalue, $\lambda_i = \mu_j$, we obtain a multiple eigenvalue $\beta^2 = \omega^2 - \lambda_i = \omega^2 - \mu_j$, with the eigenspace consisting of vectors:

$$E = A \nabla \times \psi_j + B \nabla \phi_i , \quad A, B \in \mathbb{C} .$$

L. D., M. Melenk, S. Henneking and J. Badger

Lemma (5)

Let (λ_i, ϕ_i) and (μ_j, ψ_j) denote the Dirichlet and Neumann eigenpairs of the Laplacian in domain D. The eigenvalues β_i^2 are classified into the following three families.

(a) $\beta^2 = \omega^2 - \mu_j$ with μ_j distinct from all λ_i . The corresponding eigenvectors are curls:

$$E = \mathbf{\nabla} \times \psi_i$$
,

with multiplicity of β^2 equal to the multiplicity of μ_i .

(a) $\beta^2 = \omega^2 - \lambda_i$ with λ_i distinct from all μ_j . The corresponding eigenvectors are gradients:

$$E = \nabla \phi_i$$

with multiplicity of eta^2 equal to the multiplicity of $\lambda_i.$

(C) $\beta^2 = \omega^2 - \mu_j = \omega^2 - \lambda_i$ for $\mu_j = \lambda_i$. The corresponding eigenvectors are linear combinations of curls and gradients:

$$E = A \nabla \times \psi_i + B \nabla \phi_i, \quad A, B \in \mathbb{C},$$

with multiplicity of β^2 equal to the sum of multiplicities of μ_j and λ_i .

L. D., M. Melenk, S. Henneking and J. Badger

Lemma (6)

Let (λ_i, ϕ_i) and (μ_j, ψ_j) denote the Dirichlet and Neumann eigenpairs of the Laplacian in domain D. The eigenvalues γ_i^2 are classified into the following three families.

(a) $\gamma^2 = \omega^2 - \mu_j$ with μ_j distinct from all λ_i . The corresponding eigenvectors are gradients:

$$H = \nabla \psi_j$$
,

with multiplicity of β^2 equal to the multiplicity of μ_i .

(a) $\gamma^2 = \omega^2 - \lambda_i$ with λ_i distinct from all μ_j . The corresponding eigenvectors are curls:

$$H = \mathbf{\nabla} \times \phi_i$$

with multiplicity of γ^2 equal to the multiplicity of $\lambda_i.$

(C) γ² = ω² - μ_j = ω² - λ_i for μ_j = λ_i. The corresponding eigenvectors are linear combinations of gradients and curls:

$$H = A \nabla \psi_i + B \nabla \times \phi_i \,, \quad A, B \in \mathbb{C} \,,$$

with multiplicity of γ^2 equal to the sum of multiplicities of μ_j and λ_i .

Outline

Eigensystems

- 2 Homogeneous Waveguide
- 3 Cylindrical Waveguide
- 4 Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

6 Estimation

TEXAS

Cylindrical Waveguide

Consider the Dirichlet or Neumann Laplace eigenvalue problem in a unit circle,

$$-\Delta u = \lambda u, \quad \lambda = \nu^2.$$

For Dirichlet problem the operator is positive definite, so $\nu > 0$, for Neumann problem, u = const corresponds to zero eigenvalue, all other eigenvalues are positive as well. Rewriting the operator in polar coordinates r, θ ,

$$-\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r}) - \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = \nu^2 u.$$

Separating the variables, $u = R(r)\Theta(\theta)$, we get

$$-\frac{1}{r}(rR')'\Theta - \frac{1}{r^2}R\Theta'' = \nu^2 R\Theta$$

or,

$$\frac{r(rR')'}{R} + \nu^2 r^2 = -\frac{\Theta''}{\Theta} = k^2$$

where k^2 is a real and positive separation constant. We obtain,

$$\Theta = A\cos k\theta + B\sin k\theta$$

and the periodic BCs on u and, therefore, Θ , imply that $k=0,1,2,\ldots$

Cylindrical Waveguide

This leads to the Bessel equation in r,

$$r(rR')' + (\nu^2 r^2 - k^2)R = 0$$

with solution:

$$R = CJ_k(\nu r) + DY_k(\nu r).$$

Finite energy condition eliminates the second term, D = 0.

Dirichlet BC: R(1) = 0 leads to ν being a root of the Bessel function $J_k(\nu) = 0$. We have a family of roots (and, therefore Dirichlet Laplace eigenvalues ν^2): $\nu = \nu_{k,m}, \ k = 0, 1, 2, \dots, m = 1, 2, \dots$ For k = 0, the roots are simple, with

corresponding eigenvectors given by:

$$u=J_0(\nu_{0,m}r).$$

For k > 0, we have double eigenvectors with eigenspaces given by:

$$u = J_0(\nu_{k,m}r)(A\cos k\theta + B\sin k\theta).$$

Neumann BC: The situation is similar except that we are dealing now with the roots of the derivative of Bessel functions: $J'_k(\lambda) = 0$, $\lambda = \lambda_{k,m}$, k = 0, 1, 2, ..., m = 1, 2, ...

Cylindrical Waveguide - Cont.

m/k	$J_0(x)$	$J_1(x)$	$J_2(x)$	$J_3(x)$	$J_4(x)$	$J_5(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Roots of Bessel functions $\nu_{k,m}$.

m/k	$J_0'(x)$	$J_1'(x)$	$J_2'(x)$	$J_3'(x)$	$J_4'(x)$	$J_5'(x)$
1	3.8317	1.8412	3.0542	4.2012	5.3175	6.4156
2	7.0156	5.3314	6.7061	8.0152	9.2824	10.5199
3	10.1735	8.5363	9.9695	11.3459	12.6819	13.9872
4	13.3237	11.7060	13.1704	14.5858	15.9641	17.3128
5	16.4706	14.8636	16.3475	17.7887	19.1960	20.5755

Roots of derivatives of Bessel functions $\lambda_{k,m}$.

Outline

Eigensystems

- 2 Homogeneous Waveguide
- 3 Cylindrical Waveguide
- Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

6 Estimation

Perturbation Analysis

The E problem (1.7):

$$\nabla imes \operatorname{curl} E_t - \omega^2 \epsilon E_t - \nabla (\frac{1}{\epsilon} \operatorname{div} \epsilon E_t) = -\beta^2 E_t$$

is not self-adjoint, but it is a perturbation of the self-adjoint homogeneous E problem for $\epsilon = 1$. The homogeneous problem admits two families of eigenvectors:

$$\begin{split} E_i &= \boldsymbol{\nabla} \times \psi_i, \qquad \beta_i^2 = \omega^2 - \mu_i \\ E_j &= \boldsymbol{\nabla} \phi_j, \qquad \beta_j^2 = \omega^2 - \lambda_j \end{split}$$

where (μ_i, ψ_i) and (λ_j, ϕ_j) are Neumann and Dirichlet eigenpairs for the Laplace operator. Consider now a perturbation,

$$\epsilon = 1 + \delta \epsilon, \qquad E := E + \delta E, \quad \beta^2 := \beta^2 + \delta \beta^2.$$

Plugging the perturbations into the E problem and linearizing, we obtain the corresponding linearized problem:

$$A(\delta E_t) + \beta^2 \delta E_t = \omega^2 \delta \epsilon E - \nabla (\delta \epsilon \operatorname{div} E) + \nabla \operatorname{div}(\delta \epsilon E) - \delta \beta^2 E.$$

Perturbation Analysis - Cont.

Consider now the homogeneous and perturbed E problems for a specific eigenpair $(-\beta_i^2, E_i)$. Representing the perturbation in eigenbasis E_i , we have:

$$\begin{split} \delta E_i &= \sum_j (\delta E_i, E_j) E_j \\ A(\delta E_i) &= \sum_j^j (\delta E_i, E_j) (-\beta_j^2) E_j \\ (A(\delta E_i), E_k) &= \sum_j^j (-\beta_j^2) (\delta E_i, E_j) \underbrace{(E_j, E_k)}_{=\delta_{jk}} = (-\beta_k^2) (\delta E_i, E_k) \,. \end{split}$$

Taking the L^2 -product of the linearized perturbed problem with E_k , we obtain:

$$(\beta_i^2 - \beta_k^2)(\delta E_i, E_k) + \delta \beta_i^2 \delta_{ik} = \omega^2 (\delta \epsilon E_i, E_k) - (\nabla (\delta \epsilon \operatorname{div} E_i), E_k) + (\nabla \operatorname{div}(\delta \epsilon E_i), E_k).$$

Under the assumption of distinct (simple) eigenvalues, for k = i, we get a formula for perturbation $\delta \beta_i^2$,

$$\delta\beta_i^2 = \omega^2(\delta\epsilon E_i, E_i) + (\delta\epsilon \operatorname{div} E_i, \operatorname{div} E_i) - (\operatorname{div}(\delta\epsilon E_i), \operatorname{div} E_i).$$

For $k \neq i$, the formula allows to compute perturbation δE_i ; the *i*-th component of δE_i comes from the normalization $||E_i + \delta E_i|| = 1$.

$$(\beta_i^2 - \beta_k^2)(\delta E_i, E_k) = \omega^2(\delta \epsilon E_i, E_k) + (\delta \epsilon \operatorname{div} E_i, \operatorname{div} E_k) - (\operatorname{div}(\delta \epsilon E_i), \operatorname{div} E_k).$$

Linearized Mass Matrices

Mass term $(\delta E, E)$ for different families of eigenvectors:

$(\delta E, E)$	$E_k = \boldsymbol{\nabla} \times \psi_k$	$E_l = \nabla \phi_l$
$\delta E_i = \delta(\mathbf{\nabla} \times \psi_i)$ $\delta E_j = \delta(\mathbf{\nabla} \phi_j)$	$\frac{\omega^2(\delta \epsilon E_i, E_k)}{\mu_k - \mu_i}$ $\frac{\omega^2(\delta \epsilon E_j, E_k)}{\mu_k - \lambda_j}$	$\frac{\frac{(\omega^2 - \lambda_l)(\delta \epsilon E_i, E_l)}{\lambda_l - \mu_i}}{\frac{(\omega^2 - \lambda_l)(\delta \epsilon E_j, E_l) + \lambda_j \lambda_l(\delta \epsilon \phi_j, \phi_l)}{\lambda_l - \lambda_j}}$

Linearized mass matrix $(\delta E_i, E_k) + (E_i, \delta E_k)$ for different families of eigenvectors.

$(\delta E, E) + (E, \delta E)$	$\delta E_k = \delta(\boldsymbol{\nabla} \times \boldsymbol{\psi}_k)$	$\delta E_l = \delta(\boldsymbol{\nabla}\phi_l)$	
$\delta E_i = \delta(\boldsymbol{\nabla} \times \psi_i)$	0	not needed	
$\delta E_j = \delta(\boldsymbol{\nabla}\phi_j)$	not needed	$-(\delta \epsilon E_j, E_l)$	

Linearized Curl-Curl Mass Matrix

We have:

$$\begin{split} \delta E_i &= \sum_k (\delta E_i, E_k) E_k & \text{(summation over both curls and grads)} \\ \mathrm{curl} \, \delta E_i &= \sum_k^k (\delta E_i, \nabla \times \psi_k) \mu_k \psi_k & \text{(summation over curls only.)} \end{split}$$

Hence,

$$\begin{aligned} (\operatorname{curl} \delta E_i, \operatorname{curl} E_j) &= \left(\sum_k (\delta E_i, \nabla \times \psi_k) \mu_k \psi_k, \operatorname{curl} E_j \right) \\ &= \sum_k (\delta E_i, \nabla \times \psi_k) (\mu_k \psi_k, \mu_j \psi_j) \\ &= (\delta E_i, \nabla \times \psi_j) \mu_j \end{aligned}$$

is non-zero only if E_j is a curl, $E_j = \nabla \times \psi_j$. Consequently, the linearized curl-curl mass matrix is equal to:

$$(\delta E_i, E_j)\mu_j + (E_i, \delta E_j)\mu_i = \mu_j \frac{\omega^2(\delta \epsilon E_i, E_j)}{\mu_j - \mu_i} + \mu_i \frac{\omega^2(\delta \epsilon E_i, E_j)}{\mu_i - \mu_j} = \omega^2(\delta \epsilon E_i, E_j)$$

 $\text{if } E_i = \boldsymbol{\nabla} \times \psi_i, E_j = \boldsymbol{\nabla} \times \psi_j.$

Outline

Eigensystems

- 2 Homogeneous Waveguide
- **3** Cylindrical Waveguide
- Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

6 Estimation

Reduction to the Second Order System

We return to the original first order system. Testing the first equation with F_t , and the third equation with G_t , $n \cdot G_t = 0$ on ∂D , to obtain:

$$\begin{aligned} -(i\omega E_3, \operatorname{div} F_t) + \omega^2 (e_z \times H_t, F_t) &- \frac{\partial}{\partial z} i\omega (E_t, F_t) &= i\omega \left(e_z \times f_t, F_t \right) \\ \operatorname{curl} E_t - i\omega H_3 &= f_3 \\ -(i\omega H_3, \operatorname{div} G_t) - \omega^2 (e_z \times \epsilon E_t, G_t) - \frac{\partial}{\partial z} i\omega (H_t, G_t) &= i\omega \left(e_z \times g_t, G_t \right) \\ \operatorname{curl} H_t + i\omega \epsilon E_3 &= g_3 . \end{aligned}$$

Note that, when integrating by parts the first terms, we have used the fact that $E_3 = 0$ and $n \cdot G_t = 0$ on ∂D . Solving the second and fourth equations in (1.1) for E_3 and H_3 ,

$$E_3 = \frac{1}{i\omega\epsilon}g_3 - \frac{1}{i\omega\epsilon}\operatorname{curl} H_t \qquad H_3 = -\frac{1}{i\omega}f_3 + \frac{1}{i\omega}\operatorname{curl} E_t$$

and substituting into the first and the third equations, we obtain a system of two variational equations for E_t, H_t :

$$\begin{cases} (\frac{1}{\epsilon}\operatorname{curl} H_t, \operatorname{div} F_t) + \omega^2 (e_z \times H_t, F_t) - \frac{\partial}{\partial z} i\omega(E_t, F_t) &= i\omega \left(e_z \times f_t, F_t\right) + \left(\frac{1}{\epsilon}g_3, \operatorname{div} F_t\right) \\ -(\operatorname{curl} E_t, \operatorname{div} G_t) - \omega^2 (e_z \times \epsilon E_t, G_t) - \frac{\partial}{\partial z} i\omega(H_t, G_t) &= i\omega \left(e_z \times g_t, G_t\right) - (f_3, \operatorname{div} G_t) . \end{cases}$$
(5.18)

Decoupling

Variational eigenvalue problem:

$$\begin{aligned} & E_t \in H_0(\operatorname{curl}, D), H_t \in H(\operatorname{curl}, D) \\ & (\frac{1}{\epsilon} \operatorname{curl} H_t, \operatorname{div} F_t) + \omega^2(e_z \times H_t, F_t) = -\omega\beta(E_t, F_t) \\ & -(\operatorname{curl} E_t, \operatorname{div} G_t) - \omega^2(e_z \times \epsilon E_t, G_t) = -\omega\beta(H_t, G_t) \\ & F_t \in H(\operatorname{div}, D), \ G_t \in H_0(\operatorname{div}, D) , \end{aligned}$$

is equivalent to the *EH* eigenproblem. Similarly, switching the role of (E_t, H_t) and (F_t, G_t) above, we obtain the adjoint variational eigenvalue problem equivalent to the *FG* eigenproblem. We expand the unknowns into series of the perturbed eigenvectors:

$$E_t = \sum_i \alpha_i E_{t1,i} + \sum_j \beta_j E_{t2,j}$$

$$H_t = \sum_i \delta_i H_{t1,i} + \sum_j \eta_j H_{t2,j}$$

where $\alpha_i, \beta_j, \delta_i, \eta_j$ are functions of z, and

$$\begin{split} E_{t1,i} &= \nabla \times \psi_i + \delta E_{t1,i}, \qquad E_{t2,j} = \nabla \phi_j + \delta E_{t2,j} \\ H_{t1,i} &= \nabla \psi_i + \delta H_{t1,i}, \qquad H_{t2,j} = \nabla \times \phi_j + \delta H_{t2,j} \end{split}$$

are the two E and H families of (perturbed) eigenvectors.

Decoupling

Let

$$F_{t1,i} = \nabla \times \psi_i + \delta F_{t1,i}, \qquad F_{t2,j} = \nabla \phi_j + \delta F_{t2,j}$$
$$G_{t1,i} = \nabla \psi_i + \delta G_{t1,i}, \qquad G_{t2,j} = \nabla \times \phi_j + \delta G_{t2,j}$$

be the corresponding families of perturbed adjoint eigenvectors. Scalings:

$$\begin{split} \|\boldsymbol{\nabla} \times \psi_i\| &= \|\boldsymbol{\nabla} \psi_i\| = 1, \quad (\delta E_{t1,i}, \boldsymbol{\nabla} \times \psi_i) = 0, \quad (\delta F_{t1,i}, \boldsymbol{\nabla} \times \psi_i) = 0 \quad \Rightarrow \\ \|\boldsymbol{\nabla} \times \psi_i + \delta E_{t1,i}\| &= 1 \quad \text{and} \quad (\boldsymbol{\nabla} \times \psi_i + \delta E_{t1,i}, \boldsymbol{\nabla} \times \psi_i + \delta F_{t1,i}) = 1. \end{split}$$

Same for the H and G eigenvectors, and the second family of eigenvectors.

Let $-\beta^2$ be an eigenvalue for E and H eigenproblems with the corresponding eigenvectors E_t , H_t scaled as above. In order to invoke Lemma 1 (b) argument, we have to replace H_t with cH_t where constant c is computed by comparing eigenvector cH_t with H_t given by relation (1.6),

$$cH_t = rac{1}{\omega\beta} [-\nabla \operatorname{curl} E_t + \omega^2 e_\mathbf{z} \times \epsilon E_t].$$

Pair (E_t, cH_t) constitutes then an eigenvector for system (1.4) corresponding to root β of β^2 selected in such a way that $e^{i\beta z}$ represents an outgoing wave. We proceed similarly with the adjoint eigenvectors. Let $-\gamma^2$ be an eigenvalue for problems (1.11) and (1.13) with the corresponding eigenvectors F_t , H_t . After scaling the second component, pair (F_t, dG_t) constitutes an eigenvector for system (1.5) corresponding to a root γ of γ^2 .

L. D., M. Melenk, S. Henneking and J. Badger

Decoupling

Case: $\beta^2 \neq \gamma^2$ and, therefore, $\beta \neq \gamma$. Testing the 2nd order system with pair (F_t, G_t) , we obtain the bi-orthogonality condition,

$$c(BH_t, F_t) + d(CE_t, G_t) = 0$$

where B and C denote the operators on the left-hand side of the system. But, testing with the adjoint eigenpair $(F_t, -G_t)$ (corresponding to eigenvalue $-\gamma \neq \beta$), we obtain also

$$c(BH_t,F_t)-d(CE_t,G_t)=0$$
.

Consequently,

$$(BH_t,F_t)=0$$
 and $(CE_t,G_t)=0$.

Case: $\beta^2 = \gamma^2$ and $\beta = \gamma$. Testing with pair (F_t, dH_t) , we obtain:

$$c(BH_t, F_t) + d(CE_t, G_t) = \omega\beta[1 + cd].$$

But, testing with the adjoint eigenpair $(F_t, -H_t)$ (corresponding to eigenvalue $-\gamma \neq \beta$), we obtain also

$$c(BH_t, F_t) - d(CE_t, G_t) = 0$$

Consequently,

$$(BH_t,F_t)=-\frac{\omega\beta}{2c}[1+cd]=:\theta \qquad \text{and} \qquad (CE_t,G_t)=-\frac{\omega\beta}{2d}[1+cd]=:\nu\,.$$

L. D., M. Melenk, S. Henneking and J. Badger

TEXAS

Decoupling

Theorem

Testing with $(F_{t1,j}, G_{t1,j})$ and with $(F_{t2,j}, G_{t2,j})$ we obtain a decoupled system of ODEs for the coefficients α_j, δ_j :

$$\begin{cases} \theta_{1,j}\delta_j - i\omega\alpha'_j &= r_1(\mathbf{z}) := (i\omega \, e_{\mathbf{z}} \times f_t, F_{t1,j}) + (\frac{1}{\epsilon}g_3, \operatorname{div} F_{t1,j}) \\ \nu_{1,j}\alpha_j - i\omega\delta'_j &= r_2(\mathbf{z}) := (i\omega \, e_{\mathbf{z}} \times g_t, G_{t1,j}) - (f_3, \operatorname{div} G_{t1,j}) \end{cases}$$
(5.19)

and β_j, η_j :

$$\begin{cases} \theta_{2,j}\eta_{j} - i\omega\beta_{j}' &= s_{1}(z) := (i\omega e_{z} \times f_{t}, F_{t2,j}) + (\frac{1}{\epsilon}g_{3}, \operatorname{div} F_{t2,j}) \\ \nu_{2,j}\beta_{j} - i\omega\eta_{j}' &= s_{2}(z) := (i\omega e_{z} \times g_{t}G_{t2,j}) - (f_{3}, \operatorname{div} G_{t2,j}) \end{cases}$$
(5.20)

where

$$\begin{array}{ll} \theta_{1,j} &= -\omega^2, & \nu_{1,j} &= -\beta_j^2 - \omega^2 (\delta \epsilon \nabla \psi_j, \nabla \psi_j) \\ \theta_{2,j} &= \beta_j^2 + \lambda_j^2 (\delta \epsilon \, \phi_j, \phi_j) & \nu_{2,j} &= \omega^2 + \omega^2 (\delta \epsilon \, \nabla \phi_j, \nabla \phi_j) \,. \end{array}$$

Watch out for the terrible notational collision with β 's.

Outline

Eigensystems

- 2 Homogeneous Waveguide
- **3** Cylindrical Waveguide
- Perturbation of Self-Adjoint Operators
- 5 Decoupling the Equations

Estimation of E_t

$$\begin{split} \|E_{t}\|^{2} &\leq 2 \left[\|\sum_{i=1}^{\infty} \alpha_{i} E_{t1,i}\|^{2} + \|\sum_{j=1}^{\infty} \beta_{j} E_{t2,j}\|^{2} \right] \\ &= 2 \lim_{N \to \infty} \left[(\sum_{i=1}^{N} \alpha_{i} E_{t1,i}, \sum_{k=1}^{N} \alpha_{k} E_{t1,k}) + (\sum_{j=1}^{N} \beta_{j} E_{t2,j}, \sum_{l=1}^{N} \beta_{l} E_{t2,l}) \right] \\ &= 2 \lim_{N \to \infty} \left[\sum_{i,k=1}^{N} \alpha_{i} \overline{\alpha_{k}} (E_{t1,i}, E_{t1,k}) + \sum_{j,l=1}^{N} \beta_{j} \overline{\beta_{l}} (E_{t2,j}, E_{t2,l}) \right] \\ &\leq \lim_{N \to \infty} C \left[\sum_{i=1}^{N} |\alpha_{i}|^{2} + \sum_{j=1}^{N} |\beta_{j}|^{2} \right] \\ &= C \left[\sum_{i=1}^{\infty} |\alpha_{i}|^{2} + \sum_{j=1}^{\infty} |\beta_{j}|^{2} \right] \end{split}$$

where (up to linearization) $C = 2(1 + \|\delta \epsilon\|_{L^{\infty}(D)})$. After integrating in z, we get

$$\int_0^L \|E_t\|^2\,dz \leq C\left[\sum_{i=1}^\infty \int_0^L |lpha_i|^2\,dz + \sum_{j=1}^\infty \int_0^L |eta_j|^2\,dz
ight]\,.$$

Estimation of $\operatorname{curl} E_t$

$$\begin{aligned} \|\operatorname{curl} E_t\|^2 &\leq 2 \left[\|\sum_{i=1}^{\infty} \alpha_i \operatorname{curl} E_{t1,i}\|^2 + \|\sum_{j=1}^{\infty} \beta_j \operatorname{curl} E_{t2,j}\|^2 \right] \\ &= 2 \lim_{N \to \infty} \left[\left(\sum_{i=1}^{N} \alpha_i \operatorname{curl} E_{t1,i}, \sum_{k=1}^{N} \alpha_k \operatorname{curl} E_{t1,k} \right) \right. \\ &\left. + \left(\sum_{j=1}^{N} \beta_j \operatorname{curl} E_{t2,j}, \sum_{l=1}^{N} \beta_l \operatorname{curl} E_{t2,l} \right) \right] \\ &= 2 \lim_{N \to \infty} \left[\sum_{i,k=1}^{N} \alpha_i \overline{\alpha_k} (\operatorname{curl} E_{t1,i}, \operatorname{curl} E_{t1,k}) + \sum_{j,l=1}^{N} \beta_j \overline{\beta_l} (\operatorname{curl} E_{t2,j}, \operatorname{curl} E_{t2,l}) \right] \\ &\approx 2 \sum_{i=1}^{\infty} (\mu_i + \omega^2 \|\delta \epsilon\|_{L^{\infty}(D)}) |\alpha_i|^2 \,. \end{aligned}$$

Note that, like for the homogeneous case, the perturbed gradients do not contribute (the linearized perturbed curl mass matrix is zero).

Estimation of Coefficients α_i, δ_i

We focus now on the ODE boundary-value problem for coefficients α and δ ,

$$\begin{pmatrix} \alpha(0) = 0, \ \alpha(L) = \frac{\nu}{\theta} \delta(L) \\ \theta \delta - i\omega \alpha' = r_1 \\ \nu \alpha - i\omega \delta' = r_2 . \end{cases}$$

Testing the second equation with $\delta \alpha$, $\delta \alpha(0) = 0$, integrating the derivative term by parts, and utilizing BC, we obtain:

$$i\omega(\delta,\delta\alpha') = -\omega\beta(\alpha,\delta\alpha) + i\omega\alpha(L)\delta\alpha(L) + (r_2,\delta\alpha).$$

Testing now the first equation with $\delta \alpha'$ and using the formula above, we obtain the ultimate variational problem for coefficient α ,

$$\begin{cases} \alpha(0) = 0\\ (\alpha', \delta\alpha') - \kappa^2(\alpha, \delta\alpha) + \kappa\alpha(L)\delta\alpha(L) = \frac{1}{\omega}(r_1, \delta\alpha') - \frac{\beta}{\omega}(r_2, \delta\alpha)\\ \forall \delta\alpha \,:\, \delta\alpha(0) = 0 \end{cases}$$

where $\kappa = i \frac{\sqrt{\theta \nu}}{\omega}$.

L. D., M. Melenk, S. Henneking and J. Badger

1D Stability Result

Lemma (7)

Let I = (0, L). Consider two problems: Find $q_1, q_2 \in H^1_{(0)}(I) := \{w \in H^1(I) : w(0) = 0\}$ such that

$$\begin{aligned} &(q_1',w') + \beta^2(q_1,w) + \beta q_1(L)w(L) &= (f,w) \quad w \in H^1_{(0}(I) \,, \\ &(q_2',w') + \beta^2(q_2,w) + \beta q_2(L)\overline{w(L)} &= (f,w') \quad w \in H^1_{(0}(I) \,. \end{aligned}$$

(i) If $\beta \in i\mathbb{R}$ then,

$$\begin{split} \|q_1'\|^2 + \beta^2 \|q_1\|^2 &\leq CL^2 \|f\|^2\,, \\ \|q_2'\|^2 + \beta^2 \|q_2\|^2 &\leq CL^2 |\beta|^2 \|f\|^2\,, \end{split}$$

where C > 0 depend only on a lower bound for $L|\beta|$.

(ii) If $\beta > 0$ then,

$$\begin{split} \|q_1'\|^2 + \beta^2 \|q_1\|^2 &\leq C \,\beta^{-2} \|f\|^2 \,, \\ \|q_2'\|^2 + \beta^2 \|q_2\|^2 &\leq C \,\|f\|^2 \,, \end{split}$$

where C > 0 depend only on a lower bound for $L\beta$.

Estimation of α_j

Term 1: $i\omega(e_z \times f_t, F_{t1,j})$ contributing to r_1 . Skipping factor $i\omega$, we have:

$$\begin{split} \sum_{j} \int_{0}^{L} |\alpha_{j}|^{2} dz &\lesssim \sum_{j} \int_{0}^{L} \beta_{j}^{-2} |(e_{z} \times f_{t}, F_{t1,j} + \delta F_{t1,j})|^{2} \qquad \text{(Lemma 7 (ii)}_{1}) \\ &\lesssim 2 \sum_{j} \int_{0}^{L} [|(e_{z} \times f_{t}, F_{t1,j})|^{2} + |(e_{z} \times f_{t}, \delta F_{t1,j})|^{2}] \qquad \text{(Young's inequality)} \\ &\lesssim 2 \sum_{j} \int_{0}^{L} |(e_{z} \times f_{t}, F_{t1,j})|^{2} \qquad \text{(Ilnearization)} \\ &\leq 2 \int_{0}^{L} ||e_{z} \times f_{t}||^{2} dz \\ &= 2 \int_{0}^{L} ||f_{t}||^{2} dz \,. \end{split}$$

Term 2: $(\frac{1}{\epsilon}g_3, \operatorname{div} G_t)$ contributing to r_1 .

$$\begin{split} \sum_{j} \int_{0}^{L} |\alpha_{j}|^{2} dz &\lesssim \sum_{j} \int_{0}^{L} \beta_{j}^{-2} |(\frac{1}{\epsilon}g_{3}, \operatorname{div}(F_{t1,j} + \delta F_{t1,j}))|^{2} & \text{(Lemma 7 (ii)}_{1}) \\ &\leq 2 \sum_{j} \int_{0}^{L} \beta_{j}^{-2} [|(\frac{1}{\epsilon}g_{3}, \operatorname{div}(F_{t1,j}))|^{2} + |(\frac{1}{\epsilon}g_{3}, \operatorname{div}(\delta F_{t1,j}))|^{2}] & \text{(Young's lemma)} \\ &\lesssim 2 \sum_{j} \int_{0}^{L} \beta_{j}^{-4} |(\frac{1}{\epsilon}g_{3}, \operatorname{div}(F_{t1,j}))|^{2} & \text{(linearization)} \\ &\lesssim 0 & \text{(div } F_{t1,j} = 0) \end{split}$$

Estimation of α_j - Cont.

Term 3: $i\omega(e_z \times f_t, G_{t1,j})$ contributing to r_2 . We follow exactly the same reasoning as for Term 1, sparing a factor β_j^{-2} . Term 4: $(f_3, \operatorname{div} G_{t1,j})$ contributing to r_2 .

$$\begin{split} \sum_{j} \int_{0}^{L} |\alpha_{j}|^{2} \, dz &\lesssim \sum_{j} \int_{0}^{L} \beta_{j}^{-2} |(f_{3}, \operatorname{div}(G_{t1,j} + \delta G_{t1,j}))|^{2} & \text{(Lemma 7 (ii)}_{1}) \\ &\leq 2 \sum_{j} \int_{0}^{L} \beta_{j}^{-2} [|(f_{3}, \operatorname{div}(G_{t1,j}))|^{2} + |(f_{3}, \operatorname{div}(\delta G_{t1,j}))|^{2}] & \text{(Young's lemma)} \\ &\lesssim 2 \sum_{j} \int_{0}^{L} \beta_{j}^{-2} |(f_{3}, \operatorname{div}(G_{t1,j}))|^{2} & \text{(linearization)} \\ &\lesssim 2 \sum_{j} \int_{0}^{L} \beta_{j}^{-2} \mu_{j} |(f_{3}, \mu_{j}^{1/2} \psi_{j})|^{2} & (\beta_{j}^{-2} \mu_{j} \approx O(1)) \\ &\lesssim 2 \sum_{j} |(f_{3}, \mu_{j}^{1/2} \psi_{j})|^{2} = 2 ||f_{3}||^{2} \,. \end{split}$$

Estimation of $\operatorname{curl} E_t$. We need to estimate:

$$\sum_{i} \int_{0}^{L} \underbrace{(\mu_{i} + \|\delta\epsilon\|_{L^{\infty}(D)})}_{\sim \beta_{i}^{2}} |\alpha_{i}|^{2} dz.$$

We follow exactly the same strategy as above. In all cases, we can accommodate the extra β_i^2 factor.

Final Result

We follow the same reasoning for the remaining coefficients δ_j , β_j , η_j to arrive at our final result.

Theorem

Let $\Omega = D \times (0, L)$. Assume that the dielectric constant ϵ is a sufficiently^a small perturbation of a constant. There exists then a constant C > 0, independent of data f, g and solution E, H such that

$$\|E\|_{L^2(\Omega)}^2 + \|H\|_{L^2(\Omega)}^2 \leq C L^2 \left(\|f\|_{L^2(\Omega)}^2 + \|g\|_{L^2(\Omega)}^2
ight) \,.$$

^aSo that the perturbation technique based on linearization is justified.

Thank you for your attention !

References

- M. Melenk, L. Demkowicz, and S. Henneking, "Stability analysis for electromagnetic waveguides. Part 1: Acoustic and homogeneous electromagnetic waveguides.," Oden Institute, The University of Texas at Austin, Austin, TX 78712, Tech. Rep. 2, 2023.
- (2) L. Demkowicz, M. Melenk, S. Henneking, and J. Badger, "Stability analysis for acoustic and electromagnetic waveguides. Part 2: Non-homogeneous waveguides.," Oden Institute, The University of Texas at Austin, Austin, TX 78712, Tech. Rep. 3, 2023.