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Part 1: 

Motivation
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Motivation

Classical finite element analysis requires the generation of a high quality body-
fitted finite element mesh which can require upwards of 80% of the time 
required in a design-through-analysis cycle:

7Figure courtesy of Sandia National Laboratories



Motivation

This is especially true for geometrically complex, multi-material, multi-physics 
problems:

8

3D scan of a bone

Fiber composite

Heat exchanger
(geometry courtesy of 

nTopology)



Motivation

Isogeometric analysis directly employs the basis employed in CAD for CAE and 
thus bypasses the need for the generation of a high quality body-fitted finite 
element mesh.  However, isogeometric analysis requires an explicit 
parameterization of the geometric domain, and thus it cannot be directly 
applied to trimmed CAD geometries:
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Motivation

Immersed finite element (and isogeometric) analysis is another approach that 
bypasses the need for the generation of a high quality body-fitted finite 
element mesh.  In this approach, basis functions defined on a non-body-fitted 
background mesh are instead used for CAE, so it can be directly applied to 
trimmed CAD geometries:

Schillinger, D., et al. "An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed 
boundary methods, and T-spline CAD surfaces." CMAME 249 (2012): 116-150. 10

Body-Fitted
Mesh

Non-Body-Fitted 
Mesh



Motivation

Immersed finite element analysis can also be applied to problems out of reach 
by both classical finite element analysis and isogeometric analysis, such as 
problems exhibiting a change in domain topology:

Kamensky, D., et al. "Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines." CMAME 
314 (2017): 408-472. 11



Motivation

Immersed finite element analysis can also be applied to problems out of reach 
by both classical finite element analysis and isogeometric analysis, such as 
problems exhibiting a change in domain topology:

Casquero, H.., et al. "The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics." 
JCP 425 (2021): 109872. 12



Motivation

Immersed finite element analysis is also an ideal technology for level set 
topology optimization as the geometric domain does need to be re-
parametrized or re-meshed at every design iteration:

1x

2x

3x

Noël, L., et al. "Adaptive level set topology optimization using hierarchical B-splines.”
 SAMO 62.4 (2020): 1669-1699. 13



Motivation

However, implementation of an immersed finite element analysis code is a 
challenging and time consuming task even for domain experts.  The primary 
challenge is numerical integration over cut cells:

Gunderman, D., K. Weiss, and J.A. Evans. "Spectral mesh-free quadrature for planar regions bounded by rational parametric curves." CAD 130 
(2021): 102944. 14



Motivation

Several different strategies have been introduced for this integration, each 
giving rise to a specialized quadrature rule for every single cut cell:

Quadrature Over a 
Quadtree/Octree Mesh

Quadrature Over a Body-
Fitted Tessellation

Green’s Theorem-Based
Quadrature
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Motivation

The purpose of the EXHUME project is to ease the burden of implementing an 
immersed finite element code.

In particular, the EXHUME project enables one to transform classical finite 
element codes into immersed finite element codes with minimal 
implementation effort.

The key technology underlying the EXHUME project is the concept of 
interpolation-based immersed finite element analysis.
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Part 2: 

Interpolation-Based Immersed Finite Element Analysis
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Defining the Method for a Model Problem

• Use Poisson equation as model PDE for exposition

• Strong form:  Find solution 𝑢 s.t.

 −Δ𝑢 = 𝑓     in   Ω

       𝑢 = 𝑔    on  𝜕Ω

• Weak form:  Find 𝑢 ∈ 𝐻�
� Ω + ℓ� s.t. ∀𝑣 ∈ 𝐻�

� Ω

 ∫
�

∇𝑢 ⋅ ∇𝑣 𝑑Ω = ∫
�

𝑓𝑣 𝑑Ω

• Discrete problem:  Find 𝑢� ∈ 𝑉� ⊂ 𝐻� Ω  s.t. ∀𝑣� ∈ 𝑉�

  ∫
�

∇𝑢� ⋅ ∇𝑣�  𝑑Ω − ∫
��

∇𝑢� ⋅ 𝒏 𝑣�  𝑑Γ

  ∓ ∫
��

∇𝑣� ⋅ 𝒏 𝑢� − 𝑔 𝑑Γ

  + ∫
��

�

�
𝑢� − 𝑔 𝑣�  𝑑Γ = ∫

�
𝑓𝑣�  𝑑Ω

Ω 𝜕Ω

−Δ𝑢 = 𝑓

𝑢 = 𝑔 

Using Nitsche’s method for 
weak enforcement of Dirichlet 

BCs
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Quadrature-Based Immersed Methods

Define 𝑉� on background mesh

Can use standard element 
Gaussian quadrature on cells 

contained in Ω

Challenge:  Integrate accurately over 
intersections of domain with cut cells

Solution:  Tesselate mesh-
cell intersections with 
quadrature elements, 
forming a foreground 
mesh

Can use standard Gaussian quadrature on 
elements of foreground mesh

𝜔�

Ω�



In Mathematical Notation:

Implementation problem:  Quadrature defined on foreground mesh, but basis functions defined on 
background mesh; cannot use standard FEM data structures and assembly algorithms!

Discrete problem is:  Find 𝑢� ∈ 𝑉�  s.t. ∀𝑣� ∈ 𝑉�,

𝑎� 𝑢� , 𝑣� = 𝐿� 𝑣�  ,

where 

𝑎� 𝑢, 𝑣 ≔ ∑���
��� ∫

��
∇𝑢 ⋅ ∇𝑣 𝑑Ω + ∑���

��� ∫
���∩��

−𝑣∇𝑢 ⋅ 𝒏 ∓ 𝑢∇𝑣 ⋅ 𝒏 +
�

�
𝑢𝑣 𝑑Γ , 

𝐿� 𝑣 ≔ ∑���
��� ∫

��
𝑓𝑣 𝑑Ω + ∑���

��� ∫
���∩��

∓𝑔∇𝑣 ⋅ 𝒏 +
�

�
𝑔𝑣 𝑑Γ ,

{𝜔�}���
���  are elements of the foreground mesh, and the discrete space is

𝑉� ≔ span{𝑁�|�}���
�   

with basis functions {𝑁�}���
�  defined on the background mesh.

20



Interpolation-Based Immersed Methods

Want:  Basis functions used for assembly defined on the same mesh as the quadrature rule.

Approach:  

• Define nodal basis on foreground mesh:  {𝜙�}���
�  with nodes {𝒙�}���

�

• Interpolate background basis functions in foreground space:  �𝑁� = ∑���
� 𝑁� 𝒙� 𝜙�

• Use span of interpolated background basis functions as solution space:  𝑉� = span{�𝑁�}���
�

Equivalent to quadrature-based method if:
• Foreground mesh fitted to background mesh
• Foreground basis can exactly represent all monomials in background basis functions

Possible approximations (new numerical methods):
• Reduced polynomial degree of foreground basis ⇒ More efficient assembly
• Background-unfitted foreground mesh ⇒ More flexibility in mesh generation

21



Interpolated Basis Functions

Domain in red, 
background mesh in black

“Background-fitted” 
foreground mesh

�𝑁� for piecewise-linear Lagrange 
foreground basis {𝜙�}

𝐶� quadratic B-spline 
background basis function 𝑁�

�𝑁� for piecewise-quadratic 
Lagrange foreground basis {𝜙�}

“Background-unfitted” 
foreground mesh

�𝑁� for piecewise-linear Lagrange 
foreground basis {𝜙�}

�𝑁� for piecewise-quadratic 
Lagrange foreground basis {𝜙�}
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Implementation Using an Existing FE Code

Matrix notation for discrete problem we want to solve:

𝐊𝐝 = 𝐅 , where 𝐾�� = 𝑎�
�𝑁� , �𝑁�  and 𝐹� = 𝐿�

�𝑁�  .

What is easy to assemble over the foreground mesh with an existing FE code:

𝐴�� = 𝑎� 𝜙� , 𝜙�   and  𝐵� = 𝐿� 𝜙�  .

Transformation to desired problem, using standard linear algebra routines (e.g., backend library):

𝐊 = 𝐌�𝐀𝐌  and  𝐅 = 𝐌�𝐁  ,
where 𝑀�� = 𝑁�(𝒙�) .

Only non-standard assumption:  Existing FE code can implement 𝑎�  and 𝐿�  for Nitsche’s method.

23



Interpolation Error Bound

For background-fitted foreground meshes, and under various technical assumptions, we have the 
interpolation bound

inf
�� ∈ ����{���}

𝑢 − 𝑣�
��(�)

≤ 𝐶ℎ
�� 𝑢

�
����(�)

where �𝑘 = min{𝑘, 𝜅} is the minimum degree of polynomial completeness between the background (𝑘) and 
foreground (𝜅) function spaces.

Note:  Background space may have some monomials with degree ≥ 𝑘; these do not need to be captured in 
foreground space for optimal-order interpolation error.

Numerical results suggest that this holds under significantly more general conditions.

24



Results:  2D Poisson with Background-Fitted Foreground Mesh

Convergence testing using a 
manufactured solution to 

Poisson’s equation

Convergence at optimal rates
25



Results:  3D Poisson with Background-Fitted Foreground Mesh

Convergence testing using a 
manufactured solution to 

Poisson’s equation

Convergence at optimal rates
26



Still converging at optimal rates, but outside the scope of our 
initial interpolation error analysis.

27

Results:  2D Poisson with Background-Unfitted Foreground Mesh



Results:  Biharmonic (non-conforming!)

Note:  Quadratic Lagrange 
interpolation of a 𝐶� quadratic B-

spline function is not exactly 𝐶�, and 
thus not ∈ 𝐻�(Ω) !

Still obtain convergence rates expected from theory for 
conforming formulation.

28



Interpolation-Based Isogeometric Analysis of Navier-Stokes Flow 
Using Equal-Order Elements and VMS Stabilization

29
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y



Interpolation-Based Isogeometric Analysis of Navier-Stokes Flow 
Using Equal-Order Elements and VMS Stabilization

30

BG Mesh with Exact Solution  
(Tensor Product Spline Space)

BG Mesh with 
Overlaying FG Mesh

FG Mesh



Interpolation-Based Isogeometric Analysis of Navier-Stokes Flow 
Using Equal-Order Elements and VMS Stabilization
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Image-Based Analysis for Composite Materials

Linear elastic analysis of alumina particles 
embedded in epoxy from Micro-CT image



Image-Based Analysis for Composite Materials

Immersed FEA Body-Fitted FEA



Image-Based Analysis for Composite Materials

Immersed FEA Body-Fitted FEA
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Application to Thermo-Elasticity: Heating of Plate with Inclusion

Subdomain A: 
 𝐸 = 1.0

 𝜈 = 0.3
 𝛼 = 1.0 × 10��

Subdomain B: 
 𝐸 = 1.0

 𝜈 = 0.3
 𝛼 = 10.0 × 10��

𝒖 = 𝟎
 𝑇 = 0
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Application to Thermo-Elasticity: Heating of Plate with Inclusion

Interpolation-Based Immersed 
Isogeometric Analysis 𝑘� = 𝑘� = 2

Quadrature-Based Immersed 
Isogeometric Analysis 𝑘� = 𝑘� = 2



Interpolation-Based Trimmed 
Isogeometric Shell Analysis

Background-fitted foreground mesh Background-unfitted foreground mesh 

37



Background-fitted foreground mesh Background-unfitted foreground mesh 

Interpolation-Based Trimmed 
Isogeometric Shell Analysis
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Interpolation-Based Trimmed 
Isogeometric Shell Analysis
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Part 3: 

Transforming Classical Codes Into Immersed Codes with EXHUME
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Retrofitting Classical Finite Element Codes for
Interpolation-Based Immersed Analysis

Our software library EXHUME creates foreground meshes, extraction operators, 
and connectivity arrays outside of the confines of any particular finite element 
code:

Background 
Discretization
and Geometry
Representation

Extraction Data 
Structures

for Unfitted FEA

Unfitted FE Solution

Retrofitted
Finite Element 

Code
EXHUME

XML VTK File

Paraview

As demonstrated later, we have leveraged these extraction data structures to 
transform the popular open-source classical finite element code FEniCS into an 
interpolation-based immersed finite element code.

41



42

Hierarchical 

Background Mesh 

Generator 

(HMR)

Geometry Engine 

(GEN)
Handles Level-Set Fields 

(LSFs)

Mesh for LSF discretization

Geometry based refinement

Immersed FE Tool Kit (XTK)
• Foreground mesh generation (decomposition)

• Computes extraction operators

Grid for decomposition
Level-Set 

values Intersection 
nodes

Finite Element Module (FEM)
• Assembly

• Solve

• Sensitivity analysis 

• BG-FG Mesh Pair

• Extraction Operators

LSF 
derivatives

Optimization Engine 

(OPT)
Optimization algorithms

New Design

Design 
sensitivities

The MORIS Software Library for XFEM-Based Level Set 
Topology Optimization
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Hierarchical 

Background Mesh 

Generator 

(HMR)

Geometry Engine 

(GEN)
Handles Level-Set Fields 

(LSFs)

Geometry based refinement

Immersed FE Tool Kit (XTK)
• Foreground mesh generation (decomposition)

• Computes extraction operators

Grid for decomposition
Level-Set 

values

• BG-FG Mesh Pair

• Extraction Operators

XTK output

Define Geometry
Define Background 

Mesh & Basis

• BG-FG Mesh Pair

• Extraction Operators

The MORIS Software Library for XFEM-Based Level Set 
Topology Optimization
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Hierarchical Background 

Mesh Generator (HMR)
Geometry Engine (GEN)

Immersed FE Tool Kit (XTK)

• Request to triangulate non-cut elements

• Request order elevation 

Define grid for 
decomposition

Define LSFs using:
• User defined LSFs 𝜙(𝐱) 
• Pre-defined geometries 
• 2D/3D image files

• STL files (with closed surface)

Request meshes and grids:

• Define Grids: 
tensor-grid dimensions & refinement

• Define BG Meshes: 
use grids & define a basis

Outputs:

• Foreground mesh in EXODUS format

• Global or elemental extraction operators

The EXHUME Software Library



Part 4: 

Enabling Interpolation-Based Immersed FEA in FEniCS
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Interpolation-based immersed finite element analysis and applications 

FFC
Optimized 
C++ code

……. 

UFL (Python)

a = dot(grad(u),
     grad(v))*dx

Variational forms
 𝑎 𝑢, 𝑣 =

∫ ∇𝑢 ⋅ ∇𝑣 𝑑𝑥

System of 
algebraic 
equations 

𝐾�� = 𝑎( �𝑁� , �𝑁�)

DOLFIN

• FEniCS is an opensource software toolchain (UFL, FFC, DOLFIN,…) 
that automates the compilation of FE code 

• Assembles a system of algebraic equations from the variational 
forms and discretizations, for numerous finite elements

46

Leveraging Code Generation: The FEniCS Project



Interpolation-based immersed finite element analysis and applications 

Solve       
𝐊𝐝 = 𝐅  

Compute 
𝐊 = 𝐌𝐓𝐀𝐌 

and           
𝐅 = 𝐌𝐓𝐁

Project solution 
onto foreground 

basis for 
visualization and 

analysis: 
 𝐮 = 𝐌𝐓𝐝  

Assemble 𝐴�� =

𝑎(𝜙� , 𝜙�) and 

𝐵� = 𝐿(𝜙�) 
using 

foreground 
basis 𝜙�

Generate foreground boundary-fitted 
mesh, and its extraction operator 

𝑀�� = 𝑁� 𝒙�  

47

Interpolation-Based Immersed Finite Element Analysis Workflow



Interpolation-based immersed finite element analysis and applications 

FEniCS: Solving the Poisson Problem with Classical FEA

Load mesh and 
define subdomains

Define classic FE  
function space 

Define variational 
problem 

48



Interpolation-based immersed finite element analysis and applications 

Enforce boundary 
conditions 

Linear solve

49

FEniCS: Solving the Poisson Problem with Classical FEA



Interpolation-based immersed finite element analysis and applications 

Transform matrix 
system

Linear solve

Enforce boundary 
conditions with 
Nitsche’s method

Load EXHUME 
module

50

FEniCS: Solving the Poisson Problem with Interpolation-Based 
Immersed FEA



Part 5: 

Current Status and Future Plans
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Capability #1: Support for Locally Refined Mixed Foreground Meshes of 
Tris/Quads (in 2D) and Tets/Hexes (in 3D) with Hanging Nodes

Quad Elements Far From 
Immersed Boundaries and 

Interfaces

Tri Elements Near Immersed 
Boundaries and Interfaces

Hanging Nodes



Capability #2: Support for Locally Refined Background Discretizations
of Hierarchical B-splines

Hierarchical basis enables refinement

Basis function is sum of 
scaled and translated 

versions of itself
• Repeated refinement where needed

geometry courtesy 
of nTopology

Truncation leads to:

• Reduced support size

• Retain partition of unity



Capability #3: Support for Enriched Background Discretizations
for Multi-Material Problems

𝛺�

Foreground mesh 
with local 

refinement 

Enriched interpolated 
background function 

for 𝛺�

Enriched interpolated 
background basis 
function for 𝛺�

Background basis 
function before 

Heaviside enrichment

𝛺�



Capability #4: Support for Separate Background Discretizations
for Multi-Physics Problems

Thermo-elastic multi-material problem 
subject to a spatially varying heat load

Background mesh for displacement field

Background mesh for temperature field



Capability #5: Basis Stabilization in Presence of Small Cut Cells

Burman, E., et al. ”Extension operators for trimmed spline spaces." CMAME 403 (2023): 115707.

𝜅~𝜂
� �����

�
�  where 𝜂 = min

�

|Ω�
��|

|Ω�|

Solution: Remove basis functions with small support and 
modify remaining basis functions to maintain:

    (i) polynomial completeness 

    (ii) partition of unity

Issue: Stability and condition number 
deteriorate in the presence of small cut cells

Step 1: For each bad element, 
extend basis functions from 
neighboring good element

Step 2: Project back into 
original spline space

The end-user does not need to 
modify their analysis code or 

workflow to include stabilization – 
it only affects the extraction 
operators and connectivity!



Planned Capabilities

Support for foreground meshes of curved integration elements is currently 
being implemented.

Support for Boundary Representation (B-Rep) geometric descriptions is 
currently being implemented.

We are also equipping EXHUME with the capability to generate and output cut-
cell quadrature rules. 



Part 6: 

Can Interpolation Be Used To Enable Other Capabilities in FEniCS?
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Interpolation-based immersed finite element analysis and applications 

𝛺
𝛺

Classic Finite Element (FE):
Domain is discretized by a 
boundary fitted mesh

Meshfree methods:

Domain is discretized by a point 
cloud 

59

A (brief) introduction to meshfree 
methods



Interpolation-based immersed finite element analysis and applications 

Domain is discretized by a 
point cloud 

60

Meshfree methods: the reproducing kernel particle method 
(RKPM)

Ψ�(𝒙) = 𝐶 𝒙; 𝒙 − 𝒙𝑰 𝜙�(𝒙 − 𝒙�)
Shape 

Function
Kernel 

Function
Correction 
Function

𝐼 𝐶 𝒙; 𝒙 − 𝒙𝑰 = 𝑯� 0 𝑴�� 𝒙 𝑯(𝒙 − 𝒙�)

𝑯 𝒙 = [1, 𝑥, 𝑦, 𝑥�, 𝑥𝑦, 𝑦�, … 𝑥𝑦���, 𝑦�]

𝑴 𝒙 =  �

� 

𝑯(𝒙 − 𝒙�)𝑯�(𝒙 − 𝒙�)𝜙�(𝒙 − 𝒙�)

Basis Vector:

Moment Matrix: 

Typically B-splines

Chen, J. S., Pan, C., Wu, C. T., and Liu, W. K., "Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures," Computer 
Methods in Applied Mechanics and Engineering, Vol. 139, pp. 195-227, 1996.

𝛺



Interpolation-based immersed finite element analysis and applications 

Linear RKPM shape 
function Ψ�(𝒙)

Interpolated-RKPM: introducing a foreground mesh

61

RKPM point cloud
Foreground integration 

mesh, with Lagrange 
polynomial basis 𝑁� ��� 

�

With extraction 
operator 

�Ψ� 𝒙 = �

��� 

�

𝑀�� 𝑁� 𝒙Each shape function can be interpolated: 𝑀�� = Ψ� 𝒙�



Interpolation-based immersed finite element analysis and applications 

Linear shape 
function

Ψ�(𝒙)

Interpolated shape 
function

�Ψ� 𝒙 = 𝑴��𝑁� 𝒙

Derivative of 
shape function 

���

��

Interpolated derivative 

𝜕 �Ψ�

𝜕𝑥
 = 𝑴��

𝜕𝑁�

𝜕𝑥

Int-RKPM shape functions: equal element size and polynomial 
order 

62



Interpolation-based immersed finite element analysis and applications 

Linear shape 
function

Ψ�(𝒙)

Interpolated shape 
function

�Ψ� 𝒙 = 𝑴��𝑁� 𝒙

Derivative of 
shape function 

���

��

Interpolated derivative 

𝜕 �Ψ�

𝜕𝑥
 = 𝑴��

𝜕𝑁�

𝜕𝑥

63

Int-RKPM shape functions: foreground h-refinement 



Interpolation-based immersed finite element analysis and applications 

Linear shape 
function

Ψ�(𝒙)

Interpolated shape 
function

�Ψ� 𝒙 = 𝑴��𝑁� 𝒙

Derivative of 
shape function 

���

��

Interpolated derivative 

𝜕 �Ψ�

𝜕𝑥
 = 𝑴��

𝜕𝑁�

𝜕𝑥

Int-RKPM shape functions: foreground p-refinement 
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Interpolation-based immersed finite element analysis and applications 

Int-RKPM analysis of multi-material problems with enrichment 
and local refinement

65

Linear-elasticity problem with a 
circular inclusion and induced 
eigenstrain



Part 7: 

Useful Links

66



Useful Links

• EXHUME (MORIS) software library

https://github.com/kkmaute/moris

• FEniCS implementation of interpolation-based immersed analysis:

https://github.com/jefromm/interpolation-based-immersed-fea

• First paper on interpolation-based immersed analysis:

J.E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J.A. Evans, and D. Kamensky. 
"Interpolation-based immersed finite element and isogeometric analysis." 
CMAME 405 (2023): 115890.

https://doi.org/10.1016/j.cma.2023.115890

MORIS

FEniCS 
Implementation

https://github.com/kkmaute/moris
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://github.com/jefromm/interpolation-based-immersed-fea
https://doi.org/10.1016/j.cma.2023.115890


Useful Links

• Slides and videos from Fall 2023 EXHUME Collaborators Workshop



Thank you!
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