
Designing conservative and accurately dissipative numerical integrators in time

Patrick E. Farrell Boris Andrews

University of Oxford

July 30 2024

1 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Symplecticity

The differential equation preserves the symplectic 2-form.

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Reversibility

Negating the initial velocity only inverts the direction of motion.

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Conservation

The equation preserves invariants, like energy or angular momentum.

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Dissipation

The equation dissipates certain quantities like entropy at a known, definite rate.

2 / 48

Introduction

Structure preservation means different things in different contexts.

Here are four properties an initial value problem might have:

symplecticity reversibility

conservation dissipation
1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

This talk

We aim to preserve conservation laws and dissipation inequalities on discretisation . . .

. . . in a symmetric way, without projections onto manifolds or Lagrange multipliers.

2 / 48

Examples

Section 2

Examples

3 / 48

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

4 / 48

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

4 / 48

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

LaBudde–Greenspan:

✗ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

4 / 48

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

Our discretisation:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation (LRL)

4 / 48

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

5 / 48

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✗ Kovalevskaya invariant

5 / 48

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Our discretisation:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✓ Kovalevskaya invariant

5 / 48

Examples

This approach extends to more complicated problems. The compressible Navier–Stokes
equations conserve mass and energy:

0 0.1 0.2 0.3 0.4 0.5
Time

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

M
as

s

Mass =
R
+
;

0 0.1 0.2 0.3 0.4 0.5
Time

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

E
n
er

g
y

Internal energy =
R
+

3
2;3

Kinetic energy =
R
+

1
2;kuk2

6 / 48

How it works

Section 3

How it works

7 / 48

How it works

Our approach is built on finite elements in time (FET).

(FET does not require solving for all timesteps at once.)

To understand FET, let’s first study collocation Runge–Kutta schemes for the ODE

u̇ = f(u).

8 / 48

How it works

Our approach is built on finite elements in time (FET).

(FET does not require solving for all timesteps at once.)

To understand FET, let’s first study collocation Runge–Kutta schemes for the ODE

u̇ = f(u).

8 / 48

How it works

Our approach is built on finite elements in time (FET).

(FET does not require solving for all timesteps at once.)

To understand FET, let’s first study collocation Runge–Kutta schemes for the ODE

u̇ = f(u).

8 / 48

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Collocation Runge–Kutta test conditions

Demand that
u̇ = f(u)

at s test points t = tn + c1∆t, tn + c2∆t, . . . , tn + cs∆t.

9 / 48

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Collocation Runge–Kutta test conditions

Demand that
u̇ = f(u)

at s test points t = tn + c1∆t, tn + c2∆t, . . . , tn + cs∆t.

9 / 48

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Collocation Runge–Kutta test conditions

Demand that
u̇ = f(u)

at s test points t = tn + c1∆t, tn + c2∆t, . . . , tn + cs∆t.

9 / 48

How it works

We can rewrite the collocation Runge–Kutta test conditions:

Collocation Runge–Kutta test conditions, rephrased (I)

Demand that∫ tn+1

tn

u̇δ (t− (tn + ci∆t)) dt =

∫ tn+1

tn

f(u)δ (t− (tn + ci∆t)) dt,

for i = 1, . . . , s.

Or we could write them as:

Collocation Runge–Kutta test conditions, rephrased (II)

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ span(δc1 , . . . , δcs).

10 / 48

How it works

We can rewrite the collocation Runge–Kutta test conditions:

Collocation Runge–Kutta test conditions, rephrased (I)

Demand that∫ tn+1

tn

u̇δ (t− (tn + ci∆t)) dt =

∫ tn+1

tn

f(u)δ (t− (tn + ci∆t)) dt,

for i = 1, . . . , s.

Or we could write them as:

Collocation Runge–Kutta test conditions, rephrased (II)

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ span(δc1 , . . . , δcs).
10 / 48

How it works

Collocation Runge–Kutta test conditions, rephrased (II)

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ span(δc1 , . . . , δcs).

The natural FET scheme instead chooses another test set:

Continuous Petrov–Galerkin (cPG) test conditions

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ P s−1(tn, tn+1).

11 / 48

How it works

Collocation Runge–Kutta test conditions, rephrased (II)

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ span(δc1 , . . . , δcs).

The natural FET scheme instead chooses another test set:

Continuous Petrov–Galerkin (cPG) test conditions

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ P s−1(tn, tn+1).

11 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 48

How it works

Why is this variational viewpoint useful?

Dissipation inequalities

Dissipation inequalities naturally arise from variational statements:

0 ≤ J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each dissipation inequality has an

associated test function.

13 / 48

How it works

Why is this variational viewpoint useful?

Dissipation inequalities

Dissipation inequalities naturally arise from variational statements:

0 ≤ J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each dissipation inequality has an

associated test function.

13 / 48

How it works

Good news!

If J ′(u) is in our test set, our discrete scheme also conserves/dissipates J .

Bad news!

J ′(u) is basically never in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 48

How it works

Good news!

If J ′(u) is in our test set, our discrete scheme also conserves/dissipates J .

Bad news!

J ′(u) is basically never in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 48

How it works

Good news!

If J ′(u) is in our test set, our discrete scheme also conserves/dissipates J .

Bad news!

J ′(u) is basically never in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 48

How it works

Basic outline:

A. Define the base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation.

15 / 48

How it works

Basic outline:

A. Define the base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation.

15 / 48

Navier–Stokes equations

Section 4

Navier–Stokes equations

16 / 48

Navier–Stokes equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.

17 / 48

Navier–Stokes equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.

17 / 48

Navier–Stokes equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.
17 / 48

Navier–Stokes equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998).

18 / 48

Navier–Stokes equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998).

18 / 48

Navier–Stokes equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998). 18 / 48

Navier–Stokes equations

At the continuous level, we derive a dissipation law for the energy by testing our weak
formulation with v = u, the velocity itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 48

Navier–Stokes equations

At the continuous level, we derive a dissipation law for the energy by testing our weak
formulation with v = u, the velocity itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 48

Navier–Stokes equations

At the continuous level, we derive a dissipation law for the energy by testing our weak
formulation with v = u, the velocity itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 48

Navier–Stokes equations

Similarly, we derive a law for the helicity by testing our weak formulation with v = ∇× u, the
vorticity:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

B. Identify test functions

To replicate these laws discretely, we need approximations of

u and ∇× u

in our discrete test space Ẋ.

20 / 48

Navier–Stokes equations

Similarly, we derive a law for the helicity by testing our weak formulation with v = ∇× u, the
vorticity:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

B. Identify test functions

To replicate these laws discretely, we need approximations of

u and ∇× u

in our discrete test space Ẋ.

20 / 48

Navier–Stokes equations

Similarly, we derive a law for the helicity by testing our weak formulation with v = ∇× u, the
vorticity:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

B. Identify test functions

To replicate these laws discretely, we need approximations of

u and ∇× u

in our discrete test space Ẋ.

20 / 48

Navier–Stokes equations

Similarly, we derive a law for the helicity by testing our weak formulation with v = ∇× u, the
vorticity:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

B. Identify test functions

To replicate these laws discretely, we need approximations of

u and ∇× u

in our discrete test space Ẋ.
20 / 48

Navier–Stokes equations

Our next step is to introduce variables approximating these associated test functions.

C. Introduce auxiliary variables

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

21 / 48

Navier–Stokes equations

Our next step is to introduce variables approximating these associated test functions.

C. Introduce auxiliary variables

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

21 / 48

Navier–Stokes equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w1 and w2.

D. Final time discretisation

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

22 / 48

Navier–Stokes equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w1 and w2.

D. Final time discretisation

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

22 / 48

Navier–Stokes equations

This allows us to replicate the energy and helicity laws discretely!

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

23 / 48

Navier–Stokes equations

This allows us to replicate the energy and helicity laws discretely!

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

23 / 48

Navier–Stokes equations

This allows us to replicate the energy and helicity laws discretely!

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

23 / 48

Navier–Stokes equations

This allows us to replicate the energy and helicity laws discretely!

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

23 / 48

Navier–Stokes equations

This allows us to replicate the energy and helicity laws discretely!

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

23 / 48

Navier–Stokes equations

Good news

The auxiliary velocity can be computed explicitly.

This analysis gives an arbitrary-order generalisation of

L. G. Rebholz. “An energy- and helicity-conserving finite element
scheme for the Navier–Stokes equations”. In: SIAM Journal on
Numerical Analysis 45.4 (2007), pp. 1622–1638. doi:
10.1137/060651227.

Leo Rebholz

24 / 48

https://doi.org/10.1137/060651227

Navier–Stokes equations

Good news

The auxiliary velocity can be computed explicitly.

This analysis gives an arbitrary-order generalisation of

L. G. Rebholz. “An energy- and helicity-conserving finite element
scheme for the Navier–Stokes equations”. In: SIAM Journal on
Numerical Analysis 45.4 (2007), pp. 1622–1638. doi:
10.1137/060651227.

Leo Rebholz

24 / 48

https://doi.org/10.1137/060651227

Navier–Stokes equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

there are four structures one might wish to preserve:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

25 / 48

Navier–Stokes equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

there are four structures one might wish to preserve:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

25 / 48

Navier–Stokes equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

there are four structures one might wish to preserve:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

25 / 48

Navier–Stokes equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

there are four structures one might wish to preserve:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

25 / 48

Navier–Stokes equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

there are four structures one might wish to preserve:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

25 / 48

Navier–Stokes equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation

26 / 48

Navier–Stokes equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation

26 / 48

Navier–Stokes equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation

26 / 48

Navier–Stokes equations

The associated test function for mass conservation is

ρ̃ = 1, ũ = 0, θ̃ = 0,

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

t

m
as
s

27 / 48

Navier–Stokes equations

The associated test function for mass conservation is

ρ̃ = 1, ũ = 0, θ̃ = 0,

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

t

m
a
ss

27 / 48

Navier–Stokes equations

The associated test function for energy conservation is

ρ̃ = 0, ũ = u, θ̃ = 1.

0 0.1 0.2
0

1

2

3

4

t

en
er
gy

total energy
internal energy

28 / 48

Navier–Stokes equations

The associated test function for energy conservation is

ρ̃ = 0, ũ = u, θ̃ = 1.

0 0.1 0.2
0

1

2

3

4

t

en
er
g
y

total energy
internal energy

28 / 48

Navier–Stokes equations

The associated test function for entropy dissipation is

ρ̃ = g, ũ = 0, θ̃ = θ−1.

0 0.1 0.2

−2.5

−2

−1.5

−1

t

en
tr
op

y

29 / 48

Navier–Stokes equations

The associated test function for entropy dissipation is

ρ̃ = g, ũ = 0, θ̃ = θ−1.

0 0.1 0.2

−2.5

−2

−1.5

−1

t

en
tr
o
p
y

29 / 48

The Kepler problem

Section 7

The Kepler problem

30 / 48

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

31 / 48

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

31 / 48

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

31 / 48

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

31 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

32 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

32 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

32 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

32 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

32 / 48

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.
32 / 48

The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation

Find x ∈ X := {y ∈ P s([tn, tn+1],R4) : y(tn) = xn} such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇H(x) dt

for all y ∈ Ẋ := P s−1([tn, tn+1],R4).

Setting s = 1 and approximating the integrals with a one-point Gauss–Legendre quadrature
rule yields the familiar implicit midpoint scheme.

33 / 48

The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation

Find x ∈ X := {y ∈ P s([tn, tn+1],R4) : y(tn) = xn} such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇H(x) dt

for all y ∈ Ẋ := P s−1([tn, tn+1],R4).

Setting s = 1 and approximating the integrals with a one-point Gauss–Legendre quadrature
rule yields the familiar implicit midpoint scheme.

33 / 48

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

Carl Friedrich Gauss

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

34 / 48

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

35 / 48

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

35 / 48

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

35 / 48

The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x ∈ X such that ∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤BP[∇H(x)] dt

for all y ∈ Ẋ.

This is an alternative derivation of the energy-preserving scheme of Cohen & Hairer (2011)
(when certain quadrature rules are used).

36 / 48

The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x ∈ X such that ∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤BP[∇H(x)] dt

for all y ∈ Ẋ.

This is an alternative derivation of the energy-preserving scheme of Cohen & Hairer (2011)
(when certain quadrature rules are used).

36 / 48

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

David Cohen Ernst Hairer

Cohen & Hairer (2011):

✗ symplecticity

✗ angular momentum

✓ energy

✗ orientation (LRL)

37 / 48

The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):

▶ compute approximate ∇̃A1, ∇̃A2 ∈ Ẋ;
▶ modify the right-hand side.

We need to modify the right-hand side so that

∇̃Aj(B + δB)∇̃H = 0, j = 1, 2,

where δB is a O(δts+1) skew-symmetric perturbation.

We compute δB by minimising its Frobenius norm subject to skew-symmetry and the
orthogonality above. It requires solving an independent 2× 2 linear system at each quadrature
point.

38 / 48

The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):

▶ compute approximate ∇̃A1, ∇̃A2 ∈ Ẋ;
▶ modify the right-hand side.

We need to modify the right-hand side so that

∇̃Aj(B + δB)∇̃H = 0, j = 1, 2,

where δB is a O(δts+1) skew-symmetric perturbation.

We compute δB by minimising its Frobenius norm subject to skew-symmetry and the
orthogonality above. It requires solving an independent 2× 2 linear system at each quadrature
point.

38 / 48

The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):

▶ compute approximate ∇̃A1, ∇̃A2 ∈ Ẋ;
▶ modify the right-hand side.

We need to modify the right-hand side so that

∇̃Aj(B + δB)∇̃H = 0, j = 1, 2,

where δB is a O(δts+1) skew-symmetric perturbation.

We compute δB by minimising its Frobenius norm subject to skew-symmetry and the
orthogonality above. It requires solving an independent 2× 2 linear system at each quadrature
point.

38 / 48

The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, ∇̃H, (∇̃A1, ∇̃A2)) ∈ X× Ẋ× Ẋ2 such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤ (B + δB) ∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt∫ tn+1

tn

y⊤
2 ∇̃A1 dt =

∫ tn+1

tn

y⊤
2 ∇A1 dt∫ tn+1

tn

y⊤
3 ∇̃A2 dt =

∫ tn+1

tn

y⊤
3 ∇A2 dt

for all (y,y1, (y2,y3)) ∈ Ẋ× Ẋ× Ẋ2.

Again, this can be rewritten purely as a problem in x.

39 / 48

The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, ∇̃H, (∇̃A1, ∇̃A2)) ∈ X× Ẋ× Ẋ2 such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤ (B + δB) ∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt∫ tn+1

tn

y⊤
2 ∇̃A1 dt =

∫ tn+1

tn

y⊤
2 ∇A1 dt∫ tn+1

tn

y⊤
3 ∇̃A2 dt =

∫ tn+1

tn

y⊤
3 ∇A2 dt

for all (y,y1, (y2,y3)) ∈ Ẋ× Ẋ× Ẋ2.

Again, this can be rewritten purely as a problem in x.
39 / 48

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

Our scheme:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation (LRL)

40 / 48

Hamiltonian PDE

Section 8

Hamiltonian PDE

41 / 48

Hamiltonian PDE

The Benjamin–Bona–Mahony equation

ut + ux + uux − uxxt = 0, u(−50) = u(50),

has a Hamiltonian structure:(
id− ∂2

x

)
u̇ = −∂xH

′(u),

with Hamiltonian

H(u) =

∫
Ω

1

2
u2 +

1

6
u3 dx.

The equation has exactly two other invariants:

I1(u) =

∫
Ω
u dx,

I2(u) =

∫
Ω
u2 + u2x dx.

T. Brooke Benjamin

Jerry Bona

John Joseph Mahony

42 / 48

Hamiltonian PDE

The Benjamin–Bona–Mahony equation

ut + ux + uux − uxxt = 0, u(−50) = u(50),

has a Hamiltonian structure:(
id− ∂2

x

)
u̇ = −∂xH

′(u),

with Hamiltonian

H(u) =

∫
Ω

1

2
u2 +

1

6
u3 dx.

The equation has exactly two other invariants:

I1(u) =

∫
Ω
u dx,

I2(u) =

∫
Ω
u2 + u2x dx.

T. Brooke Benjamin

Jerry Bona

John Joseph Mahony

42 / 48

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

43 / 48

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

43 / 48

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

43 / 48

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

43 / 48

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

43 / 48

Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is

w1 ≈ M−∗[H ′(u)],

which is not obvious (to me).

Energy-conserving discretisation

Find (u,w1) ∈ X× Ẋ such that∫ tn+1

tn

vM [u̇] dt =

∫ tn+1

tn

vBM∗[w1] dt∫ tn+1

tn

w1M [v1] dt =

∫ tn+1

tn

H ′[u]v1 dt

for all (v, v1) ∈ Ẋ× Ẋ.

44 / 48

Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is

w1 ≈ M−∗[H ′(u)],

which is not obvious (to me).

Energy-conserving discretisation

Find (u,w1) ∈ X× Ẋ such that∫ tn+1

tn

vM [u̇] dt =

∫ tn+1

tn

vBM∗[w1] dt∫ tn+1

tn

w1M [v1] dt =

∫ tn+1

tn

H ′[u]v1 dt

for all (v, v1) ∈ Ẋ× Ẋ.

44 / 48

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed.

Simulation near t = 0.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

45 / 48

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed.

Simulation near t = 10000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

45 / 48

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed.

Simulation near t = 20000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

45 / 48

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed.

Simulation near t = 20000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

45 / 48

Hamiltonian PDE

The same soliton, again:

Simulation near t = 0.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

AV–CPG method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

46 / 48

Hamiltonian PDE

The same soliton, again:

Simulation near t = 10000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

AV–CPG method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

46 / 48

Hamiltonian PDE

The same soliton, again:

Simulation near t = 20000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

AV–CPG method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

46 / 48

Hamiltonian PDE

The same soliton, again:

Simulation near t = 20000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

AV–CPG method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

46 / 48

Conclusions

Section 9

Conclusions

47 / 48

Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.

Potential applications

magnetohydrodynamics, multicomponent flows, viscoelastic fluids, geometric PDE,
Hamiltonian systems, the Lorentz system, hyperelasticity, gradient flows

48 / 48

Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.

Potential applications

magnetohydrodynamics, multicomponent flows, viscoelastic fluids, geometric PDE,
Hamiltonian systems, the Lorentz system, hyperelasticity, gradient flows

48 / 48

	Introduction
	Examples
	How it works
	Navier–Stokes equations
	References
	References
	The Kepler problem
	Hamiltonian PDE
	Conclusions

