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Collaborations with Industry
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Summary
1- Introduction to DG & Horses3d

2- Multiphysics
 Wind turbines
 Turbulence

3. Machine Learning + CFD
 Mesh adaption 
 NN acceleration
 RL for automation
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DGSEM: nodal Discontinuous Galerkin Spectral Element Methods

• Compressible & Incompressible

• Entropy / Energy conserving schemes for stability 

• Local p-adaption / h-adaption (hanging nodes)

• Explicit / implicit time stepping

• Turbulence models: LES: SVV-Smag., Wale, Vreman & RANS: Spallart-Almaras

• Multi-physics: Multiphase, Immersed Boundaries, Shock etc.. 

HORSES3D     https://github.com/loganoz/horses3d
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E Ferrer, G Rubio, G Ntoukas, W Laskowski, O Mariño, S Colombo, A. Mateo-Gabín, F Manrique de Lara, D Huergo, J Manzanero, AM Rueda-Ramírez, DA Kopriva, E Valero, 

"HORSES3D: a high order discontinuous Galerkin solver for flow simulations and multi-physic applications", Computer Physics Communications, Vol 287, 2023

HORSES3D  
http://github.com/loganoz/horses3d

Mesh free

RANS
Acoustics

Shocks

LES

Multiphase
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 High order is generally defined for P ≥ 2

 High order allows h/p refinement 

 h-refinement offers constant decay of the error

 p-refinement offers exponential decay of the error

High order methods
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Internal mesh defined by 
the polynomial order p

external h-mesh.

High order methods
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p-ref

h-ref

High order methods (Poisson eq.)
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High order methods (Poisson eq.)
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2nd order Finite Volume Fluent

P=5 high order DG

- Ferrer, E. A high Order Discontinuous Galerkin—Fourier Incompressible 3D Navier-Stokes Solver with Rotating Sliding Meshes for Simulating Cross-Flow Turbines. DPhil University of Oxford, 2012

NACA0012 - Re=800 - Laminar flow
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P ↑ : Error decreases exponentially

P

Horses: accuracy
NACA0012 airfoil at Re = 105, M0 = 0.4 and AoA = 0◦
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P ↑ : Error decreases exponentially

P ↑ : Cost increases linearly

3D wings
P=1 – 5 

500k – 15M DoF

Horses: cost

P2 P3 P4 P5

P1
P2

P3

P1

P2

P3
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Horses: cost   porting to GPUs (openACC on NVIDIA A100) 
..underway..

Better perfomance
than 100 CPU cores
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Horses: cost   porting to GPUs (openACC on NVIDIA A100) 
..underway..

~0.07 s per iteration

LES simulation  1e8 time steps  81 days faster than 100 CPUs
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Horses & MFEM (Python interface): example 1 - thermal coupling

MFEM

Horses

D Huergo (Master Thesis): "High order methods for CFD simulation of a hypersonic flow on a reentry capsule", ETSIAE-UPM, July 2022
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Horses & MFEM (Python interface): example 2 – incompressible solver

Step 1

Step 2

Step 3

DG/FR-horses

DG/CG-MFEM

DG/CG-MFEM

A Hurtado-Mendoza (PhD): "An Incompressible High-Order Solver with Thermal Coupling ", ETSIAE-UPM & Numeca
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Summary

1- Introduction to DG & Horses3d

2- Multiphysics
 Wind turbines
 Turbulence

3. Machine Learning + CFD
 Mesh adaption 
 NN acceleration
 RL for automation
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High order wind turbines
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1-Actuator disc & BEM

2-Actuator line

3-Immersed boundaries

4-Sliding meshesCost

AccuracyLow High

4- E Ferrer and RHJ Willden, A high order Discontinuous Galerkin - Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes, Journal of Computational Physics, 2012
4- E Ferrer, RHJ Willden, Blade–wake interactions in cross-flow turbines, International Journal of Marine Energy, 2015
3- J Kou, A Hurtado-de-Mendoza, S Joshi, S Le Clainche, E Ferrer, Eigensolution analysis of immersed boundaries for high-order schemes, Journal of Computational Physics, 2022
3- J Kou, S Joshi, A Hurtado-de-Mendoza, K Puri, C Hirsch, E Ferrer, An Immersed boundary method for high–order flux reconstruction, Journal of Computational Physics, 2022
2 & 3- E Ferrer, S Colombo, O Marino, “Aeroacoustic predictions of wind turbines based on actuator lines and immersed boundaries”, Under review at Wind Energy
1- E Ferrer, S Le Clainche, Simple models for cross flow turbines, in Recent advances in CFD for Wind and Tidal Offshore Turbines, 2019
1- E Ferrer, OMF Browne, E Valero, Sensitivity analysis to control the far–wake unsteadiness behind turbines, Energies, 2017

Require 2D aerodynamic data Explicit 3D geometry
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Solvers“, under review

Tabulated data
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DIAPOSITIVA 27

P = 2

P = 5

Improved solution using the same h-mesh

OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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Fine mesh  190M elements

Averaged velocity deficit

p-ref

OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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cell averaged velocity

weighted averaged forces

OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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P = 2

cell averaged velocity

weighted averaged forces

P = 2

OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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cell averaged velocity

weighted averaged forces

P = 5

P = 5

wrong physics

OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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OA Mariño, R Sanz, S Colombo, A Sivaramakrishnan, E Ferrer, "Modelling Wind Turbines through Actuator Lines in High-Order h/p 
Solvers“, under review
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• Simple ‘Cartesian’ grids (with local P refinement)

• Complex geometries

• Moving geometries

Immersed boundary method (penalty)  Mesh Free method
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Moving NACA0012 at Reynolds number 1000, pitching and plunging:

- J Kou, A Hurtado-de-Mendoza, S Joshi, S Le Clainche, E Ferrer, "Eigensolution analysis of immersed boundary method based on volume penalization: applications to high-
order schemes", Journal of Computational Physics, Vol 449, 110817, 2022
- J Kou, S Joshi, A Hurtado-de-Mendoza, K Puri, C Hirsch, E Ferrer, "An Immersed boundary method for high–order flux reconstruction based on volume penalization", Journal
of Computational Physics, Vol 448, 110721, 2022
- J Kou, VJ Llorente, E Valero, E Ferrer, "A Modified Equation Analysis for Immersed Boundary Methods based on Volume Penalization: Applications to Linear Advection-
Diffusion and High-Order Discontinuous Galerkin Schemes" Computers & Fluids, Vol 257, 105869, 2023
- J Kou, E Ferrer, "A combined volume penalization / selective frequency damping for immersed boundary methods applied to high-order schemes" Journal of Computational
Physics, Vol 472, 111678, 2023

Plunging amplitude h = 0.08c, 

Strouhal number Sr = ⍵hc/U∞ = 0.46

Plunging amplitude h = 0.12c, 

Strouhal number Sr = ⍵hc/U∞ = 1.5

pitching and plunging



Toulouse, February 12, 2008

Moving NACA0012 at Reynolds number 1000, pitching and plunging:

P-adaption increases accuracy

P
P

- J Kou, A Hurtado-de-Mendoza, S Joshi, S Le Clainche, E Ferrer, "Eigensolution analysis of immersed boundary method based on volume penalization: applications to high-
order schemes", Journal of Computational Physics, Vol 449, 110817, 2022
- J Kou, S Joshi, A Hurtado-de-Mendoza, K Puri, C Hirsch, E Ferrer, "An Immersed boundary method for high–order flux reconstruction based on volume penalization", Journal
of Computational Physics, Vol 448, 110721, 2022
- J Kou, VJ Llorente, E Valero, E Ferrer, "A Modified Equation Analysis for Immersed Boundary Methods based on Volume Penalization: Applications to Linear Advection-
Diffusion and High-Order Discontinuous Galerkin Schemes" Computers & Fluids, Vol 257, 105869, 2023
- J Kou, E Ferrer, "A combined volume penalization / selective frequency damping for immersed boundary methods applied to high-order schemes" Journal of Computational
Physics, Vol 472, 111678, 2023
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Only CAD ‘.stl’ file
for the wind turbine

Penalty points for the wind turbine

IB for rotating Wind turbine

Immersed boundary method (penalty)  

Simple Cartesian mesh

&
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P=3P=1
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Tip vortex

Tower wake

Leading edge 
acceleration
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High order sliding meshes

Hanging nodesHanging nodes

- E Ferrer and RHJ Willden, "A high order DG- Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes", JCP, 231, 2012
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Summary

1- Introduction to DG & Horses3d

2- Multiphysics
 Wind turbines
 Turbulence

3. Machine Learning + CFD
 Mesh adaption 
 NN acceleration
 RL for automation
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P=2

P=3

P=4

High order RANS (SAneg)

NASA workshop
https://turbmodels.larc.nasa.gov/hc3dnumerics_val.html
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High order RANS (SAneg)

P=2P=3

Commercial CFD
(Numeca)
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NACA0012 at various AoAs

HORSES3D: Compressible DGSEM – energy-stable - SBP-SAT & Roe fluxes & BR1

Implicit LES

E Ferrer, J Manzanero, AM Rueda-Ramirez, G Rubio, E Valero, "Implicit large eddy simulations for NACA0012 airfoils using
compressible and incompressible DG solvers", Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018,
Lecture Notes in Computational Science and Engineering, Springe
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H Marbona, D Rodríguez, A Martínez-Cava, E Valero, Physical Review Fluids, 2024

Implicit LES
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New turbulent models for discontinuous Galerkin

J Kou, OA Marino, E Ferrer, "Jump penalty stabilisation techniques for under-resolved turbulence in DG schemes" Journal of Computational
Physics, Vol 491, 112399, 2023
E Ferrer, "An interior penalty stabilised incompressible DG–Fourier solver for implicit Large Eddy Simulations", Journal of Computational
Physics, Vol 348, 2017

Discontinuous 
solutions well 

resolved

badly 
resolved
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New turbulent models for discontinuous Galerkin

Viscosity proportional to jumps (associated to under-resolution)

Solution:

Gradients:

J Kou, OA Marino, E Ferrer, "Jump penalty stabilisation techniques for under-resolved turbulence in DG schemes" Journal of Computational
Physics, Vol 491, 112399, 2023
E Ferrer, "An interior penalty stabilised incompressible DG–Fourier solver for implicit Large Eddy Simulations", Journal of Computational
Physics, Vol 348, 2017

Burman et al 2010
Moura et al 2022

Ferrer 2017

Discontinuous 
solutions well 

resolved

badly 
resolved
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Taylor Green Vortex 
Re=1600

J Kou, OA Marino, E Ferrer, "Jump penalty stabilisation techniques for under-resolved turbulence in DG schemes" Journal of Computational
Physics, Vol 491, 112399, 2023

New turbulent models for discontinuous Galerkin
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Summary
1- Introduction to DG & Horses3d

2- Multiphysics
 Wind turbines
 Turbulence

3. Machine Learning + CFD
 Mesh adaption 
 NN acceleration
 RL for automation
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Towards AI-based Computational Fluid Dynamics

S Le Clainche, E Ferrer, S Gibson, E Cross, A Parente, R Vinuesa, "Improving aircraft performance using machine learning: a 
review", Aerospace Science and Technology, Vol 138, 108354, 2023
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Towards AI-based Computational Fluid Dynamics
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Eddy viscosity sensor

Machine Learning to detect flow regions

F=1.25 F=1.5

Feature based sensors

Re=3900

-KE Otmani, G Ntoukas, E Ferrer, "Towards a robust detection of flow regions using unsupervised machine learning", Vol 35, 027112, 2023
-K Tlales, KE Otmani, G Ntoukas, G Rubio, E Ferrer, "Machine learning mesh-adaptation for laminar and turbulent flows: applications to high order 
discontinuous Galerkin solvers", Engineering with Computers, 2024
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• Very sensitive to threshold

• Cannot detect mixed regions 
(e.g. laminar-turbulent)

Eddy viscosity sensor

Machine Learning to detect flow regions

F=1.25 F=1.5

Feature based sensors

-KE Otmani, G Ntoukas, E Ferrer, "Towards a robust detection of flow regions using unsupervised machine learning", Vol 35, 027112, 2023
-K Tlales, KE Otmani, G Ntoukas, G Rubio, E Ferrer, "Machine learning mesh-adaptation for laminar and turbulent flows: applications to high order 
discontinuous Galerkin solvers", Engineering with Computers, 2024
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Machine Learning to detect flow regions

Clustering (classify data): Gaussian mixture model
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Machine Learning to detect flow regions

Clustering (classify data): Gaussian mixture model

P high

P low

Automate the detection 
(no thresholds)

Use a robust feature space
for a variety of Re

Invariants of strain and rotational 
rate tensors

Re=3900

-KE Otmani, G Ntoukas, E Ferrer, "Towards a robust detection of flow regions using unsupervised machine learning", Vol 35, 027112, 2023
-K Tlales, KE Otmani, G Ntoukas, G Rubio, E Ferrer, "Machine learning mesh-adaptation for laminar and turbulent flows: applications to high order 
discontinuous Galerkin solvers", Engineering with Computers, 2024
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Machine Learning to detect flow regions

Clustering: Gaussian mixture model

Re=3900

-KE Otmani, G Ntoukas, E Ferrer, "Towards a robust detection of flow regions using unsupervised machine learning", Vol 35, 027112, 2023
-K Tlales, KE Otmani, G Ntoukas, G Rubio, E Ferrer, "Machine learning mesh-adaptation for laminar and turbulent flows: applications to high order 
discontinuous Galerkin solvers", Engineering with Computers, 2024
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Machine Learning to detect flow regions
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Supersonic & Shock capturing

Apollo

Naca

Forward facing step

Apollo
Aircraft

-E Ferrer, G Rubio, G Ntoukas, W Laskowski, O Mariño, S Colombo, A. Mateo-Gabín, H Narbona, F Manrique de Lara, D Huergo, J Manzanero, AM Rueda-Ramírez, DA Kopriva, E Valero,
"HORSES3D: a high order discontinuous Galerkin solver for flow simulations and multi-physic applications", Computer Physics Communications, Vol 287, 2023
-A Mateo-Gabín, J Manzanero, E Valero, An entropy stable spectral vanishing viscosity for discontinuous Galerkin schemes: Application to shock capturing and LES models, Journal of Computational
Physics, Vol 471,2022
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What about shocks?

Classic feature based sensors (fine tunned) GMM 
(no tunning)

Similar result to 
state of the art 
without tunning!

A Mateo-Gabín, K Tlales, E Valero, E Ferrer, G Rubio, "Unsupervised machine learning shock capturing for High-Order CFD solvers“, 
under review
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Towards AI-based Computational Fluid Dynamics
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Machine Learning to accelerate CFD

Low Order P

High Order P

-Manrique de Lara F, Ferrer E, Accelerating High Order Discontinuous Galerkin solvers using neural networks: 1D Burgers, Vol 235, Computers & Fluids, 2022
-F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes Equations", Journal of 
Computational Physics, Vol 489, 112253, 2023



Toulouse, February 12, 2008

Machine Learning to accelerate CFD

Low Order P

High Order P

��
��

-Manrique de Lara F, Ferrer E, Accelerating High Order Discontinuous Galerkin solvers using neural networks: 1D Burgers, Vol 235, Computers & Fluids, 2022
-F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes Equations", Journal of 
Computational Physics, Vol 489, 112253, 2023
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Machine Learning to accelerate CFD

-Manrique de Lara F, Ferrer E, Accelerating High Order Discontinuous Galerkin solvers using neural networks: 1D Burgers, Vol 235, Computers & Fluids, 2022
-F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes Equations", Journal of 
Computational Physics, Vol 489, 112253, 2023
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Machine Learning to accelerate CFD

-Manrique de Lara F, Ferrer E, Accelerating High Order Discontinuous Galerkin solvers using neural networks: 1D Burgers, Vol 235, Computers & Fluids, 2022
-F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes Equations", Journal of 
Computational Physics, Vol 489, 112253, 2023
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Machine Learning to accelerate CFD

Trained to give HO solution

� �
��

���
��

���
�� ��)
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes 
Equations", Journal of Computational Physics, Vol 489, 112253, 2023

laminar transitional turbulent
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes 
Equations", Journal of Computational Physics, Vol 489, 112253, 2023
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

training

F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes 
Equations", Journal of Computational Physics, Vol 489, 112253, 2023



Toulouse, February 12, 2008

Machine Learning to accelerate CFD

3D Navier-Stokes - LES

Training 
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

What is the real accuracy?

Probably P=6

P3+NN is 4-5 times faster
(compared to P6)

F Manrique de Lara, E Ferrer, "Accelerating High Order DG Solvers using Neural Networks: 3D Compressible Navier-Stokes 
Equations", Journal of Computational Physics, Vol 489, 112253, 2023
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

laminar transitional turbulent
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

laminar transitional turbulent
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

laminar transitional turbulent
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Machine Learning to accelerate CFD

3D Navier-Stokes - LES

laminar transitional turbulent



Toulouse, February 12, 2008O Marino, A Juanicotena, J Errasti, D Mayoral, F Manrique de Lara, R Vinuesa, E Ferrer, Accelerating High Order DG Solvers using
Neural Networks: A Comparison of Neural Network architectures to accelerate the Taylor Green vortex problema, Under Review

Machine Learning to accelerate CFD

3D Navier-Stokes - LES

training
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Summary
1- Introduction to DG & Horses3d

2- Multiphysics
 Wind turbines
 Turbulence

3. Machine Learning + CFD
 Mesh adaption 
 NN acceleration
 RL for automation
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Towards AI-based Computational Fluid Dynamics
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Machine Learning and Reinforcement Learning

Atari game 

Go game Chess game
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Defining the state, actions and 
rewards are the key aspects of RL
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Deep reinforcement learning for wind turbine control

Training with simple winds

Validation with turbulent real winds

Rpm

D Soler, O Marino, D Huergo, M de Frutos, E Ferrer, "Reinforcement learning to maximise wind turbine energy generation", 
Expert Systems with Applications, Vol 249, Part A, 123502, 2024
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Deep reinforcement learning for wind turbine control
Adding Noise Constraints

M de Frutos, O Mariño, D Huergo, E Ferrer, "Reinforcement Learning for Multi-Objective Optimization: Enhancing Wind Turbine 
Energy Generation while Mitigating Noise Emissions“, under review

Rpm
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Deep reinforcement learning for wind turbine control
Adding Noise constraint

M de Frutos, O Mariño, D Huergo, E Ferrer, "Reinforcement Learning for Multi-Objective Optimization: Enhancing Wind Turbine 
Energy Generation while Mitigating Noise Emissions“, under review

Rpm
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Reinforcement learning for p-multigrid

Reward: f (Relative drop in residual, time taken)

sweeps
Yellow  action taken
Blue do not take it

Relax. between levels

p-multigrid

Optimal parameters in p-multigrid multigrid?

- Sweeps
- Relaxation between levels

D Huergo, M de Frutos, E Jané, G Rubio, E Ferrer, "Reinforcement learning for anisotropic p-adaptation and error estimation in high-order
solvers“, under review
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Reinforcement learning for p-multigrid

Reward: f (Relative drop in residual, time taken)

sweeps

Yellow  action taken
Blue do not take it

Relax. between levels

p-multigrid
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Reinforcement learning for p-multigrid

p-multigrid
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Cylinder

Reinforcement learning for p-adaptation
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Conclusions

• High order DG methods fairly well developed
• Incompressible flows & Compressible flows

• Multiphysics:
• Wind turbines with various methods

• Turbulence (iLES & explicit LES)

• Aero-acoustics

• Supersonic & Shocks

• AI-based Solver
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Doc & PostDoc availables in the group
esteban.ferrer@upm.es

If you like computers (like B. Gates), fluids, wind turbines, etc. 
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Thank you very much

http://sites.google.com/site/eferrerdg/publications

esteban.ferrer@upm.es
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�.�. p-Ad�pt�tion for DGSEM 

5 

Discontinuous G�lerkin Spectr�l Element Method 
• The solution is approximated in 

each element using L�gr�nge 
polynomi�ls based on 
Legendre-G�uss nodes. 

• Manual p-adaptation requires to 
know beforehand the behaviour 
of the solution. 

 

• p-Adaptation allows to select the 
optim�l polynomi�l in e�ch 
element of the mesh to obtain 
�ccur�te solutions with a 
reduced comput�tion�l cost. 
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�.2. p-Ad�pt�tion with Trunc�tion Error 

DGSEM simul�tion 
 
Example of a p-adapted mesh, based on the Trunc�tion 
Error, for the flow around a sphere at Reynolds 200. 
 
The contours indicate the average polynomial order 
(Nav=(N� +N2 +N3)/3). [�, 2] 

[1] A. M. Rueda-Ramírez, J. Manzanero, E. Ferrer, G. Rubio, E. Valero, A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for
high-order discontinuous Galerkin methods, Journal of Computational Physics 378 (2019).

[2] A. M. Rueda-Ramirez, G. Ntoukas, G. Rubio, E. Valero, E. Ferrer, Truncation Error-Based Anisotropic p-Adaptation for Unsteady Flows for High-Order
Discontinuous Galerkin Methods, International Journal of Computational Fluid Dynamics, 37(6), 430–450 (2024).

Simul�ted using HORSES3D 
 

https://github.com/loganoz/horses3d 

[3] E. Ferrer, G. Rubio, W. Laskowski, O.A. Mariño, S. Colombo, A. Mateo-Gabín, H.
Marbona, F. Manrique de Lara, D. Huergo, J. Manzanero, A.M. Rueda-Ramírez, D.A. Kopriva
and E. Valero, HORSES3D: A high-order discontinuous Galerkin solver for flow simulations
and multi-physics applications, Computer Physics Communications 287 (2023): 108700.
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Reinforcement Le�rning 
for p-�d�pt�tion 
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2.�. The RL fr�mework 

8 

• Agent: Decides the action. 
 

• Environment: Current 
problem (our DGSEM solver). 
 

• Action: Increment or 
decrement the polynomial 
order 𝑝. 
 

• St�te: To be defined. 
 

• Rew�rd: To be defined. 
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2.2. St�te �nd Rew�rd 

9 

Rew�rd 
Two main objectives: 
• Minimum polynomi�l order: Computational 

cost is reduced. 
• High �ccur�cy: High order required if 

strong gradients are present. 

• 𝑟𝑚𝑠𝑒  : Between the solution and the analytical 
    function in �4 points. 

• 𝜎       = 0.05: Standard deviation. 
• 𝑝𝑚𝑎𝑥 = 6: Maximum order allowed. 
• 𝛼       = 0.9: Control parameter. 

𝑠 = 𝑦1, 𝑦2, … , 𝑦�  

St�te 

𝑦1 

𝑦2 

𝑦3 

𝑥1 𝑥2 𝑥3 

The size of the state depends on the 
polynomial order. 

𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑝𝑚𝑎𝑥

𝑝

𝛼

𝑒
−

𝑟𝑚𝑠𝑒2

2𝜎2  
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2.3. Tr�ining 

�0 

Expensive training when 
coupled with a CFD solver 

Dr�wb�cks 

Reward function based on 
�n�lytic�l solution 

Training based on polynomi�l 
functions in a single element 

CFD not required during 
the training 

An�lytic�l solution known 
during the training 

Solution Adv�nt�ges 

The resulting agent: 
 
• Has to be tr�ined only once. 

 
• C�n be potenti�lly �pplied to �ny PDE solved with a 

DGSEM solver. 
 

• C�n be used in �n �rbitr�ry mesh: the agent chooses the 
optimum polynomial order individually for each element. 
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2.3. Tr�ining 

�� 
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2.4. Extr�pol�tion for 3D c�ses 

�2 
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2.5. Error Estim�tion 

�3 

∗

𝑎

� ∗ �

𝑠�,𝑟

 

Bellm�n Optim�lity Equ�tion 
 

• V-v�lues 
• Rew�rd 
• Discount f�ctor 
• Prob�bility tr�nsition function 

2
∗

2
���,𝑝

 

The error estimation: 
 
• Provides the sp�ti�l error th�t the RL �gent believes to 

be re�l inside each element. 
 

• Is le�rned during the tr�ining and can be applied without 
additional knowledge of the problem to be solved. 
 

• Is more �ccur�te if coupled with p-�d�pt�tion. 
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3.�. Euler Flow �round � cylinder 

Error Estimation Real Error Computational cost (s) DOFs Polynomial order 

2.1 � 10−3 8.1 � 10−3 252 58968 𝑝 = 2

2.8 � 10−4 6.7 � 10−4 431 139776 𝑝 = 3

3.0 � 10−5 6.5 � 10−5 737 273000 𝑝 = 4

0.0 (reference) 0.0 (reference) 1181 471744 𝑝 = 5

𝟏. 𝟔 � 𝟏𝟎−𝟑 𝟕. 𝟖 � 𝟏𝟎−𝟒 𝟏𝟗𝟕 𝟐𝟕𝟕𝟎𝟖 𝐩 − 𝐚𝐝𝐚𝐩𝐭𝐞𝐝
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3.2. Cylinder  

�6 

C� Cd Author 

±0.678 1.35 ± 0.046 RL p-Adaptation (ours)

±0.659 1.348 ± 0.05 Ding et al. (2007) [3]

±0.602 1.32 ± 0.05 Harichandan et al. (20�2) [3]

[3] AB Harichandan and A Roy. Numerical investigation of flow past single and tandem cylindrical bodies in the vicinity of a plane wall. Journal of Fluids and
Structures, 33:19–43, 2012.
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3.3. Cylinder  

�7 

𝒑 = 𝟔 
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3.4. T�ylor Green Vortex 

�8 

Velocity 
m�gnitude 

𝒑𝒂𝒗 

𝑡 = 2 s 𝑡 = 4 s 𝑡 = 6 s 
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3.4. T�ylor Green Vortex 

�9 

Velocity 
m�gnitude 

𝒑𝒂𝒗 

𝑡 = 8 s 𝑡 = 10 s 𝑡 = 12 s 
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3.4. T�ylor Green Vortex 

20 

𝒑𝒂𝒅𝒂𝒑𝒕𝒆𝒅 𝒑 = 𝟔 

4� �02 Computational 
cost (h) 
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3.5. Offshore Wind Turbine DTU �0MW 

2� 
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3.5. Offshore Wind Turbine DTU �0MW 

22 

The error is higher: 
• Near the Actu�tor Line. 
• On the no-slip w�ll bound�ry condition. 
• Inside the Immersed Bound�ries (tower �nd n�celle). 
• Inside the w�ke. 
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4. Ongoing work 

• RL p-adaptation for moving Immersed 
Bound�ries. 

 

• RL p-adaptation for �coustics. 

 

• Comp�rison with different state-of-the-art p-
adaptation algorithms. 

 

• Dynamic lo�d b�l�ncing to improve MPI 
parallelization for evolving meshes. 

24 
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5. Conclusions 

Reinforcement Le�rning can be applied to minimize m�nu�l intervention, to improve 
the �ccur�cy of numerical simulations and to speed-up a CFD code. 

 

26 

• RL for p-�d�pt�tion leads to a general approach to improve the �ccur�cy and reduce the 
comput�tion�l time of CFD simulations. 
 

• The proposed methodology can be potentially applied for �ny PDE �nd comput�tion�l mesh. 
 

• The RL agent h�s to be tr�ined only once for �D cases, but provides an �ccur�te �d�pt�tion in 
3D turbulent simul�tions. 
 

• The proposed methodology provides a cheap estim�tion of the sp�ti�l error in e�ch element of 
the computational mesh. 
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