### **Exascale:** A User's Perspective

#### **Paul Fischer**

University of Illinois Urbana-Champaign Argonne National Laboratory

Stefan Kerkemeier – K2 / ANL Ananias Tomboulides – ATU/ANL Misun Min – ANL Elia Merzari – Penn State/ANL Malachi Phillips – UIUC Thilina Rathnayake – UIUC Yu-Hsiang Lan – ANL James Lottes– ANL (Google) Aleks Obabko – ANL Tim Warburton – Virginia Tech

Supported by the Center for Efficient Exascale Discretizations (CEED) as part of DOE's Exascale Computing Project. DB: ed7.nek5000 Time: 135.153 Cycle: 100 ar: temperatur *Turbulence in a vascular access device.* Aleks Obabko, ANL

*Computer Science; Mechanical Science & Engineering* 

Mathematics and Computer Science









### **Example:** Compressed Turbulence

### (Nek5000-CPU)



**FIGURE 2.9** DNS of compression in an optical engine. Iso-contours of heat flux along the cylinder walls at  $15^{\circ}$  bTDC, left-to-right: bird's eye view, cylinder head, piston.

G. Giannakopoulos, K.Keskinen, J.Kochand, M.Bolla, C.E.Frouzakis, Y.M. Wright, K. Boulouchos, M. Schmidt, B. Böhm and A. Dreizler, Characterizing the evolution of boundary layers in IC engines by combined laser-optical diagnostics, direct numerical and large-eddy simulations, *Flow, Turbulence and Combustion*.

### 61-Pin Wire-Wrap Bundle with Blockage E. Merzari, PSU

E=4.46M, N=7, n = 1.55B P=480 V100s, n/P = 3.24M t<sub>step</sub> = 0.586 s/step

Runtime Stats:

- □ 36000 steps in a 6-hour run
- **60** hours on 10% of Summit
- **Pressure:** 
  - **35% of runtime**
  - □ PMG with Chebyshev-Schwarz smoothing
  - **Boomer AMG coarse-grid (34% runtime)**
- **Advection:** 
  - **2** 2<sup>nd</sup>-order characteristics: CFL=1.5 (10% runtime)

### Ramesh Balakrishnan ANL

E=3.14M, N=7, n = 1.08B

Mira: *Nek5000* P=524288 ranks (262144 cores) n/P = 2060 0.496 s/step (CFL ~ 0.45) 24 hour run (of several)

Summit: NekRS P=528 ranks (528 V100s) n/P = 2.05M 0.146 s/step (CFL ~ 0.45) 24 hour run (of several)



Nek5000 DNS of flow past a periodic hill at Re=19,000 on ALCF Mira. Ramesh Balakrishnan, ANL

#### Summary:

At strong-scale limit (80% eff.)

- NekRS+Summit → 3.4X faster than Nek5000+Mira
- Requires about **10%** of Summit resources vs. <mark>½</mark> Mira

(This result not a foregone conclusion...2020 BP Paper.)









Develop a fast, efficient, scalable code for simulating turbulence in complex domains on exascale platforms.

Approach:

□ High-order spectral element discretizations:

- reduced n for fixed Re, or
- increased Re for fixed n

□ Fast GPU kernels on each node

[ costs scale as O(n) ]

[Warburton group, CEED]

**Given Strong-scale as far as possible** 

- largest possible P for fixed n  $\rightarrow$  n/P as small as possible
- design to minimize communication, coarse-grid solve overhead







### Nek5000/CEM/RS Design Principles

#### Efficient high-order discretizations

- Minimize number of gridpoints and data movement for a given engineering-level accuracy
- Cost per gridpoint equivalent to or lower than low-order discretizations
- Fast implementations on each node (particular focus on GPUs for NekRS)
- Strongly scalable, i.e., use as many nodes as possible for reasonable efficiency (e.g., parallel efficiency η ~ 80%) *important for speed*.

### □ Support broad range of physics needed for engineering applications

- Large number of boundary conditions
- Turbulence models (LES, uRANS of multiple flavors)
- Compressible flow (low-Mach), combustion
- Complex meshes, nonconforming meshes, moving geometries (ALE)
- State-of-the-art Lagrangian particle tracking with 1-way, 2-way, and 4-way [Zwick&Balachandar '19]
- Maxwell, Poisson-Nernst-Planck (e.g., ion channels, molten salt)









### Parallelism: Stong-Scaling, Time to Solution, and Energy Consumption



#### Observations:

- 1. Time-to-solution goes down with increasing P, particularly for  $\eta$  = 1.
- 2. For  $\eta = 1$ , energy consumption ~ P x t<sub>sol</sub> = constant no penalty for increased P.
- 3. The red curve can use more processors than the blue. WHY?
- 4. Why (for a problem of any size), do we find  $\eta < 1$ ?
  - What is the root cause of the fall-off, and can we do something about it??





### Same Data, Strong-Scale vs. P or n/P and Efficiency or MDOFS vs n/P





- Plotting MDOFS vs. n/P is more universal than time vs. P:
  - Allows code-to-code comparison.
  - Identifies  $n_{0.8}$ , the local problem size, (n/P), that realizes  $\eta = 0.8$ .
- $\Box$  Why do we care about  $n_{0.8}$ ?
  - Min time-to-solution (at  $\eta$  = 0.8) is



- □ HPC users run at this point
  - Design for performance at this point
  - Analyze system-level approaches to reducing n<sub>0.8</sub>









### BP1/3/5 Bake-Off Problems on BG/Q: BP5=SEM Poisson Solve



 $\Box$  Times are the minimum-time-per iteration at  $\eta = 0.8$ 

- Idea of the bake-off is to compare performance of multiple codes (here, Nek, MFEM, and deal.ii) over a large range of runtime parameters: polynomial order, number of elements, problem types, and to resolve any major discrepancies, i.e., to help all teams realize the fastest possible performance.
- For BP5, the SEM Poisson solve, Nek5000 is the fastest (has the lowest t<sub>0.8</sub>) for its target operating range of N=7—13.







### Outline:

- **0.** Introduction (preceding slides)
- 1. Mathematical Background
  - Discretization SEM
  - Navier-Stokes timestepping
  - Pressure Poisson Problem & Preconditioning
- 2. Parallel Computing Concerns
  - □ Scalability ←→ Speed











### Incompressible Navier-Stokes Equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

- Key algorithmic / architectural issues:
  - Unsteady evolution implies many timesteps, significant reuse of preconditioners, data partitioning, etc.
  - div u = 0 implies *long-range global coupling at each timestep* → communication intensive iterative solvers
  - Small dissipation  $\rightarrow$  large number of scales, large number of timesteps  $\rightarrow$  large number of grid points for high Reynolds number, Re







### Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size  $\lambda$ ) over distances  $L \gg 1$ .

If speed  $\approx 1$ , then  $t_{\text{final}} \approx L/\lambda$ .

- Dispersion errors accumulate linearly with time: error  $\sim |\text{correct speed} - \text{numerical speed}| * t$  (for each wavenumber, k) error( $t_{\text{final}}$ )  $\sim (L/\lambda) * |\text{numerical dispersion error}|$
- For fixed final error,  $\epsilon_f$ , require:

numerical dispersion error ~  $(\lambda/L)\epsilon_f \ll 1$ .

H .O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic problems, *Tellus* **24**, 199–215, 1972.





### Spectral Element Method

- Variational method, similar to FEM, using GL quadrature.
- Domain partitioned into *E* high-order hexahedral elements
- Trial and test functions represented as Nth-order tensor-product polynomials within each element. ( $N \sim 4 15$ , typ.)
- Qualitatively different from p-type FEM
  - $n \sim EN^3$  grid points in 3D
  - Fast operator evaluation: O(n) storage, O(nN) work
- Converges *exponentially fast* with N for smooth solutions.



### Spectral Element Convergence: Exponential with N

4 orders-of-magnitude q error reduction when doubling the resolution in each direction

- For a given error, q
  - Reduced number of gridpoints q
  - Reduced memory footprint. q
  - Reduced data movement. a





Exact Navier-Stokes Solution (Kovazsnay '48)









### Excellent Transport Properties, even for Nonsmooth Solutions

- q Convection of nonsmooth data on.a 32x32 grid
- q K1 x K1 spectral elements of order N
- (cf. Gottlieb & Orszag, Spectral Methods, 1977)











### High-Order is Efficient for Tracking Small-Scale Structures

- Flow in a model IC engine
- Re=45,000













### Vortex Breakdown at Re<sub>D</sub> = 45,000

- **q** These are well-resolved calculations performed on ANL's Theta
- q Note the fine filamental horseshoe vortices around the base of the valve stem that ultimately breaks down into a chain of hairpin vortices
- q Although turbulent, the flow is not random!





- Cost dominated by iterative solver costs, proportional to
  - iteration count
  - matrix-vector product + preconditioner cost



- Locally-structured tensor-product forms:
  - minimal indirect addressing
  - fast matrix-free operator evaluation
  - low-cost local operator inversion via fast diagonalization method (Lynch et al. '64)









### Fast Operator Evaluation: Matrix-Matrix Products / Tensor Contractions

Consider a single element,  $(r, s) \in \hat{\Omega} := [-1, 1]^2$ :

• 
$$u(r,s) = \sum_{j=0}^{N} \sum_{i=0}^{N} u_{ij} l_i(r) l_j(s), \qquad l_i(r_j) = \delta_{ij}$$

• 
$$\left. \frac{\partial u}{\partial r} \right|_{r_i, s_j} = \sum_q \sum_p u_{pq} \left. \frac{dl_p}{dr} \right|_{r_i} l_q(s_j)$$

 $= \sum_{n} \hat{D}_{ip} u_{pj} \qquad \begin{cases} \text{matrix-matrix product} \\ \text{tensor contraction} \end{cases}$ 

- $2N^2$  reads,  $2N^3$  ops
- 3D:  $N^3$  reads ( $\underline{u}$ ),  $2N^4$  ops
- SEM performance design objective: All evaluations with  $O(n) = O(EN^3)$  reads and  $\leq O(EN^4)$  ops.











### Fast Operator Evaluation: Matrix-Matrix Products / Tensor Contractions

Complexity improves with increasing space dimension, d = 1, 2, 3:

• 1D: 
$$\underline{u}_r = \sum_p \hat{D}_{ip} u_p$$
  $N^2$  reads,  $2N^2$  ops.

• 2D: 
$$\underline{u}_r = \sum_p \hat{D}_{ip} u_{pj}$$
 2N<sup>2</sup> reads, 2N<sup>3</sup> ops.  
• 3D:  $\underline{u}_r = \sum_p \hat{D}_{ip} u_{pjk}$  N<sup>3</sup> reads, 2N<sup>4</sup> ops.

Note, nodes on  $\hat{\Omega} = [-1, 1]^d$  are taken to be tensor products of the Gauss-Lobatto-Legendre points,  $\xi_j$ , the roots of  $(1 - \xi^2) P'_N(\xi)$ , where  $P_N$  is the Legendre polynomial of degree N.

- Stability: Condition number of  $\hat{A} = O(N^3)$ ,  $\hat{a}_{ij} := \int_{\hat{\Omega}} \nabla \phi_i \cdot \nabla \phi_j \, dV$ .
- Accurate quadrature: diagonal mass matrix









### Spectral Element Matrix-Free Operator Evaluation

 $\Box$  Spectral element coefficients stored in local ( $\underline{u}_{l}$ ) form, not global ( $\underline{u}$ )

□ Example: Application of SEM Laplacian

$$\underline{w} = A\underline{u} = Q^T A_L Q \underline{u}, \qquad \underline{w}_L := Q \underline{w}, \qquad \underline{u}_L := Q \underline{u}$$

 $\underline{w}_{L} = \underline{Q}\underline{Q}^{T}A_{L}\underline{u}_{L}$ Iocal work (matrix-matrix products)
nearest-neighbor (gather-scatter) exchange



Orszag 80

Argon

$$A_{L} := \begin{bmatrix} A^{1} & & \\ & A^{2} & \\ & & \ddots & \\ & & & A^{E} \end{bmatrix} \qquad A^{e}\underline{u}^{e} = \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix}^{T} \begin{pmatrix} G_{rr} & G_{rs} & G_{rt} \\ G_{rs} & G_{ss} & G_{st} \\ G_{rt} & G_{st} & G_{tt} \end{pmatrix} \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix} \underline{u}^{e} & \cdot 7N^{3} \text{ memory ref.} \\ \cdot 12N^{4} + 15N^{3} \text{ ops.} \end{bmatrix}$$
$$D_{r} = (I \otimes I \otimes \hat{D}) \qquad G_{rs} = J \circ B \circ \left(\frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} + \frac{\partial r}{\partial z} \frac{\partial s}{\partial z}\right)$$
Majority of ops. Majority of memory refs.

**ILLINOIS** 



### Impact of Order on Costs

- **q** To leading order, cost scales as number of gridpoints, regardless of approximation order.
- **q** Consider Jacobi PCG as an example:  $z = D^{-1} r$

$$\underline{\mathbf{r}} = \underline{\mathbf{r}}^{t} \underline{\mathbf{z}}$$

$$\underline{\mathbf{p}} = \mathbf{z} + \beta \underline{\mathbf{p}}$$

$$\underline{\mathbf{w}} = A \underline{\mathbf{p}}$$

$$\boldsymbol{\sigma} = \underline{\mathbf{w}}^{t} \underline{\mathbf{p}}$$

$$\underline{\mathbf{x}} = \underline{\mathbf{x}} + \alpha \underline{\mathbf{p}}$$

$$\underline{\mathbf{r}} = \underline{\mathbf{r}} - \alpha \underline{\mathbf{p}}$$

- **q** Only one operation depends on order—the remaining, memory-bound, depend on number of gridpoints, n.
  - Reducing n is an effective way to reduce data movement.
- **q** For incompressible Navier-Stokes, however, preconditioning is the dominant cost.







### Runtime is Weakly Dependent on Polynomial Order, N

### Electromagnetics Example: NekCEM (M. Min)

Jacobi PCG-BP5 (T. Warburton)



Main Conclusion: properly implemented high-order methods are not more expensive per DOF than their low-order counterparts





We address stability of the advection operator in several ways:

- **q** *Filtering:* 
  - q Low-pass filter, F, as a post-processing step, or
  - q High-pass filter (HPF) on the rhs of the Navier-Stokes equations
- **q** Dealiased advection operator
- **q** As an alternative, we could consider DG + upwinding for the hyperbolic substep, as is done in MFEM/LAGHOS, libP, and several of the more recent high-order codes from the deal.ii group and others in Europe.
- q I'll discuss this topic off-line with anyone who is interested.









### Choice of Quadrature for Advection-Diffusion Terms

$$(v, u_t)_L = -(v, \mathbf{c} \cdot \nabla u)_M + \nu (\nabla v, \nabla u)_N$$
  
Accuracy Stability Stability

- Let  $(v, u)_N$  denote the discrete  $L^2$  inner product using Gauss-Lobatto-Legendre quadrature on N + 1 points in each direction of the reference domain,  $\hat{\Omega} := [-1, 1]^d$ .
- Let  $(v, u)_M$  denote the discrete  $L^2$  inner product using Gauss-Legendre quadrature on M points in each direction.
- Let  $(v, u)_L$  denote the discrete  $L^2$  inner product using Gauss-Legendre quadrature on M points in each direction.

If we take L = N, we get a diagonal mass matrix—inversion cost is effectively zero.

We need M > N to guarantee that  $(v, \mathbf{c} \cdot \nabla u)$  is skew-symmetric (hence, stable), but if were using DG+upwind we might not need dealiasing.









### Impact of Inexact Quadrature on the u<sub>t</sub> Term

#### MARK AINSWORTH

| Degree | Centred DG                       | Finite Element            | Spectral Element             |
|--------|----------------------------------|---------------------------|------------------------------|
| 1      | $\frac{i\Omega^3}{48}$           | $\frac{i\Omega^5}{180}$   | $\frac{i\Omega^3}{\epsilon}$ |
| 2      | 40<br>$i\Omega^7$                | $i\Omega^5$               | $0 i\Omega^5$                |
| 2      | $-\overline{16800}$              | $-\frac{1}{4320}$         | $\overline{1080}$            |
| າ      | $i\Omega^7$                      | $i\Omega^9$               | $i\Omega^7$                  |
| Э      | 806400                           | $\overline{3175200}$      | $\overline{75600}$           |
| Λ      | $i\Omega^{11}$                   | $i\Omega^9$               | $i\Omega^9$                  |
| 4      | $-\frac{1005903360}{1005903360}$ | $-\frac{1}{254016000}$    | $\overline{31752000}$        |
| 5      | $i\Omega^{11}$                   | $i\Omega^{13}$            | $i\Omega^{11}$               |
| G      | $\overline{120708403200}$        | $\overline{479480601600}$ | $\overline{838252800}$       |

TABLE 1. Leading terms for the relative error in the approximation of the Floquet multiplier for Centred Discontinuous Galerkin, Finite Element and Spectral Element schemes applied to (1)

Our Strategy: Use inexpensive diagonal mass matrix. If you want more accuracy, increase N. (Maday & Ronquist, 90)





### Incompressible Navier-Stokes and Thermal Transport $(P_N - P_N)$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \mathbf{f}$$

 $\nabla \cdot \mathbf{u} = 0$ 

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{Pe} \nabla^2 T + q(\mathbf{x})$$

- kth-Order Time Advancement (k=1, 2, or 3)
  - Advection step:  $\hat{\mathbf{u}} = \mathbf{advect}(\mathbf{u}^{n-1}, \dots, \mathbf{u}^{n-k})$
  - Pressure correction:  $\hat{\mathbf{u}} = \hat{\mathbf{u}} \Delta t \nabla p^n$ , where  $p^n$  satisfies

$$-\nabla^2 p^n = -\frac{1}{\Delta t} \nabla \cdot \hat{\mathbf{u}}$$
$$\frac{\partial p^n}{\partial n} = \frac{\mathbf{n} \cdot \hat{\mathbf{u}}}{\Delta t} - \frac{1}{Re} \mathbf{n} \cdot \nabla \times \nabla \times \left(\sum_{j=1}^k \alpha_j \mathbf{u}^{n-j}\right) \text{ on } \partial\Omega.$$

- Diffusion step:  $\left[-\frac{\Delta t}{Re}\nabla^2 \mathbf{u}^n + \beta_0 \mathbf{u}^n\right] = \hat{\mathbf{u}} (+ BCs).$ 

- Pressure-Poisson step is intrinsically the stiffest substep—requires multilevel preconditioning.
- Diffusion step yields 3 diagonally-dominant Helmholtz problems that are readily solved with Jacobi-preconditioned CG.







 $\Box \text{Pressure Poisson solve} - A\underline{p}^n = \underline{b}^n$ 

 $\Box$  Every timestep, conditioning not improved as  $\Delta t \rightarrow 0$ 

Almost all Neumann conditions

□ Intrinsically the most expensive step for incompressible NS (fastest timescale).

□ Solving nearby problems on each step

- leverage by projecting onto prior solution space
- very often just a few iterations/step

$$A\delta\underline{p}^{n} = \underline{b}^{n} - A\underline{\bar{p}}^{n},$$
  
$$\underline{\bar{p}}^{n} \coloneqq \sum_{j} \underline{x}_{j} \underline{x}_{j}^{T} \underline{b}^{n}, \quad \underline{x}_{j}^{T} A \underline{x}_{i} = \delta_{ij}$$
  
$$\underline{x}_{j} \in \operatorname{span}\{\underline{p}^{n-1} \dots \underline{p}^{n-k}\}$$





### What Makes These SEM Problems Different?

Unstructured, high-aspect-ratio elements (e.g., boundary layer elements)
 High-aspect-ratio subcells because of tensor-product Gauss-Lobatto-Legendre (GLL) nodes
 Many different geometric configurations – no single solver is best for all cases.

□ Interested in solving problems *at the strong-scale limit*.

Coarse-grid solve costs do not go to zero as 1/P:

$$\frac{T_{cMG}}{T_{aMG}} = \frac{8 \alpha \log_2(n/P) + 30 \beta (n/P)^{\frac{2}{3}} + 8 \alpha \log_2 P}{50n/P}$$

<sup>1</sup>Fischer, Heisey, Min, Scaling Limits for PDE-Based Simulation, AIAA 2015







### **Consequences of Strong-Scaling**

□ Suppose wall-clock time complexity is:  $t_{wc} = W/P + C = 80 + 20$  seconds

□ If an improved algorithm leads to C' = 5 seconds, it appears we have a 15 second gain.
 □ Not quite...

– Users will increase P to P' = 4P (same efficiency) to yield a runtime of

 $t'_{wc} = W/4P + C' = 25$  seconds

❑ Same energy and node-hour consumption!❑ 4X Faster time to solution.





Krylov Subspace Projection (KSP): mandatory for robustness
 CG if preconditioner is SPD
 flexCG
 CMPES (if # iterations per step is small)

GMRES (if # iterations per step is small)

 $\Box$  Must be multilevel because of the problem scale: n =  $10^7 - 10^{11}$ 

Preconditioners:

Overlapping Schwarz

**D**p-Multigrid (PMG): variety of smoothers

**\Box** FEM-SEM equivalence: sparse low-order operator,  $A_{FEM} \sim A_{SEM}$ 

- requires scalable AMG





□ Jacobi: suffers from subcell aspect ratios in d>1 space dimensions (Ronquist'88)

Line smoothers (Heinrichs '88)

Block-Smoothers via fast-diagonalization method (Pahl 93, Couzy 95)

□ Multilevel Weighted Additive Schwarz–low cost but high iteration counts (F97,Lottes & F 05)

Chebyshev-Jacobi (Adams et al.'03, Gandham'15, Karakus et al.'19)

Chebyshev-Schwarz (Phillips'22)

On platforms where communication costs are high, there is an advantage to having better smoothers so that the coarse-grid solve is invoked less frequently.





### **Robust Preconditioner: FEM-SEM + AMG**

- Orszag (JCP 1980) pointed out that, for Poisson, sparse low-order finite difference operators were spectrally equivalent to their spectral counterparts on the same nodal point distributions, with a bounded condition number of  $\pi^2/4$ 
  - Deville & Mund; Canuto & Quarteroni; F. et al., Parter et al. extended this to FEM discretizations.
  - More recent developments in Canuto et al. '10, Bello-Maldonado & F. '19, Pazner '19.
- Main idea:
  - Tesselate GLL points with tets choice of tessellation is important
  - Form sparse FEM A<sub>FEM</sub> matrix
  - Use a single AMG V-cycle (via hypre or other scalable option)
- Observations:
  - Low iteration count
  - Cost per iteration is high, compared to ASM-pMG
  - A winner in some cases where ASM-pMG stalls
  - Requires robust & fast AMG.





## FEM vs HSMG Convergence

- Piston with moving valve example:
  - E=6784, N=7.
  - CFL=4
  - Significant reduction in iteration count
  - FEM preconditioning: ~60% reduction in solution time
  - Single FEM V-Cycle with Hypre as GMRES preconditioner
  - Timings on Mira (CPU)





### Recent Schwarz Developments

### Malachi Phillips (UIUC)





### Schwarz v. Chebyshev Jacobi

- □ We know that weighted overlapping Schwarz is a good local smoother (and, not expensive).
- □ The additive variant puts more pressure on the coarsegrid solve than a multiplicative version with several rounds of smoothing at each level.
- Chebyshev-Jacobi is remarkably robust.
- A natural idea is to apply Chebyshev acceleration to the Schwarz smoothing cycle.





Figure 3: Error plots for the hybrid Schwarz preconditioner and coarse solve, with  $N_C = N/2$  and (E, N) = (4, 16), applied to a random initial guess.

# Local Schwarz smoothing is fast via fast-diagonalization $M\underline{z} = \underline{r} \implies \underline{z} = \sum_{e=1}^{E} R_e^T A_e^{-1} R_e \underline{r},$ $A_e = R_e A R_e^T \approx [B_s^e \otimes A_r^e + A_s^e \otimes B_r^e]$ $\underline{z}_e = (S_s \otimes S_r) [I_s \otimes \Lambda_r + \Lambda_s \otimes I_r]^{-1} (S_s^T \otimes S_r^T) R_e \underline{r}$ $A_r^e S_r = S_r \Lambda_r, \quad A_e^e S_s = S_s \Lambda_s,$

Extended to more general operators: Pazner&Persson; Pablo Brubeck, ...

### PBR146 Results

#### Malachi Phillips (UIUC)



Argonne





Figure 7: Strong scaling results on Summit for the Navier-Stokes cases of Fig. 3a,b,c. Iso-processor count line illustrated in (c). A user running on a specified number of processors should use the lowest time-to-solution preconditioner along this line.

#### For Case c, SEMFEM is a clear winner, but Cheby-ASM or Cheby-RAS are generally the production options.









#### □ High-aspect-ratio elements are a continual source of difficulty.









#### □ Sometimes can be repaired by mesh smoothing





| Case             | $E_{s}$ | Norig | N <sub>smooth</sub> | $\Delta N\%$ |
|------------------|---------|-------|---------------------|--------------|
| Half-cylinder    | 93      | 44    | 25                  | 43.2         |
| Half-cylinder    | 372     | 37    | 21                  | 43.2         |
| Half-cylinder    | 1488    | 73    | 39                  | 46.6         |
| LPT              | 532     | 6.4   | 5.6                 | 12.9         |
| Cylinder         | 1472    | 7.1   | 5.3                 | 21.2         |
| Oscillating flow | 83598   | 21.3  | 20.4                | 3.9          |
| Hemi-sphere      | 2072    | 4.19  | 3.9                 | 6.8          |
| Piston cylinder  | 6784    | 22.7  | 19.3                | 15.0         |
|                  |         |       |                     |              |

Ketan Mittal & PF, Mesh Smoothing for the SEM, J. Sci. Comp., 2018





### Extreme Scalability: 352,000-Pebble Bed – 27648 V100s

#### Y.Lan, M.Min, E. Merzari



#### Pre-tuning timing breakdown: .597 s/step

| Operation      | time (s)  | %   |
|----------------|-----------|-----|
| computation    | 1.19+03   | 100 |
| advection      | 5.82+01   | 5   |
| viscous update | 5.38+01   | 5   |
| pressure solve | 1.08+03   | 90  |
| precond.       | 9.29+02   | 78  |
| coarse grid    | 5.40 + 02 | 45  |
| projection     | 6.78+00   | 1   |
| dotp           | 4.92+01   | 4   |

*Q*: How to control coarse grid costs without control over the coarse grid solver?

(NB: "coarse" grid = 100M unknowns...)









### Issues that make the coarse-grid solve challenging

Communication intensive small amount of work per rank
 all-to-all communication
 (Green's functions cover entire domain)

□Too little work to keep GPU happy □kernel launch overhead

□System noise (network/node)











### Issues that make the coarse-grid solve challenging

### □ Kernel launch overhead - Jean-Sylvain Camier (CEED MS37)





### MFEM BP1 XFL vs FAST @ V100







# Number of rows and nonzeros in AMG (E=580,000)

| • | Key observations:                                               | Level | n <sub>dofs</sub> | nnz       |
|---|-----------------------------------------------------------------|-------|-------------------|-----------|
|   | − $n_{dofs}$ < P → idle some processors. OK.                    | 0     | 665820            |           |
|   |                                                                 | 1     | 304403            | 15668640. |
|   | <ul> <li>Number of nonzeros does not drop as rapidly</li> </ul> | 2     | 204979            | 20863046. |
|   | as number of rows                                               | 3     | 96379             | 11293784. |
|   |                                                                 | 4     | 38094             | 5095546.  |
|   | <ul> <li>Stencil width grows at lower levels</li> </ul>         | 5     | 16123             | 2051300.  |
|   | $\rightarrow$ 100c of poppores por row                          | 6     | 4754              | 459490.   |
|   | $\rightarrow$ 100s of nonzeros per row                          | 7     | 927               | 25760.    |
|   | → More messages per processor                                   | 8     | 138               | 506.      |
|   | → Alternative message exchange                                  | 9     | 18                | 20.       |
|   | strategy at lower levels.                                       |       |                   |           |
|   | → Rewrite <b>gs()</b>                                           |       |                   |           |

*3 exchange strategies:* 

*pairwise, all\_reduce, crystal-router* [Fox et al.,88]

## gs() times – P=131K

- *Red pairwise, green cr(), blue all\_reduce*
- Horizontal axis number of nontrivial (shared) columns in matrix
- cr() and all\_reduce > 5-10 X faster in many cases



### **Coarse-Grid Solve times on Mira**



MPI Rank

### Controlling Coarse-Grid Solve Costs – 352K pebble case

Reduce the number of times we visit the bottom of the V-cycle, i.e., the number of iterations

□ Projection onto previous timesteps

GMRES instead of Flexible CG

□ More smoothing on the fine levels

□ Note that, based on previous work, we know that we are at or a bit below the strong-scale limit: 50.5B points / 27648 = 1.83 M points per GPU

|      | NekRS St | trong Sca | le: Rod- | Bundle, | 200 Steps            |     |
|------|----------|-----------|----------|---------|----------------------|-----|
| Node | GPU      | E         | n        | n/P     | $t_{\text{step}}[s]$ | Eff |
| 1810 | 10860    | 175M      | 60B      | 5.5M    | 1.85e-01             | 100 |
| 2536 | 15216    | 175M      | 60B      | 3.9M    | 1.51e-01             | 87  |
| 3620 | 21720    | 175M      | 60B      | 2.7M    | 1.12e-01             | 82  |
| 4180 | 25080    | 175M      | 60B      | 2.4M    | 1.12e-01             | 71  |
| 4608 | 27648    | 175M      | 60B      | 2.1M    | 1.03e-01             | 70  |

NekRS, a GPU-Accelerated Spectral Element Navier-Stokes Solver <u>Paul Fischer</u>, <u>Stefan Kerkemeier</u>, <u>Misun Min</u>, <u>Yu-Hsiana</u> Lan, <u>Malachi Phillips</u>, <u>Thilina Rathnayake</u>, <u>Elia Merzari</u>, <u>Ananias Tomboulides</u>, <u>Ali Karakus</u>, <u>Noel Chalmers</u>, <u>Tim Warburton</u>







|                |        | Major Algorithmic Va | riations | , 352K | Pebbles    | s, P=27 | 7648  |                   |
|----------------|--------|----------------------|----------|--------|------------|---------|-------|-------------------|
| Case           | Solver | Smoother             | L        | $N_q$  | $\Delta t$ | $v_i$   | $p_i$ | t <sub>step</sub> |
| (a)            | FlexCG | 1-Cheb-ASM:851       | 8        | 13     | 4e-4       | 3.6     | 22.8  | .68               |
| (b)            | FlexCG | 2-Cheb-Jac:851       | 8        | 13     | 4e-4       | 3.6     | 17.5  | .557              |
| (c)            | **     | 2-Cheb-ASM:851       | 8        | 13     | 4e-4       | 3.6     | 12.8  | .468              |
| (d.8)          | **     | 2-Cheb-ASM:8641      | 8        | 13     | 4e-4       | 3.6     | 9.1   | .426              |
| (d. <i>L</i> ) | **     | 2-Cheb-ASM:8641      | 0–30     | 13     | 4e-4       | 3.6     | 5.6   | .299              |
| (e)            | GMRES  | 11                   | 30       | 13     | 4e-4       | 3.5     | 4.6   | .240              |
| (f)            | **     | 11                   | 30       | 11     | 8e-4       | 5.7     | 7.2   | .376              |
| (g)            | "      | 11                   | 30       | 11     | 8e-4       | 5.7     | 7.2   | .361 (no I/O)     |







### Controlling Coarse-Grid Solve Costs – 352K pebble case

| NekRS  | S Strong S         | cale: 352          | 2K peb                 | bles, E=           | <b>98M,</b> <i>n</i> :   | =50B  |
|--------|--------------------|--------------------|------------------------|--------------------|--------------------------|-------|
| N =    | 8, $N_q = 13$      | , $\Delta t = 4.6$ | <b>e-4,</b> <i>L</i> = | = 8 <b>, 1-C</b> l | heb-Jac:                 | 851   |
| Node   | GPU                | n/P                | $v_i$                  | $p_i$              | <i>t</i> <sub>step</sub> | Eff   |
| 1536   | 9216               | 5.4M               | 3.6                    | 17.3               | .97                      | 1.00  |
| 2304   | 13824              | 3.6M               | 3.6                    | 18.0               | .84                      | 76.9  |
| 3072   | 18432              | 2.7M               | 3.6                    | 16.6               | .75                      | 64.6  |
| 3840   | 23040              | 2.1M               | 3.6                    | 19.6               | .67                      | 57.9  |
| 4608   | 27648              | 1.8M               | 3.6                    | 17.5               | .55                      | 58.7  |
| N=8    | $N_q = 13$ ,       | $\Delta t = 4.e$   | <b>-4,</b> <i>L</i> =  | 8, 1-Ch            | eb-ASM                   | :851  |
| Node   | GPU                | n/P                | $v_i$                  | $p_i$              | <i>t</i> <sub>step</sub> | Eff   |
| 1536   | 9216               | 5.4M               | 3.6                    | 11.6               | .81                      | 100   |
| 2304   | 13824              | 3.6M               | 3.6                    | 12.3               | .65                      | 83.0  |
| 3072   | 18432              | 2.7M               | 3.6                    | 12.3               | .71                      | 57.0  |
| 3840   | 23040              | 2.1M               | 3.6                    | 13.5               | .54                      | 60.0  |
| 4608   | 27648              | 1.8M               | 3.6                    | 12.8               | .46                      | 58.6  |
| N = 8, | $N_q = 11, \Delta$ | $\Delta t = 8.e-t$ | <b>4,</b> <i>L</i> = 3 | 30 <b>, 2-Ch</b>   | eb-ASM                   | :8641 |
| Node   | GPU                | n/P                | $v_i$                  | $p_i$              | <i>t</i> <sub>step</sub> | Eff   |
| 1536   | 9216               | 5.4M               | -                      | -                  | -                        | -     |
| 2304   | 13824              | 3.6M               | 5.7                    | 7.2                | .55                      | 100   |
| 3072   | 18432              | 2.7M               | 5.7                    | 7.2                | .56                      | 73.6  |
| 3840   | 23040              | 2.1M               | 5.7                    | 7.2                | .39                      | 84.6  |
| 4608   | 27648              | 1.8M               | 5.7                    | 7.2                | .36                      | 76.3  |









### Controlling Coarse-Grid Solve Costs – 352K pebble case

**Summary**:

- □ Projection / GMRES quite important
- □ More smoothing is better at scale, to take pressure off coarse grid solve
- □I/O rates: output snapshots (32bit) ~ 4TB , 40 seconds per output (100X step time).

Bottom line:

Total flow-through time for full core is only 6 hours of wall-clock time on Summit!









| FI | DM FP32 I | Kernel Perf | ormance (G | FLOPS)    |
|----|-----------|-------------|------------|-----------|
|    | A100      | MI250X      | A100       | MI250X    |
| p  | pre-tune  | pre-tune    | post-tune  | post-tune |
| 3  | 1542      | 1032        | 2731       | 2774      |
| 4  | 2362      | 575         | 3735       | 3251      |
| 5  | 2835      | 2372        | 4352       | 4151      |
| 6  | 3130      | 653         | 5147       | 4775      |
| 7  | 2833      | 2849        | 5572       | 4346      |
| 8  | 4039      | 630         | 6866       | 5433      |
| 9  | 4979      | 2723        | 7044       | 5029      |
| 10 | 4745      | 621         | 8200       | 5334      |
| 11 | 5167      | 2375        | 8232       | 4742      |
| 12 | 4660      | 549         | 8294       | 5072      |

#### Tuning Results for FP32 Fast-Diagonalization-Method: T. Warburton

From NekRS logfile:

| Ax:  | N=7 | FP64 | GB/s= | 997.573  | GFLOPS= 1730.2 | kernel=4 |
|------|-----|------|-------|----------|----------------|----------|
| Ax:  | N=7 | FP64 | GB/s= | 997.311  | GFLOPS= 1729.7 | kernel=4 |
| Ax:  | N=7 | FP32 | GB/s= | 1010.990 | GFLOPS= 3506.9 | kernel=2 |
| Ax:  | N=3 | FP64 | GB/s= | 691.006  | GFLOPS= 680.2  | kernel=0 |
| Ax:  | N=3 | FP32 | GB/s= | 696.434  | GFLOPS= 1371.1 | kernel=1 |
| fdm: | N=9 | FP32 | GB/s= | 601.657  | GFLOPS= 5515.2 | kernel=3 |
| fdm: | N=5 | FP32 | GB/s= | 670.688  | GFLOPS= 3497.2 | kernel=2 |

□ NekRS picks the optimal kernel at runtime, for each pMG order (e.g., N=7, 5, 3)









GPU Strong Scaling: 17x17 rods (E=470900, n=161M)





#### **ExaSMR:** Performance on Crusher (vs. A100, V100)

#### Crusher, $n_{0.8} = 4 M$

*Perlmutter,*  $n_{0.8} = 2.9 M$ 

#### ThetaGPU, $n_{0.8} = 6.7 M$

#### *Summit, n*<sub>0.8</sub> = 1.92 *M*

| Node                                                                                                                             | Ranks                                                                                                                | n/rank                                                                                                               | tstep                                                                                                                | eff                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1.00e+00                                                                                                                         | 8.00e+00                                                                                                             | 2.01e+07                                                                                                             | 3.17e-01                                                                                                             | 1.00e+00                                                                                                                         |
| 2.00e+00                                                                                                                         | 1.60e+01                                                                                                             | 1.00e+07                                                                                                             | 1.66e-01                                                                                                             | 9.56e-01                                                                                                                         |
| 3.00e+00                                                                                                                         | 2.40e+01                                                                                                             | 6.72e+06                                                                                                             | 1.14e-01                                                                                                             | 9.22e-01                                                                                                                         |
| 4.00e+00                                                                                                                         | 3.20e+01                                                                                                             | 5.04e+06                                                                                                             | 9.02e-02                                                                                                             | 8.79e-01                                                                                                                         |
| 5.00e+00                                                                                                                         | 4.00e+01                                                                                                             | 4.03e+06                                                                                                             | 7.48e-02                                                                                                             | 8.48e-01                                                                                                                         |
| 6.00e+00                                                                                                                         | 4.80e+01                                                                                                             | 3.36e+06                                                                                                             | 6.49e-02                                                                                                             | 8.15e-01                                                                                                                         |
| 7.00e+00                                                                                                                         | 5.60e+01                                                                                                             | 2.88e+06                                                                                                             | 5.84e-02                                                                                                             | 7.75e-01                                                                                                                         |
| 8.00e+00                                                                                                                         | 6.40e+01                                                                                                             | 2.52e+06                                                                                                             | 5.16e-02                                                                                                             | 7.68e-01                                                                                                                         |
| 9.00e+00                                                                                                                         | 7.20e+01                                                                                                             | 2.24e+06                                                                                                             | 5.01e-02                                                                                                             | 7.02e-01                                                                                                                         |
| 1.00e+01                                                                                                                         | 8.00e+01                                                                                                             | 2.01e+06                                                                                                             | 4.53e-02                                                                                                             | 7.00e-01                                                                                                                         |
| 1.10e+01                                                                                                                         | 8.80e+01                                                                                                             | 1.83e+06                                                                                                             | 4.33e-02                                                                                                             | 6.65e-01                                                                                                                         |
| 1.20e+01                                                                                                                         | 9.60e+01                                                                                                             | 1.68e+06                                                                                                             | 3.93e-02                                                                                                             | 6.72e-01                                                                                                                         |
| 1.60e+01                                                                                                                         | 1.28e+02                                                                                                             | 1.26e+06                                                                                                             | 3.31e-02                                                                                                             | 5.97e-01                                                                                                                         |
| 2.00e+01                                                                                                                         | 1.60e+02                                                                                                             | 1.00e+06                                                                                                             | 3.08e-02                                                                                                             | 5.14e-01                                                                                                                         |
| 2.50e+01                                                                                                                         | 2.00e+02                                                                                                             | 8.07e+05                                                                                                             | 2.86e-02                                                                                                             | 4.43e-01                                                                                                                         |
| 3.00e+01                                                                                                                         | 2.40e+02                                                                                                             | 6.72e+05                                                                                                             | 2.61e-02                                                                                                             | 4.05e-01                                                                                                                         |
| 3.50e+01                                                                                                                         | 2.80e+02                                                                                                             | 5.76e+05                                                                                                             | 2.75e-02                                                                                                             | 3.29e-01                                                                                                                         |
| 4.00e+01                                                                                                                         | 3.20e+02                                                                                                             | 5.04e+05                                                                                                             | 2.43e-02                                                                                                             | 3.26e-01                                                                                                                         |
| 5.00e+01                                                                                                                         | 4.00e+02                                                                                                             | 4.03e+05                                                                                                             | 2.26e-02                                                                                                             | 2.80e-01                                                                                                                         |
| sher: moc                                                                                                                        | (rank,8)\=0                                                                                                          | 9                                                                                                                    |                                                                                                                      |                                                                                                                                  |
| 1 500+00                                                                                                                         | 1.20e+01                                                                                                             | 1 3/0+07                                                                                                             | 4 130-01                                                                                                             | 1.000+00                                                                                                                         |
| 1.000+00                                                                                                                         |                                                                                                                      | 1.346+07                                                                                                             | 4.136-01                                                                                                             | 1.000.00                                                                                                                         |
| 2.50e+00                                                                                                                         | 2.00e+01                                                                                                             | 8.07e+06                                                                                                             | 2.52e-01                                                                                                             | 9.83e-01                                                                                                                         |
| 2.50e+00<br>3.50e+00                                                                                                             | 2.00e+01<br>2.80e+01                                                                                                 | 8.07e+06<br>5.76e+06                                                                                                 | 2.52e-01<br>1.87e-01                                                                                                 | 9.83e-01<br>9.46e-01                                                                                                             |
| 2.50e+00<br>3.50e+00<br>4.50e+00                                                                                                 | 2.00e+01<br>2.80e+01<br>3.60e+01                                                                                     | 8.07e+06<br>5.76e+06<br>4.48e+06                                                                                     | 2.52e-01<br>1.87e-01<br>1.47e-01                                                                                     | 9.83e-01<br>9.46e-01<br>9.35e-01                                                                                                 |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00                                                                                     | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01                                                                         | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06                                                                         | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01                                                                         | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01                                                                                     |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00                                                                         | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01                                                             | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06                                                             | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.07e-01                                                             | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01                                                                         |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00<br>6.75e+00                                                             | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>5.40e+01                                                 | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06<br>2.99e+06                                                 | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.07e-01<br>1.03e-01                                                 | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01                                                             |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00<br>6.75e+00<br>1.05e+01                                                 | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>5.40e+01<br>8.40e+01                                     | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06<br>2.99e+06<br>1.92e+06                                     | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.07e-01<br>1.03e-01<br>7.21e-02                                     | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01<br>8.19e-01                                                 |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00<br>6.75e+00<br>1.05e+01<br>1.15e+01                                     | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>5.40e+01<br>8.40e+01<br>9.20e+01                         | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06<br>2.99e+06<br>1.92e+06<br>1.75e+06                         | 1.13e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.07e-01<br>1.03e-01<br>7.21e-02<br>6.83e-02                         | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01<br>8.19e-01<br>7.89e-01                                     |
| 2.50e+00<br>3.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00<br>6.75e+00<br>1.05e+01<br>1.15e+01<br>2.75e+01                         | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>5.40e+01<br>8.40e+01<br>9.20e+01<br>2.20e+02             | 8.07e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06<br>2.99e+06<br>1.92e+06<br>1.75e+06<br>7.34e+05             | 1.13e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.07e-01<br>1.03e-01<br>7.21e-02<br>6.83e-02<br>3.85e-02             | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01<br>8.19e-01<br>7.89e-01<br>5.84e-01                         |
| 2.50e+00<br>3.50e+00<br>6.25e+00<br>6.50e+00<br>6.50e+00<br>6.75e+00<br>1.05e+01<br>1.15e+01<br>2.75e+01<br>3.25e+01             | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>8.40e+01<br>9.20e+01<br>2.20e+01<br>2.20e+02<br>2.60e+02 | 1.34e+06<br>5.76e+06<br>4.48e+06<br>3.23e+06<br>3.10e+06<br>2.99e+06<br>1.92e+06<br>1.75e+06<br>7.34e+05<br>6.21e+05 | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.07e-01<br>1.03e-01<br>7.21e-02<br>6.83e-02<br>3.85e-02<br>3.72e-02             | 9.83e-01<br>9.46e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01<br>8.19e-01<br>7.89e-01<br>5.84e-01<br>5.12e-01             |
| 2.50e+00<br>2.50e+00<br>4.50e+00<br>6.25e+00<br>6.50e+00<br>6.75e+00<br>1.05e+01<br>1.15e+01<br>2.75e+01<br>3.25e+01<br>4.75e+01 | 2.00e+01<br>2.80e+01<br>3.60e+01<br>5.00e+01<br>5.20e+01<br>8.40e+01<br>9.20e+01<br>2.20e+01<br>2.60e+02<br>3.80e+02 | 1.34e+06<br>5.76e+06<br>4.48e+06<br>3.10e+06<br>2.99e+06<br>1.92e+06<br>1.92e+06<br>7.34e+05<br>6.21e+05<br>4.25e+05 | 2.52e-01<br>1.87e-01<br>1.47e-01<br>1.12e-01<br>1.03e-01<br>7.21e-02<br>6.83e-02<br>3.85e-02<br>3.72e-02<br>3.13e-02 | 9.83e-01<br>9.35e-01<br>9.35e-01<br>8.79e-01<br>8.86e-01<br>8.85e-01<br>8.19e-01<br>5.84e-01<br>5.84e-01<br>5.12e-01<br>4.16e-01 |

| rlmutter a | 100:     |          |          |          |
|------------|----------|----------|----------|----------|
| Node       | Ranks    | n/rank   | tstep    | eff      |
| 1.50e+00   | 1.20e+01 | 1.34e+07 | 1.45e-01 | 1.00e+00 |
| 2.00e+00   | 1.60e+01 | 1.00e+07 | 1.10e-01 | 9.82e-01 |
| 2.50e+00   | 2.00e+01 | 8.07e+06 | 9.03e-02 | 9.62e-01 |
| 3.00e+00   | 2.40e+01 | 6.72e+06 | 7.68e-02 | 9.43e-01 |
| 3.50e+00   | 2.80e+01 | 5.76e+06 | 6.70e-02 | 9.26e-01 |
| 4.00e+00   | 3.20e+01 | 5.04e+06 | 5.89e-02 | 9.22e-01 |
| 4.50e+00   | 3.60e+01 | 4.48e+06 | 5.43e-02 | 8.88e-01 |
| 5.00e+00   | 4.00e+01 | 4.03e+06 | 4.95e-02 | 8.77e-01 |
| 6.00e+00   | 4.80e+01 | 3.36e+06 | 4.32e-02 | 8.38e-01 |
| 6.50e+00   | 5.20e+01 | 3.10e+06 | 4.09e-02 | 8.17e-01 |
| 7.00e+00   | 5.60e+01 | 2.88e+06 | 3.79e-02 | 8.19e-01 |
| 8.00e+00   | 6.40e+01 | 2.52e+06 | 3.45e-02 | 7.87e-01 |
| 9.00e+00   | 7.20e+01 | 2.24e+06 | 3.17e-02 | 7.60e-01 |
| 1.00e+01   | 8.00e+01 | 2.01e+06 | 2.99e-02 | 7.26e-01 |
| 1.05e+01   | 8.40e+01 | 1.92e+06 | 3.07e-02 | 6.73e-01 |
| 1.10e+01   | 8.80e+01 | 1.83e+06 | 2.78e-02 | 7.09e-01 |
| 1.15e+01   | 9.20e+01 | 1.75e+06 | 2.71e-02 | 6.97e-01 |
| 1.20e+01   | 9.60e+01 | 1.68e+06 | 2.86e-02 | 6.31e-01 |
| 1.60e+01   | 1.28e+02 | 1.26e+06 | 2.18e-02 | 6.23e-01 |
| 2.00e+01   | 1.60e+02 | 1.00e+06 | 2.02e-02 | 5.37e-01 |
| 2.50e+01   | 2.00e+02 | 8.07e+05 | 1.93e-02 | 4.50e-01 |
| 2.75e+01   | 2.20e+02 | 7.34e+05 | 2.19e-02 | 3.61e-01 |
| 3.00e+01   | 2.40e+02 | 6.72e+05 | 2.03e-02 | 3.55e-01 |
| 3.25e+01   | 2.60e+02 | 6.21e+05 | 1.88e-02 | 3.56e-01 |
| 3.50e+01   | 2.80e+02 | 5.76e+05 | 1.84e-02 | 3.37e-01 |
| 4.00e+01   | 3.20e+02 | 5.04e+05 | 1.89e-02 | 2.87e-01 |
| 4.75e+01   | 3.80e+02 | 4.25e+05 | 1.51e-02 | 3.01e-01 |
| 5.00e+01   | 4.00e+02 | 4.03e+05 | 1.49e-02 | 2.91e-01 |
| 5.25e+01   | 4.20e+02 | 3.84e+05 | 1.78e-02 | 2.31e-01 |

|    | tstep    | eff      |
|----|----------|----------|
| 07 | 1.45e-01 | 1.00e+00 |
| 07 | 1.10e-01 | 9.82e-01 |
| 06 | 9.03e-02 | 9.62e-01 |
| 06 | 7.68e-02 | 9.43e-01 |
| 06 | 6.70e-02 | 9.26e-01 |
| 06 | 5.89e-02 | 9.22e-01 |
| 06 | 5.43e-02 | 8.88e-01 |
| 06 | 4.95e-02 | 8.77e-01 |
| 06 | 4.32e-02 | 8.38e-01 |
| 06 | 4.09e-02 | 8.17e-01 |
| 06 | 3.79e-02 | 8.19e-01 |
| 06 | 3.45e-02 | 7.87e-01 |
| 06 | 3.17e-02 | 7.60e-01 |
| 06 | 2.99e-02 | 7.26e-01 |
| 06 | 3.07e-02 | 6.73e-01 |
| 06 | 2.78e-02 | 7.09e-01 |
| 06 | 2.71e-02 | 6.97e-01 |
| 06 | 2.86e-02 | 6.31e-01 |
| 06 | 2.18e-02 | 6.23e-01 |
| 06 | 2.02e-02 | 5.37e-01 |
| 05 | 1.93e-02 | 4.50e-01 |
| 05 | 2.19e-02 | 3.61e-01 |
| 05 | 2.03e-02 | 3.55e-01 |
| 05 | 1.88e-02 | 3.56e-01 |
| 05 | 1.84e-02 | 3.37e-01 |
| 05 | 1.89e-02 | 2.87e-01 |
| 05 | 1.51e-02 | 3.01e-01 |
| 05 | 1.49e-02 | 2.91e-01 |
| 05 | 1.78e-02 | 2.31e-01 |

|          |          |          | summit v100 | [16GB node | s]:      |          |          |
|----------|----------|----------|-------------|------------|----------|----------|----------|
| n/rank   | tstep    | eff      | Node        | Ranks      | n/rank   | tstep    | eff      |
| 1.34e+07 | 1.51e-01 | 1.00e+00 | 5.00e+00    | 3.00e+01   | 5.38e+06 | 1.10e-01 | 1.00e+00 |
| 1.24e+07 | 1.40e-01 | 9.92e-01 | 5.33e+00    | 3.20e+01   | 5.04e+06 | 1.03e-01 | 1.00e+00 |
| 1.15e+07 | 1.34e-01 | 9.68e-01 | 6.00e+00    | 3.60e+01   | 4.48e+06 | 9.49e-02 | 9.74e-01 |
| 1.00e+07 | 1.20e-01 | 9.44e-01 | 6.66e+00    | 4.00e+01   | 4.03e+06 | 8.54e-02 | 9.74e-01 |
| B.97e+06 | 1.10e-01 | 9.10e-01 | 8.00e+00    | 4.80e+01   | 3.36e+06 | 7.36e-02 | 9.41e-01 |
| B.07e+06 | 1.02e-01 | 8.84e-01 | 1.00e+01    | 6.00e+01   | 2.69e+06 | 6.14e-02 | 9.02e-01 |
| 5.72e+06 | 9.27e-02 | 8.16e-01 | 1.20e+01    | 7.20e+01   | 2.24e+06 | 5.43e-02 | 8.51e-01 |
| 5.76e+06 | 7.88e-02 | 8.24e-01 | 1.40e+01    | 8.40e+01   | 1.92e+06 | 4.89e-02 | 8.10e-01 |
| 5.04e+06 | 6.74e-02 | 8.41e-01 | 1.60e+01    | 9.60e+01   | 1.68e+06 | 4.41e-02 | 7.85e-01 |
| 3.36e+06 | 5.16e-02 | 7.33e-01 | 1.80e+01    | 1.08e+02   | 1.49e+06 | 4.28e-02 | 7.18e-01 |
| 2.52e+06 | 4.43e-02 | 6.41e-01 | 2.00e+01    | 1.20e+02   | 1.34e+06 | 3.85e-02 | 7.19e-01 |
| 2.01e+06 | 3.94e-02 | 5.76e-01 | 2.20e+01    | 1.32e+02   | 1.22e+06 | 3.70e-02 | 6.80e-01 |
| .68e+06  | 3.90e-02 | 4.84e-01 | 2.40e+01    | 1.44e+02   | 1.12e+06 | 3.62e-02 | 6.38e-01 |
| .44e+06  | 3.89e-02 | 4.16e-01 | 2.80e+01    | 1.68e+02   | 9.61e+05 | 3.41e-02 | 5.81e-01 |
| .26e+06  | 3.36e-02 | 4.22e-01 | 3.00e+01    | 1.80e+02   | 8.97e+05 | 3.31e-02 | 5.58e-01 |
|          |          |          | 3.15e+01    | 1.89e+02   | 8.54e+05 | 3.33e-02 | 5.27e-01 |
|          |          |          |             |            |          |          |          |
|          |          |          | summit v100 | [32GB node | s]:      |          |          |
|          |          |          |             |            |          |          |          |
|          |          |          | 2.50e+00    | 1.50e+01   | 1.07e+07 | 2.28e-01 | 1.00e+00 |
|          |          |          | 2.66e+00    | 1.60e+01   | 1.00e+07 | 2.12e-01 | 1.00e+00 |
|          |          |          | 3.00e+00    | 1.80e+01   | 8.97e+06 | 1.91e-01 | 9.94e-01 |
|          |          |          | 3.33e+00    | 2.00e+01   | 8.07e+06 | 1.73e-01 | 9.85e-01 |
|          |          |          | 4.00e+00    | 2.40e+01   | 6.72e+06 | 1.48e-01 | 9.59e-01 |
|          |          |          | 4.66e+00    | 2.80e+01   | 5.76e+06 | 1.29e-01 | 9.44e-01 |
|          |          |          | 5.00e+00    | 3.00e+01   | 5.38e+06 | 1.23e-01 | 9.25e-01 |
|          |          |          | 6.00e+00    | 3.60e+01   | 4.48e+06 | 1.04e-01 | 9.10e-01 |
|          |          |          | 7.00e+00    | 4.20e+01   | 3.84e+06 | 9.26e-02 | 8.79e-01 |
|          |          |          |             |            |          |          |          |

| .20e+01  | 7.20e+01    | 2.24e+06 | 5.43e-02 | 8.51e-01 |
|----------|-------------|----------|----------|----------|
| .40e+01  | 8.40e+01    | 1.92e+06 | 4.89e-02 | 8.10e-01 |
| 60e+01   | 9.60e+01    | 1.68e+06 | 4.41e-02 | 7.85e-01 |
| .80e+01  | 1.08e+02    | 1.49e+06 | 4.28e-02 | 7.18e-01 |
| 2.00e+01 | 1.20e+02    | 1.34e+06 | 3.85e-02 | 7.19e-01 |
| 2.20e+01 | 1.32e+02    | 1.22e+06 | 3.70e-02 | 6.80e-01 |
| 2.40e+01 | 1.44e+02    | 1.12e+06 | 3.62e-02 | 6.38e-01 |
| 2.80e+01 | 1.68e+02    | 9.61e+05 | 3.41e-02 | 5.81e-01 |
| 8.00e+01 | 1.80e+02    | 8.97e+05 | 3.31e-02 | 5.58e-01 |
| 8.15e+01 | 1.89e+02    | 8.54e+05 | 3.33e-02 | 5.27e-01 |
|          |             |          |          |          |
|          |             |          |          |          |
| nit v100 | [32GB nodes | s]:      |          |          |
|          |             |          |          |          |
|          |             |          |          |          |
| 2.50e+00 | 1.50e+01    | 1.07e+07 | 2.28e-01 | 1.00e+00 |
| 2.66e+00 | 1.60e+01    | 1.00e+07 | 2.12e-01 | 1.00e+00 |
| 8.00e+00 | 1.80e+01    | 8.97e+06 | 1.91e-01 | 9.94e-01 |
| 3.33e+00 | 2.00e+01    | 8.07e+06 | 1.73e-01 | 9.85e-01 |
| 000+00   | 2 400+01    | 6 720+06 | 1 480-01 | 0 500-01 |

ThetaGPU: 0.91 TFLOPs/GPU, aggregate Crusher: 0.64 TFLOPs Summit: 0.48 TFLOPs

### Answering a Common Question: How long will my job take?



Direct numerical simulation of flow over a full NACA4412 wing at  $Re_c = 400\ 000$ 

- DNS with Nek5000
- *Re*<sub>τ</sub>=400, *Re*<sub>θ</sub>=2800
- AoA=5 deg.
- $z_L$ =10% chord



Consider this hero calculation from a few years ago.

□ How many A100s?

How many A100 hours?

How many node hours?

1000 A100s
 Each ~300X a CPU
 110K GPU hours
 110 wall clock hours





### Conclusions

Overview of scaling issues for Navier-Stokes

Users are most likely to operate around 80% efficiency (give or take...)

Several preconditioners

□Importance of the coarse-grid solve (e.g., modify solution approach)

The new machines are in fact delivering about 3X performance at the strong-scale limit:
 New preconditioners (Cheby-RAS/ASM)
 Highly-tuned OCCA kernels
 Overlapped communication/computation
 Mixed-precision preconditioners
 On-the-fly tuning, everywhere.

### Thank you for your attention!





### **Schwarz-Based Nonconforming Methods**

- Independent NS solves on distinct MPI communicators
  - prototype GPU port by Neil Lindquist & Misun Min
    - production version in NekRS V22.1
- Requires scalable general interpolation, *findpts()* [Lottes 2010]
- Extremely useful for
  - domains with relative twist
  - domains where two or more complex mesh topologies meet
  - domains with rapid variation in resolution requirements
  - rotating machinery





James Lottes, Optimal Polynomial Smoothers for Multigrid V-cycles, ArXiv, 2022.









### Outline:

- **0.** Introduction (preceding slides)
- 1. Mathematical Background
  - Discretization SEM
  - Navier-Stokes timestepping
  - Pressure Poisson Problem & Preconditioning
- 2. Parallel Computing Concerns
  - □ Scalability ←→ Speed











### For HPC (exascale) systems, both MDOFS and n<sub>0.8</sub> are important



- □ On GPUs, can obviously realize high MDOFS (with significant effort)
- **\Box** Low  $n_{0.8}$  is more challenging even on one GPU!
- □ In NekRS (and CEED in general), seek ways to reduce ( $n_{0.8}$  / MDOFS) algorithmically and through vendor interactions (ECP co-design).

<sup>1</sup> M. Otten, J. Gong, A. Mametjanov, A. Vose, J. Levesque, P. Fischer, and M. Min. An MPI/OpenACC implementation of a high order electromagnetics solver with GPUDirect communication. *Int. J. High Perf. Comput. Appl.*, 2016.

<sup>2</sup> P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.S. Camier, M. Kronbichler, T. Warburton, K. Swirydowicz, and J. Brown. Scalability of high-performance PDE solvers. *Int. J. of High Perf. Comp. Appl.*, 34(5):562–586, 2020.







### GPU Developments (NekRS)

- ☐ Highly-tuned kernels<sup>\*</sup> sustaining 1-2 TFLOPS on V100 (w/o communication)
- Overlapped computation/communication
- □ Auto-tuned communication (similar to Nek5000/CEM gslib)
- □ 32-bit preconditioners to reduce communication overhead
- □ Extensive suite of multilevel preconditioners for pressure Poisson problem
- □ Extensive (and growing) support for multi-physics problems
- □ Scalable parallel I/O
- □ Ported to multiple GPUs (V100, A100, MI100, ...)

Initial OCCA kernel development from libparanumal library out of Tim Warburton's group at V.Tech.



### GFLOPS

| E=4096          | V100   | A100 |
|-----------------|--------|------|
| AxHelm-BK5      |        |      |
| 9               | 1406   | 2207 |
| 7               | 1280   | 2132 |
| 5               | 876    | 1287 |
|                 |        |      |
| AxHelm-BK5 FP32 |        |      |
| 9               | 2584   | 3936 |
| 7               | 2350   | 3978 |
| 5               | 5 1440 | 2556 |
|                 |        |      |
| advSub          |        |      |
| 9               | 2701   | 3147 |
| 7               | 2800   | 3800 |
| 5               | 2702   | 3158 |
|                 |        |      |
| FDM FP32        |        |      |
| 9               | 3954   | 5092 |
| - 7             | 2210   | 2870 |
| <u>1</u>        | 1847   | 2475 |





| <b>Spacer-Grid DNS Performance on Mira vs. Summit,</b> $E = 3235953$ , $N = 7$ , $n = 1.10B$ |         |        |      |        |     |        |        |               |     |   |
|----------------------------------------------------------------------------------------------|---------|--------|------|--------|-----|--------|--------|---------------|-----|---|
| System                                                                                       | Code    | Device | Node | Rank   | R/N | E/Rank | n/Rank | $t_{step}(s)$ | Eff |   |
| Mira                                                                                         | Nek5000 | CPU    | 8192 | 262144 | 32  | 12     | 4116   | 6.90e-01      | 100 | ] |
|                                                                                              |         |        | 38   | 1596   | 42  | 2027   | 695446 | 1.68e+01      | 100 | ] |
| Summit                                                                                       | Nek5000 | CPU    | 76   | 3192   | 42  | 1013   | 347723 | 0.50e+01      | 106 |   |
|                                                                                              |         |        | 152  | 6384   | 42  | 506    | 173861 | 0.23e+01      | 114 |   |
|                                                                                              |         |        | 304  | 12768  | 42  | 253    | 86930  | 0.11e+01      | 120 |   |
|                                                                                              |         |        | 38   | 228    | 6   | 14193  | 4.8M   | 2.75e-01      | 100 | ] |
| Summit                                                                                       | NekRS   | GPU    | 60   | 360    | 6   | 8988   | 3.0M   | 1.92e-01      | 90  | 1 |
|                                                                                              |         |        | 76   | 456    | 6   | 7096   | 2.4M   | 1.64e-01      | 84  |   |
|                                                                                              |         |        | 98   | 588    | 6   | 5503   | 1.8M   | 1.39e-01      | 77  |   |

**Code is running fastest at strong-scale limit (large processor count, parallel efficiency~0.8)** 

□ For Navier-Stokes, Summit is faster at the strong-scale limit than Mira (surprisingly).

### **ExaSMR: 17x17 Rod-Bundle Performance**

#### Strong- and Weak-Scaling on ORNL Summit



Performance on Full Summit

Office of

Science

| NekRS Strong Scale: Rod-Bundle, 200 Steps |         |           |          |           |                   |     |  |  |  |
|-------------------------------------------|---------|-----------|----------|-----------|-------------------|-----|--|--|--|
| Node                                      | GPU     | E         | п        | n/P       | $t_{\rm step}[s]$ | Eff |  |  |  |
| 1810                                      | 10860   | 175M      | 60B      | 5.5M      | 1.85e-01          | 100 |  |  |  |
| 2536                                      | 15216   | 175M      | 60B      | 3.9M      | 1.51e-01          | 87  |  |  |  |
| 3620                                      | 21720   | 175M      | 60B      | 2.7M      | 1.12e-01          | 82  |  |  |  |
| 4180                                      | 25080   | 175M      | 60B      | 2.4M      | 1.12e-01          | 71  |  |  |  |
| 4608                                      | 27648   | 175M      | 60B      | 2.1M      | 1.03e-01          | 70  |  |  |  |
|                                           | NekRS V | Veak Scal | e: Rod-I | Bundle, 2 | 200 Steps         |     |  |  |  |
| Node                                      | GPU     | E         | п        | n/P       | $t_{\rm step}[s]$ | Eff |  |  |  |
| 87                                        | 522     | 3M        | 1.1B     | 2.1M      | 8.57e-02          | 100 |  |  |  |
| 320                                       | 1920    | 12M       | 4.1B     | 2.1M      | 8.67e-02          | 99  |  |  |  |
| 800                                       | 4800    | 30M       | 10B      | 2.1M      | 9.11e-02          | 94  |  |  |  |
| 1600                                      | 9600    | 60M       | 20B      | 2.1M      | 9.33e-02          | 92  |  |  |  |
| 3200                                      | 19200   | 121M      | 41B      | 2.1M      | 9.71e-02          | 88  |  |  |  |
| 4608                                      | 27648   | 175M      | 60B      | 2.1M      | 1.03e-01          | 83  |  |  |  |





### *NekRS on Summit: 352,000-Pebble Bed – 27648 V100s*

#### Y.Lan, M.Min, E. Merzari



Figure 8: Turbulent flow in an annular packed bed with  $\mathcal{N} = 352625$  spheres meshed with E = 98,782,067 spectral elements of order N = 8 (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using 27648 V100s on Summit. The average number of pressure iterations per step is 6.

| NekRS Per-Step Timing Breakdown: n=51B |          |                      |             |     |  |  |  |
|----------------------------------------|----------|----------------------|-------------|-----|--|--|--|
|                                        | pre-tun  | $\operatorname{ing}$ | post-tuning |     |  |  |  |
| Operation                              | time (s) | %                    | time (s)    | %   |  |  |  |
| computation                            | 5.95-01  | 100                  | 2.74-01     | 100 |  |  |  |
| advection                              | 2.91-02  | 5                    | 2.25-02     | 8   |  |  |  |
| viscous update                         | 2.69-02  | 5                    | 2.99-02     | 11  |  |  |  |
| pressure solve                         | 5.40-01  | 90                   | 2.19-01     | 80  |  |  |  |
| precond.                               | 4.65-01  | 78                   | 18.4-01     | 67  |  |  |  |
| coarse grid                            | 2.70-01  | 45                   | 3.02-02     | 11  |  |  |  |
| projection                             | 3.39-03  | 1                    | 6.05-03     | 2   |  |  |  |
| $\operatorname{dotp}$                  | 2.46-02  | 4                    | 9.60-03     | 4   |  |  |  |

#### **Initial Formulation:**

- 45% of the time in the coarse-grid solve
- Alleviate coarse-grid pressure by improving fine-level smoother, increasing dimension of pressure-projection space, adding GMRES, etc.









#### **Result:**

- 9X reduction in coarse-grid solve overhead
- 2.2X reduction in time per step
- Only 6 hours of run-time required for full core simulation.

| Major Algorithmic Variations, 352K Pebbles, P=27648 |        |                 |      |       |            |         |       |               |  |  |
|-----------------------------------------------------|--------|-----------------|------|-------|------------|---------|-------|---------------|--|--|
| Case                                                | Solver | Smoother        | L    | $N_q$ | $\Delta t$ | $v_{i}$ | $p_i$ | $t_{ m step}$ |  |  |
| (a)                                                 | FlexCG | 1-Cheb-ASM:851  | 8    | 13    | 4e-4       | 3.6     | 22.8  | .68           |  |  |
| (b)                                                 | FlexCG | 2-Cheb-Jac:851  | 8    | 13    | 4e-4       | 3.6     | 17.5  | .557          |  |  |
| (c)                                                 | "      | 2-Cheb-ASM:851  | 8    | 13    | 4e-4       | 3.6     | 12.8  | .468          |  |  |
| (d.8)                                               | "      | 2-Cheb-ASM:8641 | 8    | 13    | 4e-4       | 3.6     | 9.1   | .426          |  |  |
| (d.L)                                               | "      | 2-Cheb-ASM:8641 | 0–30 | 13    | 4e-4       | 3.6     | 5.6   | .299          |  |  |
| (e)                                                 | GMRES  | "               | 30   | 13    | 4e-4       | 3.5     | 4.6   | .240          |  |  |
| (f)                                                 | "      | "               | 30   | 11    | 8e-4       | 5.7     | 7.2   | .376          |  |  |
| (g)                                                 | "      | "               | 30   | 11    | 8e-4       | 5.7     | 7.2   | .361 (no I/O) |  |  |









### Summary of Current HPC Landscape - Scientific Computing Perspective

Pre-exascale systems such as Summit are realizing 3X performance gains over strong-scale limit on Mira (i.e., 3X reduction in time-per-step).

□Summit enables much larger problems – 175M elements vs. 15M elements (factor of 11 in problem size)

□Summit is a 200 TFLOPS platform; 5X smaller than exascale.

Exascale will not reduce time to solution unless your job is too large for Summit, but it will make large Summit runs look small, which is good for exploring parameter spaces.









### Ramesh Balakrishnan ANL

#### E=3.14M, N=7, n = 1.08B

#### Mira:

P=524288 ranks (262144 cores) n/P = 2060 0.496 s/step (CFL ~ 0.45) 24 hour run (of several)

#### Summit:

P=528 ranks (528 V100s) n/P = 2.05M 0.146 s/step (CFL ~ 0.45) 24 hour run (of several)

### Summary:

At strong-scale limit (80% eff.)

- NekRS+Summit → 3.4X faster than Nek5000+Mira
- Requires about **10%** of Summit resources vs. **½** Mira (This result not a foregone conclusion...2020 BP Paper.)









### Local Matrix-Free Stiffness Matrix in 3D

• For a deformed spectral element,  $\Omega^{e}$ , never form local stiffness matrix.

$$A^{e}\underline{u}^{e} = \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix}^{T} \begin{pmatrix} G_{rr} & G_{rs} & G_{rt} \\ G_{rs} & G_{ss} & G_{st} \\ G_{rt} & G_{st} & G_{tt} \end{pmatrix} \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix} \underline{u}^{e}$$

$$D_r = (I \otimes I \otimes \hat{D}) \qquad G_{rs} = J \circ B \circ \left(\frac{\partial r}{\partial x}\frac{\partial s}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial s}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial s}{\partial z}\right)$$

- Through use of chain rule + GLL quadrature:
  - Matrix-free operator evaluation.
  - Operation count is only  $O(N^4)$  not  $O(N^6)$  [Orszag '80]
  - Memory access is 7n ( $G_{rr}$ ,  $G_{rs}$ , etc., are diagonal)
  - Work is dominated by matrix-matrix products involving  $D_r$ ,  $D_s$ , etc.









