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Ø Schrödinger equation   -

Ø Born-Oppenheimer approximation  - Classical treatment of atomic nuclei

Ø Computational complexity  -

Quantum Mechanics
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Density-functional theory – Kohn-Sham approach

Ø Ground-state energy is a functional of electron-density !!  (Kohn & Sham, 
1964-65)

(Variational statement)

Exchange-correlation 
functional: Model using 
LDA, GGA

Kinetic energy of non-interacting electrons: 
Computed from wave-functions of the 
resulting E-L eqn.



Density Functional Theory

Kohn-Sham eigenvalue problem:

Remarks:
Ø Ground-state energy; structure -> Range of Material Properties 

Ø The most computational intensive step in each SCF iteration is the solution 
of the eigenvalue problem
v Computational complexity scales as O(N3) 
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Self Consistent Field (SCF) iteration
(Kohn-Sham map)



Impact of Density Functional Theory
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Citations to seminal work of Walter Kohn (1964,1965)

Data compiled from Web of Science

12 of the 100 most-cited papers in scientific literature pertain to DFT! 
(Nature 514, 550 (2014))



DFT codes

Key Issues

v Lack of good parallel scalability of existing DFT codes
v Computational complexity of DFT calculations (O(N^3)) 
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~100 available DFT codes developed since 1980

Data compiled from Web of Science

Relationship to HPC

Courtesy: Anubhav Jain



Need for large scale DFT calculations
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Chemical properties of nanoparticles

Defects in Materials
Rocksalt phase formation during Litihiation of Magnetite 

He et. al, Nature Comm, 2016

Edge dislocation: 
Iyer et al. J. Mech, Phys. Solids (2015)

Screw dislocation: 
Das & Gavini J. Mech, Phys. Solids (2017)

Biological systems



DFT – Finite Element discretization

Ø Use finite-element basis for computing –
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By changing the positioning of the 
nodes the spatial resolution of 
basis can be changed/adapted

Features of FE basis

Ø Systematic convergence
v Element size
v Polynomial order

Ø Adaptive refinement
Ø Complex geometries and boundary 

conditions
Ø Potential for excellent parallel scalability

White et al. (1989); Tuschida & Tsukada (1995); Pask et 
al. (1999); Pask et al. (2001) [and many others]

But … huge degree of freedom disadvantage!



Higher (polynomial) order FE basis
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~1000x advantage by using higher-order FE basis !

I. Cu nanoparticle 
55 atoms

II. Mo periodic 
supercell w/ vacancy

53 atoms



Spatial adaptivity of the FE basis
(Motamarri et al. J Comput Phys. (2013); Motamarri et al. Comput. Phys. Commun. (2020) )

Ø Error Analysis:

Ø Optimal FE mesh: 
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System Type
pyr II dislocation

DoFs
Uniform Mesh

DoFs for 
Adaptive Mesh

1848 atom Mg 347,206,614 55,112,161

6164 atom Mg 892,047,315 179,034,231



DFT – FE discretization

Ø Discrete eigenvalue problem:

Ø Transformation to a standard eigenvalue problem:

Ø Remark:      denotes the projection of the Hamiltonian operator into a 
space spanned by Löwden orthonormalized finite-element basis
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Spectral FE basis and Gauss-Lobatto-Legendre quadrature 

Ø Spectral FE basis functions:

v Constructed from Lagrange polynomials through nodes corresponding to the roots 
of the derivatives of the Legendre polynomials and boundary nodes (GLL points)

v Upon using a Gauss-Lobatto-Legendre quadrature rule, the quadrature points 
coincide with the FE nodes

Ø Remarks:
v Transformation to standard eigenvalue problem is trivial

v The reduced order quadrature rule is only employed for the computation of the 
overlap matrix, and the full Gauss quadrature is employed to compute the 
Hamiltonian matrix.   
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Eigen-space computation: Chebyshev acceleration
(Zhou et al. J. Comput. Phys. 219 (2006); Motamarri et al. J. Comp. Phys. 253, 308-343 (2013)) 

Kohn-Sham eigenvalue problem:                                 for  k = 1,2,…N   (N ~ 1.2Ne/2)
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Unwanted SpectrumWanted Spectrum

Unwanted SpectrumWanted Spectrum

Chebyshev Filtering: 



Numerical algorithm

1. Start with initial guess for electron density and the initial 
wavefunctions

2. Compute the discrete Hamiltonian       using the input electron density

3. CF: Chebyshev filtering:

4. Orthonormalize CF basis: 

5. Rayleigh-Ritz procedure: 
v Compute projected Hamiltonian: 

v Diagonalize

v Subspace rotation: 

6. Compute electron density 

7. If  , EXIT; else, compute new using a mixing 
scheme and go to (2).
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Chebyshev Filtering

DoF

DoF 1 DoF 2 DoF

DoF 1 DoF 2

: Number of FE cells

FE Cell
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Chebyshev Filtering

Strided Batched xGEMM
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DoF 1 DoF 2

Atomic operations 
to avoid race 

conditions in addition
DoF

Chebyshev Filtering
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Blocked approach allows
overlapping compute of one
block with communication of 
another blockAssembly across processor 

boundaries: Communication
in FP32

Repeat for 



Performance of Chebyshev filtering (Summit)
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Case study: Mg 3x3x3 supercell with a vacancy. (1070 electrons)

Fig: Chebyshev filtering throughput on 2 Summit nodes 
using 12 GPUs for various block sizes. FP64 peak of 2 
Summit nodes is 87.6  TFLOPS

Fig:  20.4x GPU speed up for Chebyshev filtering. CPU run 
used 2 Summit nodes with 42 MPI tasks per node while 
GPU run used 2 Summit nodes with 12 GPUs



Orthogonalization: Cholesky Gram-Schmidt
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Ø Cholesky factorization of the overlap matrix:

Ø Orthonormal basis construction:

Blocked approach to reduce peak memory

Copy block to CPU
(if computation

performed on GPU)
MPI_Allreduce

Fill ScaLAPACK
parallelized S matrix

Mixed precision computation for 
Chol-GS

1.

2. in double precision. 

3. Orthonormal basis construction: 
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Overlapping compute and data movement on GPUs 

Execute copy and MPI calls of current block asynchronously with compute 
of the successive block.

Compute

Block i-1

Compute

Copy 

MPI call

Copy

MPI call

Compute

Copy 

MPI call

Block i Block i+1

cudaStreamWaitEvent

cudaEventSynchronize



Orthogonalization: Cholesky Gram-Schmidt
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Performance improvements due to mixed precision algorithm, and overlapping compute 
and data movement.

Case study: Mg dislocation system (61,640 electrons) using 1300 Summit nodes

Summit GPU cluster benchmark

NVVP profile snapshot



Rayleigh-Ritz procedure
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Ø Compute projected Hamiltonian:

Ø Diagonalization of

Ø Subspace rotation step: 

Subspace rotation step:

Compute projected Hamiltonian:

Mixed precision computation for RR

NfrNoc



Rayleigh-Ritz procedure
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Case study: 61,640 electrons system using 1300 Summit nodes

Summit GPU cluster benchmark

Ø Blocked approach used for memory optimization

Ø Compute and communication are overlapped taking advantage of 
blocked approach.



I. Cu nanoparticle 
5871 electrons

II. Mo periodic 
supercell w/ vacancy

6034 electrons

Accuracy and robustness of mixed precision computations

III. Mg periodic 
supercell w/ vacancy

8630 electrons

Energy error
(Ha/atom)

5 x 10-12 7 x 10-12 3 x 10-12

Max force error
(Ha/Bohr)

3 x 10-6 7 x 10-7 2 x 10-6

Total SCFs
(DP, MP)

(46,46) (30,30) (18,18)

FEM@LLNL, March 7 2023



FEM@LLNL, March 7 2023

Comparison of DFT-FE & Quantum Espresso

Ø Vacancy in BCC Mo – periodic calculation ; ONCV pseudopotential

Ø Accuracy for all calculations <0.1mHa/atom (~2meV/atom)

Compute resources per SCF in Node-Hrs
(NERSC Cori KNL)

System size Quantum-
ESPRESSO 
(Ecut: 20 Ha)

DFT-FE 
(h_min: 2.1, p=7)

431 atoms 
(Ne =6034)

0.56 0.24

1023 atoms 
(Ne =14322)

22.1 1.4

1999 atoms 
(Ne =27986)

219.5 7.5BCCMo6x6x6 monovacancy 
(6034 electrons)



System size Quantum-
ESPRESSO 
(Ecut: 50 Ha)

DFT-FE 
(h_min: 0.8; p=6)

147 atoms 
(Ne =2793)

0.2 0.22

309 atoms 
(Ne =5871)

5.5 1.3

561 atoms 
(Ne =10569)

63.4 4.2

923 atoms 
(Ne =17537)

- 10.9

Comparison of DFT-FE & Quantum Espresso

Cu4shell (5871 electrons)

Ø Cu nanoparticles; ONCV pseudopotential

Ø Accuracy for all calculations <0.1mHa/atom (~2meV/atom)

Compute resources per SCF in Node-Hrs
(NERSC Cori KNL)
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Strong Scaling & Time to solution

2048 4096 8192 16384 32768 65536
Number of MPI tasks

1

2

4

8

16

32
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e 
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ee
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p

Observed Speedup
Ideal Speedup

Wall-time on 2048 tasks: 1511 sec
Wall-time on 65,536 tasks: 104 sec

Mg pyr II screw dislocation – 1,848 atoms (18,480 e-); 55.11 million FE DoFs

Theta (ALCF) Summit GPUs (OLCF)



FEM@LLNL, March 7 2023

Minimum wall-time comparison with plane-wave basis

Vacancy in Mo – periodic calculation ; ONCV pseudopotential 
Accuracy for all calculations <0.1mHa/atom (~2meV/atom)
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DFT-FE – Open source code 
(https://github.com/dftfeDevelopers/dftfe; 

Motamarri et al. Comput. Phys. Commun. (2020); Das et al. Comput. Phys. Commun. (2022))

Ø Discretization: FE basis; adaptive mesh refinement

Ø Geometry: Periodic, non-periodic, semi-periodic

Ø Physics:
v Pseudopotential (TM; ONCV) and All-electron calculations (classical FE)
v Density based XC functionals

Ø Calculations:
v Ground-state energy
v Geometry (ionic and cell) relaxation (Motamarri & Gavini, Phys. Rev. B 97, 165132 (2018))

v Ab-initio MD

Ø Scaling: Tested on Summit, Theta, Stampede, Comet, Cori (up 192,000 cores)

Ø System sizes: 100,000 electron pseudopotential calculations; 10,000 electron all-
electron calculations

Ø Ported to GPUs: 
v ~20x speedups (on Summit) in comparison to CPUs on a node-to-node basis
v 64PLOPS of sustained performance; ~38% efficiency on Summit 
v Finalist, 2019 Gordon Bell prize

https://github.com/dftfeDevelopers/dftfe


Application I: Technological challenge of low ductility in Mg

Ø Magnesium is the lightest structural metal with high strength to weight ratio
v 75% lighter than Steel and 30% lighter than Aluminum 

Ø Every 10% reduction in the weight of a vehicle will result in 6-8% increase in 
fuel efficiency.
v Important implications to fuel efficiency and reducing carbon footprint

Ø Low ductility key issue in the manufacturability of structural components. Main 
limitation in the adoptability of Mg and Mg alloys in automotive and aerospace 
sectors. (T.M. Pollock, Science 328, 986-987 (2010)) 
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Courtesy: https://www.audi-technology-portal.de/en/body
Current state of art: Hybrid Steel and Aluminum construction S. Sandlöbes et al. Scientific Reports 7, 10458 (2017).

https://www.audi-technology-portal.de/en/body


Technological challenge of low ductility in Mg

v Dislocations are energetically more favorable to 
reside on certain slip systems. (Energetics)

v Dislocation glide occurs after the applied shear 
stress is greater than the Perils barrier. 

(Activation barrier)

v More the number of slip systems where dislocations 
can glide easily higher is the ductility.
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12 slip systems in Face Centered 
Cubic Crystalsà higher ductility

Prism I

Basal Prism II

Pyramidal II Pyramidal I



Accurate <c+a> dislocation core energetics for ductility 
enhancement in dilute Magnesium alloys

Pyramidal II 
(glissile)

Basal 
dissociated 

(sessile)

Pyramidal I 
(glissile)

The small core energy difference between <c+a> screw 
dislocations on pyramidal I and II planes (∆𝑬I-II), 
significantly controls ductility in Mg (Wu et al., 
Science., 2018)

Accurate cell-size converged DFT computation 
of ∆𝐄I-II has not been possible with DFT codes!

S S

Uniaxial 
Strains

Slope 
(eV/nm)

-1.450

-3.507

0.301

1-2 directions along

Ø Chemical accuracy for all calculations 
(<0.1mHa/atom  energy and <0.1mHa/Bohr in 
forces)
Ø12 k-points along the dislocation line

36,460 e-

0.015
0.021

0.040

0.034

0.016

Related to 
dislocation-solute 

interaction 
energies
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Solute grain boundary (GB) segregation energies in Magnesium 

Solute type
(eV)

Al (non-RE) -0.109

Y (RE) -0.320

Energy with solute atom 
at a GB site

Energy with solute atom 
away from GB 

Substitutional 
solute

ØGB solute segregation can 
enhance non-basal textures in 
Magnesium through solute drag 
effects (Robson 2014, 2016 Met. 
Mat. Trans. A)

ØUnderstanding equilibrium 
segregation behavior, which is 
controlled by ∆Eseg, for different 
GB structures and different solute 
types with strong chemical 
interactions

Ø Use DFT computed segregation 
energies and transport 
coefficients to predict solute drag 
on GB

Ø Challenge: DFT simulations 
of random GB geometries 
reaching 4000-5000 atoms with 
structural relaxation has 
remained infeasible.

Ø Random grain boundary:
v Tilt axis: 
v Tilt angle: 44°
v 1932 atoms

Calculations on larger GB systems with ~4000 
atoms ongoing

FEM@LLNL, March 7 2023



Other Application Studies using DFT-FE 

Ø Understanding electron transport in DNA 
molecules (Nature Nanotechnology 15 836 
(2020))
v Large-scale simulations involving 100 

basis pairs (~6,200 atoms) simulating 
experiments

v Provided new insights into the role of 
backbone in electron charge transport

Ø Spin-spin interactions in defects in solids 
(npj Computational Materials, 50 (2021); Phys. 
Rev. Mat. 3 043801 (2019))
v Computed spin Hamiltonian parameters 

that describe electron-electron and 
electron-nuclear spin interactions

v Systematically convergent calculations 
with all-electron accuracy, possible for the 
first time

v Use mixed pseudopotential and all-electron 
calculations leveraging the flexibility of the 
DFT-FE framework FEM@LLNL, March 7 2023
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All-electron calculations

Gaussian APW/LAPW Classical FE Enriched FE
Convergence Incomplete basis,     

No systematic convergence

Complete basis,     
Systematic convergence

Complete basis,     
Systematic 
convergence

Complete basis,     
Systematic 
convergence

Boundary 
Conditions

using mixed BCs not 
easy

Only handles 
periodic BCs

Can handle all BCs Can handle all BCs

Parallel 
Scalability

Non-local basis,
Poor scalability

Use of FFTs,
Poor scalability

Local basis,
Good scalability

Local basis,
Good scalability

Robustness Ill-conditioned for 
large    systems.  

Sensitive to energy 
parameters

Well Conditioned Well Conditioned

Efficiency 10-100 basis/atom 100-1000 
basis/atom

10! − 10" basis/atom 10000-50000 
basis/atom

Ø More stringent basis set requirement to capture the fast oscillations of core 
electrons

Ø Need solving for all electrons; though some other approximations to avoid explicit 
computations can be used.
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Enriched finite element basis
(Kanungo & Gavini, Phys Rev. B 95 035112 (2017); Rufus, Kanungo & Gavini Phys Rev. B 106 085112 (2021))

Ø Additional functions appended to the ‘Classical’ FE basis

(Yamaka & Hodo PRB (2005); Sukumar & Pask IJNME (2009), Extreme Mech. Let. (2017)) 

Ø Enriched functions: Radial part computed using 1D radial Kohn-Sham 
solve, and multiplied by spherical harmonics
v Compact support for the enriched functions is obtained by multiplying with 

a mollifier

Ø Orthogonalized enrichment: Orthogonalize with respect to the classical FE 
basis; improves conditioning of the basis

Ø Integrals computed using an adaptive quadrature (Mousavi et al. (2012))

Ø Key advantages of enrichment:
v Reduced degrees of freedom
v Reduced spectral width of the discrete Hamiltonian (especially important for 

Chebyshev filtering approach for solving the Kohn-Sham problem)
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Accuracy of EFE/OEFE basis
(Rufus, Kanungo & Gavini Phys. Rev. B (2021))

Diamond unit cell

Divacancy in SiC supercells

Band structure 
of MgS

Band structure 
of Ce
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Computational efficiency & Scalability
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Divacancy in SiC supercells

NV Diamond supercells

Cu supercells

Parallel efficiency
Divacancy in 2x2x2 SiC



Ø Accuracy of exchange correlation functionals in DFT is not satisfactory for strongly 
correlated electrons. 

Can we address this without sacrificing the efficiency of DFT calculations? 
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Large-scale quantum accuracy calculations



Inverse DFT

Inverse DFT: Determining Vxc(r) given 𝜌(r)

Remained an open problem for 25 years – Numerically very challenging:

Ø Attempts included iterative approaches, constrained optimization approaches
v Spurious oscillations; non-unique solutions 
v Key issues: 

(i) Many-body QM calculations conducted in incomplete basis (wrong asymptotics)
(ii) Inversion in an incomplete basis
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Inverse DFT
(Kanungo, Zimmerman & Gavini, Nature Communications 10 4497 (2019))
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Recent breakthrough in an accurate solution to the inverse DFT problem. 
Demonstrated on molecular systems that are both weakly and strongly correlated. 



Inverse DFT – Key Ideas

Ø PDE constrained optimization

Ø Higher-order FE basis for discretization – ensures completeness 

Ø Cusp correction: 

Ø Far-field asymptotics: Start with a guess for Vxc(r) with correct far-field 
asymptotics and use homogeneous Dirichlet boundary conditions on the 
adjoint fields. 
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Inverse DFT using ab-initio correlated densities 
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Good agreement between HOMO eigenvalue and -Ip
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Materials system H2O molecule

Exact Vxc

(data from full CI calculation)

Inverse DFT using ab-initio correlated densities 

Verification of Koopmans’ theorem:
HOMO eigenvalue = -0.452 Ha;  -Ip= -0.454 Ha
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Materials system C6H4 (ortho-Benzyne) – strongly correlated system

Exact Vxc (data from full CI calculation)

Inverse DFT using ab-initio correlated densities 

Verification of Koopmans’ theorem:
HOMO eigenvalue = -0.354 Ha;  -Ip= -0.355 Ha
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Comparison of exact XC with model XC potentials
(Kanungo, Zimmerman & Gavini, J. Phys. Chem. Lett. 12 12012 (2021))

H2 – equilibrium  bond length H2 – twice equilibrium bond length
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Comparison of exact XC with model XC potentials (H2O)

Error – B3LPY

Error – SCAN0
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Comparison of exact XC with model XC potentials (H2O)

Relative errors in XC potentials – O(10-1 - 10-0)

Relative errors in density – O(10-3 - 10-2) 



Learning Exc

Ø Express 

Ø Local/semi-local models

Ø

Ø

Ø

Ø Since we do not have exact

Ø

Ø

Ø Learning is on 𝑒!"[𝜌](𝐫), but optimization is on 𝑣#$(𝐫)
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Concluding remarks

Ø Large-scale Kohn-Sham DFT calculations
v Higher-order FE discretization
v Algorithmic and HPC aspects of KS eigenvalue problem
v Fast and accurate large-scale calculations possible
v Extensions to All-electron calculations

Ø Some applications
v Energetics of pyramidal I & II dislocations in Mg
v Electronic structure of DNA molecules
v Spin Hamiltonian parameters

Ø Tackling XC approximations in DFT
v Inverse DFT to compute exact XC potentials
v System identification / M-L 



THANK YOU!
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