Fast, Accurate and Large-scale Ab-initio Calculations for Materials Simulations

Vikram Gavini

Department of Mechanical Engineering Department of Materials Science & Engineering Program in Applied Physics University of Michigan, Ann Arbor

Collaborators: Sambit Das (U. Mich.), Bikash Kanungo (U. Mich.), Phani Motamarri (IISc)

Funding: DoE-BES, TRI, NERSC, OLCF

Quantum Mechanics

Schrödinger equation - $H\psi = E\psi$

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{A=1}^{M} \sum_{B=1,B>A}^{M} \frac{Z_{A}Z_{B}}{|\mathbf{R}_{A} - \mathbf{R}_{B}|}$$

$$\psi = \psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, \mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_M)$$

Born-Oppenheimer approximation - Classical treatment of atomic nuclei

$$\psi = \psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$$

> Computational complexity - $\psi \in \mathbf{R}^{3N}$!!

<u></u>

 Ground-state energy is a functional of electron-density !! (Kohn & Sham, 1964-65)

 $\langle \psi | H | \psi \rangle \geq E_{0} \qquad \text{(Variational statement)}$ $E_{0} = \min_{\psi} \langle \psi | T + \frac{1}{2} \sum_{i} \sum_{j}^{\prime} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{i} V_{ext}(\mathbf{r}_{i}) | \psi \rangle + E_{zz}$ $= \min_{\psi} \langle \psi | T + \frac{1}{2} \sum_{i} \sum_{j}^{\prime} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} | \psi \rangle + \int \rho(\mathbf{r}) V_{ext}(\mathbf{r}) d\mathbf{r} + E_{zz}$ $= \min_{\rho} \left\{ \left(\min_{\psi \to \rho} \langle \psi | T + \frac{1}{2} \sum_{i} \sum_{j}^{\prime} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} | \psi \rangle \right) + \int \rho(\mathbf{r}) V_{ext}(\mathbf{r}) d\mathbf{r} \right\} + E_{zz}$ $= \min_{\rho} \left\{ \left(\min_{\psi \to \rho} \langle \psi | T + \frac{1}{2} \sum_{i} \sum_{j}^{\prime} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} | \psi \rangle \right) + \int \rho(\mathbf{r}) V_{ext}(\mathbf{r}) d\mathbf{r} \right\} + E_{zz}$

$$F(\rho) = T_s(\rho) + E_H(\rho) + E_{xc}(\rho)$$

Exchange-correlation functional: Model using LDA, GGA

Kinetic energy of non-interacting electrons: Computed from wave-functions of the resulting E-L eqn. FEM@LLNL, March 7 2023 Kohn-Sham eigenvalue problem:

$$\left(-\frac{1}{2} \nabla^2 + V_{\text{eff}}[\rho; \mathbf{R}] \right) \psi_i = \epsilon_i \psi_i$$
 Self Consistent Field (SCF) iteration (Kohn-Sham map)

$$V_{\text{eff}}[\rho; \mathbf{R}] = V_{\text{ext}}(\mathbf{R}) + V_H(\rho) + V_{xc}(\rho) \qquad \rho(\mathbf{r}) = 2\sum_i f_i |\psi_i(\mathbf{r})|^2$$

 $T_{s}(\Psi) = \frac{1}{2} \sum_{i} f_{i} \int |\nabla \psi_{i}(\mathbf{r})|^{2} d\mathbf{r} \quad E_{0}(\Psi) = T_{s}(\Psi) + E_{xc}(\rho) + E_{H}(\rho) + E_{ext}(\rho) + E_{zz}$

Remarks:

- Ground-state energy; structure -> Range of Material Properties
- The most computational intensive step in each SCF iteration is the solution of the eigenvalue problem
 - Computational complexity scales as $O(N^3)$

Impact of Density Functional Theory

Citations to seminal work of Walter Kohn (1964, 1965)

Data compiled from Web of Science

12 of the 100 most-cited papers in scientific literature pertain to DFT! (Nature 514, 550 (2014))

 \bigcirc

Relationship to HPC

Data compiled from Web of Science

Key Issues

- Lack of good parallel scalability of existing DFT codes $\mathbf{\dot{v}}$
- Computational complexity of DFT calculations $(O(N^3))$ $\dot{\mathbf{v}}$

Need for large scale DFT calculations

Use finite-element basis for computing –

$$\psi_i^h(\mathbf{r}) = \sum_k \psi_{ik} N_k(\mathbf{r}) \quad i = 1, 2, \dots, N$$

By changing the positioning of the nodes the spatial resolution of basis can be changed/adapted ψ_{ik} – Nodal values $N_k({f r})$ – Shape functions

Features of FE basis

- Systematic convergence
 - Element size
 - Polynomial order
- Adaptive refinement
- Complex geometries and boundary conditions
- Potential for excellent parallel scalability

White et al. (1989); Tuschida & Tsukada (1995); Pask et al. (1999); Pask et al. (2001) [and many others]

But ... huge degree of freedom disadvantage!

~1000x advantage by using higher-order FE basis !

Error Analysis: $|E - E^h| \le C\left(\sum_i |\bar{\psi}_i - \bar{\psi}_i^h|_{1,\Omega}^2\right) \le C\sum_e h_e^{2k} \left[\sum_i |\bar{\psi}_i|_{k+1,\Omega_e}^2\right]$ Optimal FE mesh: $\min_h \int_{\Omega} \left\{ h^{2k}(\mathbf{r}) \left[\sum_i |D^{k+1}\bar{\psi}_i(\mathbf{r})|^2\right] \right\} d\mathbf{r}$ subject to $\int_{\Omega} \frac{d\mathbf{r}}{h^3(\mathbf{r})} = N_E$

Spatial adaptivity of the FE basis (Motamarri et al. J Comput Phys. (2013); Motamarri et al. Comput. Phys. Commun. (2020))

System Type pyr II dislocation	DoFs Uniform Mesh	DoFs for Adaptive Mesh
1848 atom Mg	347,206,614	55,112,161
6164 atom Mg	892,047,315	179,034,231

Discrete eigenvalue problem:

$$\mathbf{H}\hat{\psi}_k = \varepsilon_k^h \mathbf{M}\hat{\psi}_k$$

$$\begin{aligned} \mathbf{H}_{ij} &= \frac{1}{2} \int_{\Omega} \nabla N_i(\mathbf{r}) \cdot \nabla N_j(\mathbf{r}) d\mathbf{r} + \int_{\Omega} V_{eff}(\mathbf{r}, \mathbf{R}) N_i(\mathbf{r}) N_j(\mathbf{r}) d\mathbf{r} \\ \mathbf{M}_{ij} &= \int_{\Omega} N_i(\mathbf{r}) N_j(\mathbf{r}) d\mathbf{r} \end{aligned}$$

Transformation to a standard eigenvalue problem:

$$\tilde{\mathbf{H}}\tilde{\psi_k} = \varepsilon_k^h \tilde{\psi_k}$$
 where $\tilde{\mathbf{H}} = \mathbf{M}^{-1/2} \mathbf{H} \mathbf{M}^{-1/2}$ and $\tilde{\psi_k} = \mathbf{M}^{1/2} \hat{\psi_k}$

 \succ Remark: $\mathbf{\tilde{H}}$ denotes the projection of the Hamiltonian operator into a space spanned by Löwden orthonormalized finite-element basis

> Spectral FE basis functions:

 Constructed from Lagrange polynomials through nodes corresponding to the roots of the derivatives of the Legendre polynomials and boundary nodes (GLL points)

 Upon using a Gauss-Lobatto-Legendre quadrature rule, the quadrature points coincide with the FE nodes

$$\mathbf{M}_{ij} = \int_{\Omega_e} N_i(\mathbf{r}) N_j(\mathbf{r}) d\mathbf{r} = C_i \delta_{ij}$$

> Remarks:

Transformation to standard eigenvalue problem is trivial

 The reduced order quadrature rule is only employed for the computation of the overlap matrix, and the full Gauss quadrature is employed to compute the Hamiltonian matrix.

- 1. Start with initial guess for electron density $\rho_{in}^h(\mathbf{r}) = \rho_0(\mathbf{r})$ and the initial wavefunctions
- 2. Compute the discrete Hamiltonian $ilde{\mathbf{H}}$ using the input electron density ho_{in}^h
- 3. CF: Chebyshev filtering: $\widetilde{\Psi}_F = T_m(\bar{\mathbf{H}})\widetilde{\Psi}$
- **4. Orthonormalize** CF basis: $\widetilde{\Psi}_F \ o \ \widetilde{\Psi}_F^o$
- 5. Rayleigh-Ritz procedure:
 - Compute projected Hamiltonian: $\mathbf{\hat{H}} = \widetilde{\mathbf{\Psi}}_{F}^{\mathrm{o}^{\dagger}} \widetilde{\mathbf{H}} \widetilde{\mathbf{\Psi}}_{F}^{\mathrm{o}}$
 - * Diagonalize $\hat{\mathbf{H}}$: $\hat{\mathbf{H}}\mathbf{Q} = \mathbf{Q}\mathbf{D}$
 - * Subspace rotation: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}^{\mathrm{o}}_{\mathbf{F}} \mathbf{Q}$
- 6. Compute electron density $\rho_{out}^h(\mathbf{r}) = 2 \sum_{i=1}^{N} f(\epsilon_i^h, \mu) |\psi_i^h(\mathbf{r})|^2$
- 7. If $||\rho_{out}^{h}(\mathbf{r}) \rho_{in}^{h}(\mathbf{r})|| < tol$, EXIT; else, compute new ρ_{in}^{h} using a mixing scheme and go to (2).

Chebyshev Filtering

Chebyshev Filtering

Performance of Chebyshev filtering (Summit)

Case study: Mg 3x3x3 supercell with a vacancy. (1070 electrons)

Fig: Chebyshev filtering throughput on 2 Summit nodes using 12 GPUs for various block sizes. FP64 peak of 2 Summit nodes is 87.6 TFLOPS

Fig: 20.4x GPU speed up for Chebyshev filtering. CPU run used 2 Summit nodes with 42 MPI tasks per node while GPU run used 2 Summit nodes with 12 GPUs

. .

• Cholesky factorization of the overlap matrix: $\mathbf{S} = \widetilde{\mathbf{\Psi}}_F^{\dagger} \widetilde{\mathbf{\Psi}}_F = \mathbf{L} \mathbf{L}^{\dagger}$. $\mathcal{O}(MN^2)$

> Orthonormal basis construction: $\widetilde{\Psi}_{F}^{o} = \widetilde{\Psi}_{F} \mathbf{L}^{-1^{\dagger}}. \mathcal{O}(MN^{2})$

• •

Execute copy and MPI calls of current block asynchronously with compute of the successive block.

Summit GPU cluster benchmark

Performance improvements due to mixed precision algorithm, and overlapping compute and data movement.

Case study: Mg dislocation system (61,640 electrons) using 1300 Summit nodes

NVVP profile snapshot

- > Compute projected Hamiltonian: $\mathbf{\hat{H}} = \mathbf{\widetilde{\Psi}}_{F}^{o^{\dagger}} \mathbf{\widetilde{H}} \mathbf{\widetilde{\Psi}}_{F}^{o}$. $\mathcal{O}(MN^{2})$
- > Diagonalization of $\hat{\mathbf{H}}$: $\hat{\mathbf{H}}\mathbf{Q} = \mathbf{Q}\mathbf{D}$. $\mathcal{O}(N^3)$

••

> Subspace rotation step: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}^{\mathrm{o}}_{\mathbf{F}} \mathbf{Q}. \ \mathcal{O}(MN^2)$

Mixed precision computation for RR

- Blocked approach used for memory optimization
- Compute and communication are overlapped taking advantage of blocked approach.

Summit GPU cluster benchmark

Case study: 61,640 electrons system using 1300 Summit nodes

Accuracy and robustness of mixed precision computations

	I. Cu nanoparticle 5871 electrons	II. Mo periodic supercell w/ vacancy 6034 electrons	III. Mg periodic supercell w/ vacancy 8630 electrons
Energy error (Ha/atom)	5 x 10 ⁻¹²	7 x 10 ⁻¹²	3 x 10 ⁻¹²
Max force error (Ha/Bohr)	3 x 10 ⁻⁶	7 x 10 ⁻⁷	2 x 10 ⁻⁶
Total SCFs (DP, MP)	(46,46)	(30,30)	(18,18)

- Vacancy in BCC Mo periodic calculation ; ONCV pseudopotential
- Accuracy for all calculations <0.1mHa/atom (~2meV/atom)</p>

BCCMo6x6x6 monovacancy (6034 electrons)

Compute resources per SCF in Node-Hrs (NERSC Cori KNL)

System size	Quantum- ESPRESSO (Ecut: 20 Ha)	DFT-FE (h_min: 2.1, p=7)
431 atoms (N _e =6034)	0.56	0.24
1023 atoms (N _e =14322)	22.1	1.4
1999 atoms (N _e =27986)	219.5	7.5

- Cu nanoparticles; ONCV pseudopotential
- Accuracy for all calculations <0.1mHa/atom (~2meV/atom)</p>

Compute resources per SCF in Node-Hrs (NERSC Cori KNL)

System size	Quantum- ESPRESSO (Ecut: 50 Ha)	DFT-FE (h_min: 0.8; p=6)
147 atoms (N _e =2793)	0.2	0.22
309 atoms (N _e =5871)	5.5	1.3
561 atoms (N _e =10569)	63.4	4.2
923 atoms (N _e =17537)	-	10.9

Cu4shell (5871 electrons)

Mg pyr II screw dislocation - 1,848 atoms (18,480 e⁻); 55.11 million FE DoFs

Minimum wall-time comparison with plane-wave basis

Vacancy in Mo – periodic calculation ; ONCV pseudopotential Accuracy for all calculations <0.1mHa/atom (~2meV/atom)

••

DFT-FE – Open source code

(https://github.com/dftfeDevelopers/dftfe;

Motamarri et al. Comput. Phys. Commun. (2020); Das et al. Comput. Phys. Commun. (2022))

- > Discretization: FE basis; adaptive mesh refinement
- Geometry: Periodic, non-periodic, semi-periodic
- Physics:
 - Pseudopotential (TM; ONCV) and All-electron calculations (classical FE)
 - Density based XC functionals
- Calculations:
 - Ground-state energy
 - Geometry (ionic and cell) relaxation (Motamarri & Gavini, Phys. Rev. B 97, 165132 (2018))
 - ✤ Ab-initio MD
- Scaling: Tested on Summit, Theta, Stampede, Comet, Cori (up 192,000 cores)
- System sizes: 100,000 electron pseudopotential calculations; 10,000 electron allelectron calculations
- Ported to GPUs:
 - ✤ ~20x speedups (on Summit) in comparison to CPUs on a node-to-node basis
 - ♦ 64PLOPS of sustained performance; ~38% efficiency on Summit
 - Finalist, 2019 Gordon Bell prize

Application I: Technological challenge of low ductility in Mg

- > Magnesium is the lightest structural metal with high strength to weight ratio
 - ✤ 75% lighter than Steel and 30% lighter than Aluminum
- Every 10% reduction in the weight of a vehicle will result in 6-8% increase in fuel efficiency.
 - Important implications to fuel efficiency and reducing carbon footprint
- Low ductility key issue in the manufacturability of structural components. Main limitation in the adoptability of Mg and Mg alloys in automotive and aerospace sectors. (T.M. Pollock, Science 328, 986-987 (2010))

Courtesy: <u>https://www.audi-technology-portal.de/en/body</u> Current state of art: Hybrid Steel and Aluminum construction

CR: cold rolled

S. Sandlöbes et al. Scientific Reports 7, 10458 (2017).

Technological challenge of low ductility in Mg

- Dislocations are energetically more favorable to reside on certain slip systems. (Energetics)
- Dislocation glide occurs after the applied shear stress is greater than the Perils barrier.

(Activation barrier)

More the number of slip systems where dislocatio can glide easily higher is the ductility.

12 slip systems in Face Centered Cubic Crystals→ higher ductility

Science., 2018)

Basal

dissociated

(sessile)

Accurate cell-size converged DFT computation of ΔE^{I-II} has not been possible with DFT codes!

FEM@LLNL, March 7 2023

-3.507

0.301

 ε_{22}

 ε_{33}

Solute grain boundary (GB) segregation energies in Magnesium

 >GB solute segregation can enhance non-basal textures in Magnesium through solute drag effects (*Robson 2014, 2016 Met. Mat. Trans. A*)

>Understanding equilibrium segregation behavior, which is controlled by ΔE_{seg} , for different GB structures and different solute types with strong chemical interactions

 Use DFT computed segregation energies and transport coefficients to predict solute drag on GB

Challenge: DFT simulations of random GB geometries reaching 4000-5000 atoms with structural relaxation has remained infeasible.

- Random grain boundary:
 - ✤ Tilt axis: [1100]
 - ✤ Tilt angle: 44°
 - 1932 atoms

- E_{GB} Energy with solute atom at a GB site
- *E*_{bulk} Energy with solute atom away from GB

$$\Delta E_{seg} = E_{GB} - E_{bulk}$$

Solute type	∆ <i>E_{seg}</i> (eV)
Al (non-RE)	-0.109
Y (RE)	-0.320

Calculations on larger GB systems with ~4000 atoms ongoing

Other Application Studies using DFT-FE

Understanding electron transport in DNA molecules (*Nature Nanotechnology 15 836* (2020))

. .

- Large-scale simulations involving 100 basis pairs (~6,200 atoms) simulating experiments
- Provided new insights into the role of backbone in electron charge transport
- Spin-spin interactions in defects in solids (npj Computational Materials, 50 (2021); Phys. Rev. Mat. 3 043801 (2019))
 - Computed spin Hamiltonian parameters that describe electron-electron and electron-nuclear spin interactions
 - Systematically convergent calculations with all-electron accuracy, possible for the first time
 - Use mixed pseudopotential and all-electron calculations leveraging the flexibility of the DFT-FE framework
 FEM@LLNL, March 7 2023

- More stringent basis set requirement to capture the fast oscillations of core electrons
- Need solving for all electrons; though some other approximations to avoid explicit computations can be used.

_	Gaussian	APW/LAPW	Classical FE	Enriched FE
Convergence	Incomplete basis, No systematic convergence	Complete basis, Systematic convergence	Complete basis, Systematic convergence	Complete basis, Systematic convergence
Boundary Conditions	🔀 using mixed BCs not easy	Only handles periodic BCs	Can handle all BCs	Can handle all BCs
Parallel Scalability	Non-local basis, Poor scalability	Use of FFTs, Poor scalability	Local basis, Good scalability	Local basis, Good scalability
Robustness	Ill-conditioned for large systems.	Sensitive to energy parameters	Well Conditioned	Well Conditioned
Efficiency	☑ 10-100 basis/atom	100-1000 basis/atom	🔀 10 ⁵ – 10 ⁶ basis/atom	10000-50000 basis/atom
		Interstitial Interstitial Interstitial Interstitial Interstitial Interstitial		

Michigan 1

Enriched finite element basis

(Kanungo & Gavini, Phys Rev. B 95 035112 (2017); Rufus, Kanungo & Gavini Phys Rev. B 106 085112 (2021))

Additional functions appended to the 'Classical' FE basis

$$\psi^{h}(\mathbf{x}) = \sum_{j} N_{j}^{C}(\mathbf{x})\psi_{j}^{C} + \sum_{k} N_{k}^{E}(\mathbf{x})\psi_{j}^{E}$$

(Yamaka & Hodo PRB (2005); Sukumar & Pask IJNME (2009), Extreme Mech. Let. (2017))

- Enriched functions: Radial part computed using 1D radial Kohn-Sham solve, and multiplied by spherical harmonics
 - Compact support for the enriched functions is obtained by multiplying with a mollifier
- Orthogonalized enrichment: Orthogonalize with respect to the classical FE basis; improves conditioning of the basis
- Integrals computed using an adaptive quadrature (Mousavi et al. (2012))
- Key advantages of enrichment:
 - Reduced degrees of freedom
 - Reduced spectral width of the discrete Hamiltonian (especially important for Chebyshev filtering approach for solving the Kohn-Sham problem)

Accuracy of EFE/OEFE basis

(Rufus, Kanungo & Gavini Phys. Rev. B (2021))

Diamond unit cell

Divacancy in SiC supercells										
Supercell	$\begin{array}{c} \text{Atoms} \\ \text{(Electrons)} \end{array}$	OEFE	LAPW+lo	CFE						
$2 \times 2 \times 2$	62~(620)	-163.1053	-163.1054	-163.1056						
$3 \times 3 \times 3$	214 (2, 140)	-163.1119	-163.1117	-						
$4 \times 4 \times 4$	510(5,100)	-163.1133	-	-						
$5 \times 5 \times 5$	$998 \ (9,980)$	-163.1135	-	-						

••

Computational efficiency & Scalability

Divacancy in SiC supercells

	-						
Supercell	0	EFE	LA	APW+lo	CFE		
	C	(c, N)	C	(c, N)	C	(c, N)	
$2 \times 2 \times 2$	1.48	(0.08, 12)	1.28	(0.04, 32)	197	(10.9, 18)	
$3 \times 3 \times 3$	13.92	(0.76, 14)	45.5	(1.23, 37)	-	-	
$4 \times 4 \times 4$	132.6	(6.4, 18)	-	-	-	-	
$5 \times 5 \times 5$	1102.5	(45.9, 21)	-	-	-	-	

NV Diamond supercells

Supercell		OEFE	LAPW+lo		
Supercen	C (c, N)		C	(c, N)	
$2\times 2\times 2$	0.19	$(0.008,\!12)$	0.32	(0.02, 16)	
$3 \times 3 \times 3$	1.6	(0.071, 16)	15.1	(0.84, 18)	
$4 \times 4 \times 4$	16.1	(0.46, 31)	_	-	

Cu supercells

Supercell	(OEFE	LAPW+lo		
	C	(c, N)	C	(c, N)	
$\boxed{2\times2\times2}$	0.92	(0.033, 24)	0.145	(0.004, 32)	
$3 \times 3 \times 3$	20.6	(0.55, 36)	6.46	(0.144, 45)	
$4 \times 4 \times 3$	93.12	(2.6, 35)	50.63	$(0.92,\!55)$	
$4 \times 4 \times 4$	250.0	(6.0, 41)	-	-	

Parallel efficiency Divacancy in 2x2x2 SiC

• •

Large-scale quantum accuracy calculations

Accuracy of exchange correlation functionals in DFT is not satisfactory for strongly correlated electrons.

Can we address this without sacrificing the efficiency of DFT calculations?

 \odot

Inverse DFT: Determining $V_{xc}(\mathbf{r})$ given $\rho(\mathbf{r})$

Remained an open problem for 25 years – Numerically very challenging:

- > Attempts included iterative approaches, constrained optimization approaches
 - Spurious oscillations; non-unique solutions
 - Key issues:
 - (i) Many-body QM calculations conducted in incomplete basis (wrong asymptotics)
 - (ii) Inversion in an incomplete basis

Inverse DFT

(Kanungo, Zimmerman & Gavini, Nature Communications 10 4497 (2019))

Recent breakthrough in an accurate solution to the inverse DFT problem. Demonstrated on molecular systems that are both weakly and strongly correlated.

. .

$$\arg\min_{v_{xc}(\mathbf{r})}\int w(\mathbf{r})\left(\rho_{data}(\mathbf{r})-\rho(\mathbf{r})\right)^2\,d\mathbf{r}$$

subject to

$$\left(-\frac{1}{2}
abla^2 + v_{\mathrm{ext}}(\mathbf{r}) + v_{\mathrm{H}}(\mathbf{r}) + v_{\mathrm{xc}}(\mathbf{r})
ight)\psi_i = \epsilon_i\psi_i\,,\quad \int |\psi_i(\mathbf{r})|^2\,d\mathbf{r} = 1\,.$$

- Higher-order FE basis for discretization ensures completeness
- > Cusp correction: $\Delta \rho(\mathbf{r}) = \rho_{FE}^{DFT}(\mathbf{r}) \rho_{G}^{DFT}(\mathbf{r})$
- > Far-field asymptotics: Start with a guess for $V_{xc}(\mathbf{r})$ with correct far-field asymptotics and use homogeneous Dirichlet boundary conditions on the adjoint fields.

Inverse DFT using ab-initio correlated densities

Good agreement between HOMO eigenvalue and -Ip

 $\overline{}$

Inverse DFT using ab-initio correlated densities

Materials system H₂O molecule

Exact V_{xc}

••

Verification of Koopmans' theorem:

HOMO eigenvalue = -0.452 Ha; $-I_p$ = -0.454 Ha

Inverse DFT using ab-initio correlated densities

Materials system C_6H_4 (ortho-Benzyne) – strongly correlated system

Verification of Koopmans' theorem:

HOMO eigenvalue = -0.354 Ha; $-I_p$ = -0.355 Ha

FEM@LLNL, March 7 2023

••

Comparison of exact XC with model XC potentials

(Kanungo, Zimmerman & Gavini, J. Phys. Chem. Lett. 12 12012 (2021))

 H_2 – equilibrium bond length

 H_2 – twice equilibrium bond length

Comparison of exact XC with model XC potentials (H₂O)

Relative errors in XC potentials – O(10⁻¹ - 10⁻⁰)

Model	$\mathrm{H}_2(eq)$		$H_2(0.8eq)$		$H_2(2eq)$		LiH		H ₂ O		C_6H_4	
	e_1	e_2	e_1	e_2	e_1	e_2	e_1	e_2	e_1	e_2	e_1	e_2
B3LYP	0.192	1.657	0.216	1.125	0.272	1.377	0.107	1.862	0.041	0.309	0.049	0.071
HSE06	0.162	0.285	0.202	0.309	0.277	0.448	0.094	1.398	0.042	0.311	-	_
SCAN0	0.145	0.240	0.181	0.167	0.273	0.302	0.087	1.010	0.030	0.227	0.045	0.098
SCAN	0.233	0.427	0.207	0.429	0.254	0.517	0.092	1.391	0.044	0.298		_
M08-HX	0.248	4.784	0.249	5.873	0.291	5.109	0.094	1.800	0.065	0.545		_
PBE	0.261	1.100	0.241	0.857	0.262	1.251	0.119	2.013	0.058	0.427	0.059	0.105
PW92	0.288	0.267	0.267	0.278	0.297	0.420	0.152	0.264	0.133	0.354	0.145	0.407

$$e_1 = \frac{\|\rho_{\text{data}} \delta v_{\text{xc}}\|_{L_2}}{\|\rho_{\text{data}} v_{\text{xc}}^{\text{exact}}\|_{L_2}}$$

$$e_{2} = \frac{\left\|\rho_{\text{data}} \left|\nabla \delta v_{\text{xc}}\right|\right\|_{L_{2}}}{\left\|\rho_{\text{data}} \left|\nabla v_{\text{xc}}^{\text{exact}}\right|\right\|_{L_{2}}}$$

Relative errors in density $-O(10^{-3} - 10^{-2})$

Model	H_2	$_2(eq)$	H_2	(0.8eq)	H_2	(2eq)	Ι	LiH	ł	H_2O	C	$_{6}H_{4}$
	f_1	f_2	f_1	f_2	f_1	f_2	f_1	f_2	f_1	f_2	f_1	f_2
B3LYP	0.011	0.025	0.010	0.022	0.039	0.045	0.006	0.009	0.003	0.002	0.004	0.004
HSE06	0.004	0.006	0.004	0.006	0.054	0.069	0.005	0.006	0.002	0.001	_	_
SCAN0	0.004	0.006	0.003	0.006	0.061	0.082	0.003	0.006	0.001	0.001	0.002	0.001
SCAN	0.006	0.012	0.005	0.011	0.043	0.054	0.004	0.008	0.002	0.001	_	-
M08-HX	0.018	0.047	0.019	0.049	0.062	0.080	0.006	0.011	0.002	0.003	_	_
PBE	0.010	0.020	0.010	0.017	0.031	0.034	0.007	0.010	0.003	0.002	0.004	0.004
PW92	0.023	0.025	0.025	0.027	0.057	0.077	0.022	0.024	0.010	0.014	0.014	0.018

$$f_1 = \frac{\left\| \rho_{\text{data}}^{\text{exact}} - \rho_{\text{data}}^{\text{model}} \right\|_{L_2}}{\left\| \rho_{\text{data}}^{\text{exact}} \right\|_{L_2}}$$

$$f_{2} = \frac{\left\| \left| \nabla (\rho_{\text{data}}^{\text{exact}} - \rho_{\text{data}}^{\text{model}}) \right| \right\|_{L_{2}}}{\left\| \left| \nabla \rho_{\text{data}}^{\text{exact}} \right| \right\|_{L_{2}}}$$

Learning E_{xc}

> Express $E_{\rm xc}[\rho] = \int e_{\rm xc}[\rho](\mathbf{r})d\mathbf{r}$ where $e_{\rm xc}[\rho](\mathbf{r})d\mathbf{r}$: energy density

Local/semi-local models

. .

- $\succ \ e_{\rm xc}^{\rm LDA}({\bf r}) = e_{\rm xc}^{\rm ML}[\rho]({\bf r})$
- $\succ \ e_{\rm xc}^{\rm GGA}({\bf r}) = e_{\rm xc}^{\rm ML}[\rho,\nabla\rho]({\bf r})$

 $e_{\rm xc}^{\rm near-sighted}(\mathbf{r}) = e_{\rm xc}^{\rm ML}[\rho, \nabla \rho, \nabla^2 \rho, g](\mathbf{r}) \quad g(\mathbf{r}) = \int \rho(\mathbf{r}') k(\mathbf{r}, \mathbf{r}') d\mathbf{r}'$

 \succ Since we do not have exact $e_{
m xc}[
ho]({f r})$

$$\mathcal{L}: \sum_{I} \int \left(v_{\mathrm{xc}}^{\mathrm{exact}}[\rho_{I}](\mathbf{r}) - v_{\mathrm{xc}}^{\mathrm{ML}}[\rho_{I}](\mathbf{r}) \right)^{2} d\mathbf{r} + c \sum_{I} (E_{\mathrm{xc}}^{\mathrm{exact,I}} - E_{\mathrm{xc}}^{\mathrm{ML,I}})^{2}$$
$$\mathcal{V}_{\mathrm{xc}}^{\mathrm{ML}}(\mathbf{r}) = \frac{\delta E_{\mathrm{xc}}^{\mathrm{ML}}[\rho]}{\delta \rho(\mathbf{r})} = \int \frac{\delta e_{\mathrm{xc}}^{\mathrm{ML}}(\mathbf{r}')}{\delta \rho(\mathbf{r})} d\mathbf{r}'$$

> Learning is on $e_{xc}[\rho](\mathbf{r})$, but optimization is on $v_{xc}(\mathbf{r})$

Concluding remarks

- Higher-order FE discretization
- Algorithmic and HPC aspects of KS eigenvalue problem
- Fast and accurate large-scale calculations possible
- Extensions to All-electron calculations
- Some applications
 - Energetics of pyramidal I & II dislocations in Mg
 - Electronic structure of DNA molecules
 - Spin Hamiltonian parameters

- Tackling XC approximations in DFT
 - Inverse DFT to compute exact XC potentials
 - System identification / M-L

1883

117

27.986

QUANTUM ESPRESSO (CPU)- NERSC Cor

14.322

Numbers of electrons

DFT-FE (CPU)- NERSC Cori DFT-FE (GPU)- OLCF Summit

6 0 3 4

iteration 1500

ම 1000

500

SCF

THANK YOU!

