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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

Figure Source: [Arnold-+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

\’

grad, continuous

Lagrange finite element space  [Courant 1943]

Natural operator: grad
Continuous across elements

Figure Source: [Arnold-+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

grad, continuous curl, “t-continuous”

Nédélec finite element space  [Nédélec 1980]

Natural operator: curl
Inter-element continuity: t-component

Figure Source: [Arnold-+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

grad, continuous curl, “t-continuous” div, “n-continuous”

Raviart-Thomas finite element space [Raviart+Thomas 1977]

Natural operator: div
Inter-element continuity: n-component

Figure Source: [Arnold-+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

grad, continuous curl, “t-continuous” div, “n-continuous”

Discontinuous Galerkin finite element space

Inter-element continuity: None

Figure Source: [Arnold-+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)

grad curl

grad, continuous curl, “t-continuous” div, “n-continuous”

These finite element spaces are now collectively understood using the de Rham complex.
Where do matrix-valued finite elements fit? And second-order differential operators?

Next example: curl div operator and “nt-continuous” matrix elements for viscous stresses.
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Stokes system

Textbook version:
—vAu+Vp=f inQ

divu=0 inQ
u=0 on 0N

Notation:

@ v(x) = kinematic viscosity

@ f(x) = body force

@ u(x) = fluid velocity

@ p(x) = kinematic pressure
@ o(x) = viscous stress
o

e(u) = 3(Vu+ (Vu)') = sym(Vu).

Jay Gopalakrishnan

Physical stress-based version:

1
ZO’—E(U):O in Q

dive —Vp=—f inQ
divu=0 in Q
u=20 on Of2

What topology on o pairs well with
H(div)-topology on u?
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© Mass-Conserving Stress-yielding (MCS) method
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Kelvin-Helmholtz instability simulation

\Yeltile1%

[SchroederfJohnfLedererfLehrenfeIdJrLubefSchéberI 2019]
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Different results from different discretizations

HDG
Hdiv-cnf.

HDG
red.+rec.

Source: P. Lederer’s thesis
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Mass conservation

Mass is neither created nor destroyed.

o Mass = /p, density integrated.
. . . .. Dp
@ Incompressibility =—> the material derivative Dr = 0.

Equivalent constraint on fluid velocity u:

D
e Continuity equation (mass conservation) =— F? + pdivu =0.

@ Hence, mass conservation in incompressible fluids <~ .

Jay Gopalakrishnan
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Mass conservation

Mass is neither created nor destroyed.

o Mass = /p, density integrated.
. . . .. Dp
@ Incompressibility =—> the material derivative Dr = 0.

Equivalent constraint on fluid velocity u:

D
e Continuity equation (mass conservation) =— F? + pdivu =0.

@ Hence, mass conservation in incompressible fluids <= .
A piecewise polynomial fluid velocity approximation up, has if

o its divergence is zero pointwise within elements,

up - N
e and Jup - n] =0, i.e., up has at least n-continuity. dh Ny

Jay Gopalakrishnan

7/38



How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vj, with n-continuity:

(divup, gn) =0  for all gy, in the discrete pressure space Qp.

Hence uy, is exactly mass conserving if [ div V}, C Q.

Two approaches to methods with mass conservation:

H(div)-based H'-based
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vj, with n-continuity:

(divup, gn) =0  for all gy, in the discrete pressure space Qp.

Hence uy, is exactly mass conserving if [ div V}, C Q.

Two approaches to methods with mass conservation:

H(div)-based H'-based

H(dIV) = {U D uj € Ly, Ziaiui € L2} H! RV = {U DU € Ly, 8ju,- S L2}

(This is vector H'.)

Jay Gopalakrishnan
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vj with n-continuity:

(divup, gn) =0  for all gp in the discrete pressure space Qp.

Hence uy, is exactly mass conserving if [ div V}, C Q.

Two approaches to methods with mass conservation:

H(div)-based H'-based

When V}, C H(div): When V), C H' @ V:

@ Range of divergence is simple. © Range of divergence is complex.

& Discretizing viscous term is complex. @ Viscous term easily discretized.

Jay Gopalakrishnan
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vj, with n-continuity:

(divup, gn) =0  for all gy, in the discrete pressure space Qp.

Hence uy, is exactly mass conserving if [ div V}, C Q.

Two approaches to methods with mass conservation:

H(div)-based H-based
[Cockburn-+Kanschat+Schétzau 2005] [Scott+Vogelius 1985]
[Cockburn+G-+Nguyen+Peraire+Sayas 2011] [Guzman+Scott 2019]
[Linke+l\/|erdon 2016] [Neilan 2020]
[G+Lederer+Schoberl 2019] (MCS method) [Ainsworth+Parker 2021]
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Punchlines of Mass-Conserving Stress-yielding (MCS) method

@ Structure-preservation:
Numerical solutions are exactly mass conserving.
Scheme is pressure robust.

@ Viscous stress o approximation: New matrix-valued finite elements with continuous
shear component (or nt-component) used for approximating . ([t-o n] = [on:] =0.)

e Optimally convergent in velocity (u), pressure (p), viscous stress (o), and vorticity (w).

@ More features:

» No stabilization parameters.

Easy to incorporate stress boundary conditions.

No vertex unknowns, facet couplings only: permits easy hybridization.
Element mappings (even curvilinear) are straightforward.

Stable for Vu-forms as well as the more physical £(u)-formulations.

vV vy VvYyy
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Deriving the MCS formulation

Standard form:

—vAu+gradp=0 L

divu=0

u=20

Jay Gopalakrishnan

With o:
o—¢e(u) =0
dive —gradp = —f

divu=20
u=20

in 2
in 2
in 2

on 942
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Deriving the MCS formulation

Standard form:
—vAu+gradp=0

divu=0

u=20
Notation:

1
devm:=m— g(tr m)Jd,

oc=devo, inT

Jay Gopalakrishnan

With o:
L devo —e(u) =0 in 2
dive —gradp = —f in 2
divu=20 in {2
u=20 on 0f?

m in R3x3

T := dev(R**®) = {traceless matrices}

10/38



Deriving the MCS formulation

Standard form:
—vAu-+gradp=20

divu=0

u=20
Notation:

1
devm :=m— g(tr m)J,

oc=devo, inT

w = vorticity, in K

Jay Gopalakrishnan

With o:
Ltdevo —Vu + w =0 in 2
dive —gradp=—f in 2
divu=20 in 2
o—0 =0 in {2
u=20 on 0f2

m in R3*3,

T := dev(R3*3) = {traceless matrices}

K := skw(R3*®) = {skew-symmetric matrices}

10/38



Deriving the MCS formulation

Standard form: With ¢
—vAu-+gradp=20 Ltdevo —Vu +w =0 in {2
dive —gradp=—f in 2
divu=20 divu=20 in 2
oc—0 =0 in {2
u=20 u=20 on 0f2

Testwith7: 2 =T, v:2 =V, g:2—>R, n: =K

(£ devo,devr) + (u,divr) + (w,7) =
(dive,v) + (p,divv) = —(f v)

(divu,q) =

(o) =
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Deriving the MCS formulation

Standard form: With ¢
—vAu-+gradp=20 Ltdevo —Vu +w =0 in {2
dive —gradp=—f in 2
divu=20 divu=20 in 2
oc—0 =0 in {2
u=20 u=20 on 0f2

Testwith7: 2 =T, v:2 =V, g:2—>R, n: =K

(£ devo,devr) + (u,divr) + (w,7) =
(dive, v) + (p,divv) = —(f v)

(divu,q) =

(o) =

Derivation is completed by replacing the integrals (div o, v) by functional actions (divo, v).

Jay Gopalakrishnan 10/38



The viscous stress space

MCS formulation: Find o € ¥, u € H(div), p € Lyr, w € Ly ® K satisfying

(£ devo,devr)+ (divr, u) + (w,7) = TEYL,
(dive, v) + (p,divv) = < v), v e H(div),
(divu,q) = q € Lag,
( ) n e L®K

Minimal requirement for any ¢ in ¥ is divo € H(div)*, the dual space of H(div).

Theorem:  H(div)* = H™Y(curl).

Space for viscous fluid stresses: £ = {1 € Lh®T : curldiv(r) € H'}.

Notation: @ T = {traceless matrices}, @ K = {skew symmetric matrices}, @ Lor = {p € Lo : (p,1) = 0},
QOH Y (aur)={pecH ' '@V: curlp e H' @V}, @ H(div) = {w € H(div) : w - n|a = 0}.

Jay Gopalakrishnan 11/38
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© Viscous stress elements
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The nt-continuity
(R-valued) (V-valued) (V-valued) (R-valued)

grad curl div

grad, continuous curl, “t-continuous” div, “n-continuous”

[wl=0 [t-u]=0 [n-q] =0

For the curldiv operator, we make “nt-continuous” matrix elements for viscous stresses, i.e.,
[t-on] =0

for any tangent vector t and normal vector n on element boundaries.

Jay Gopalakrishnan 13/38



Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

n;

F; 3

o Consider ¢ = n; @ (ni x ny)

Jay Gopalakrishnan 14/38



Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9

aj

aj

o Consider ¢ = n; @ (ni x ny)
@on=0o0on FLUF,
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9

ajl n_,'

o Consider ¢ = n; @ (ni x ny)

@ on=0o0n F,UF; and on; is collinear with n;, so on; - t|,:j. =0.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9

aj
aj

o Consider ¢ = n; @ (ni x ny)

@ Thus t-on =0 on all faces except F;.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9

aj
aj

o Consider o = dev[n; ® (nx x ny)]

@ Thus t-on =0 on all faces except F;.

Jay Gopalakrishnan 14/38



Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9j
ak
aj
ay
o Consider o = dev[n; ® (nk x nj)] and o = dev[n; ® (n; x n)].

@ Thus t-on =0 on all faces except F;.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9j
ak
aj
ay
o Consider o = dev[n; ® (nk x nj)] and o = dev[n; ® (n; x n)].

o Taking all faces, we get a basis for T= {m € R¥3 : trm = 0}.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on 0T except on one face?

Tetrahedron T

9j
ak
aj
3
o Consider 0 = dev[n; ® (nx x nj)] and o = dev[n; @ (n; x ny)].

o Taking all faces, we get a basis for T = {m € R¥3 : tr m = 0}.

More general shape functions: )\?")\J‘-}‘f)\i‘k dev[VA; @ (VA x Vgl
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Unisolvent finite element

Ciarlet-style finite element definition:
@ Geometry: Tetrahedron T
o Space: Pi(T)® T ={m:T — T| mj is a polynomial of degree < k} for any k > 0.

@ Degrees of freedom:

/ Ont " I, tangential r with r; € Px(F) on each face F,
F

/a:c, cEP(T)®T, if k>1.
T

Theorem: These degrees of freedom are unisolvent for P(T)®T.
They generate global degrees of freedom suitable for enforcing \
nt-continuity. [G+Lederer+Schoberl 2019] *

The k = 0 case

Jay Gopalakrishnan 15/38



Mapping

@ Let T = image of reference element T b
under (possibly curvilinear) map ¢, R - T

e and define the curl div pullback by Q
6 = det(Ve) (Vo)' (00 ¢) (Vo) " T

Theorem: Let F = ¢(/§) for a facet F of T with normal A and € . Let n and t be the
mapped normal and tangent on F. Then

@ There is a nonzero cp depending only on ¢|¢ such that t- &A= cr (t-on)o ¢,

@ The mapped & is traceless if and only if o is.

Other MCS variables have standard pullbacks (e.g., standard Piola for H(div)-velocity).

Thus all elements used in the MCS method have natural mappings. ‘

Jay Gopalakrishnan 16/38
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@ Other matrix finite elements
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Where do matrix-valued finite elements fit?

(R-valued) (V-valued) (V-valued) (R-valued)

grad curl

grad, continuous curl, “t-continuous” div, “n-continuous”

@ Where does the nt-continuous T-valued matrix element fit?
@ How about matrix elements with tt-continuity?

@ How about matrix elements with nn-continuity?

Jay Gopalakrishnan 18/38



More matrix-valued elements

interior moments (two)

1 facet nn-moments (four)

S-valued HHJ element, aka TDNNS element

Natural operator: divdiv
Continuous nn-component

Notation: @ sym(7) = (7 +7") for matrices 7 € R***.

Jay Gopalakrishnan

Coupling dofs:

O'|—>/n'0'n
F

[Hellan 1967] [Herrmann 1967] [Johnson 1973]

[Comodi 1989] [Pechstein+5ch6ber| 2011]

@ S = sym(R**?), space of symmetric matrices.

19/38



More matrix-valued elements

Coupling dofs on each edge:

gi—>/t-gt
E

>> edge tt-moments

S-valued Regge element [Regge 1961] [Christiansen 2011] [Li 2018]

Natural operator: curl T curl or “inc” [G+Neunteufel+Sch6ber|+Wardetsky 2023]
Continuous tt-component

Notation: @ sym(7) = (7 + 7 1) for matrices 7 € R¥*. @ S = sym(R**?), space of symmetric matrices.

Jay Gopalakrishnan 19/38



More matrix-valued elements

Two coupling dofs on each face:
i facet nt-moments

~ Tr—>/t'7'n
* F

T-valued viscous stress element
Natural operator: curldiv
Continuous nt-component

[G+Lederer+5chéber| 2019]

Notation: @ sym(7) = (7 + 7 1) for matrices 7 € R**. @ S = sym(R**®), space of symmetric matrices.
Qdevr =17 — %(tr 7)l for matrices 7, @ T= dev R3%3 = space of traceless matrices.

Jay Gopalakrishnan 19/38



More matrix-valued elements

Two coupling dofs on each face:
i facet nt-moments

~ Tr—>/t'7'n
* F

T-valued viscous stress element
Natural operator: curldiv
Continuous nt-component

[G+Lederer+5chéber| 2019]

Recent understanding: An algebraic structure with matrix-valued Sobolev
space functions connected by curldiv, curl T curl, divdiv.

Notation: @ sym(7) = (7 + 7 1) for matrices 7 € R**. @ S = sym(R**®), space of symmetric matrices.
Qdevr =17 — %(tr 7)l for matrices 7, @ T= dev R3%3 = space of traceless matrices.

Jay Gopalakrishnan 19/38
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© A unifying 2-complex of Sobolev spaces
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Complexes from the 2-complex

We use “commutative diagrams” A
“ . ”" “ . 7 - —> @ > @ o (]
@ whose “vertices” or “objects” are function spaces, l =
b " [ - " - - N
@ whose “arrows” or “morphisms” are differential operators.
[ ] oO—> 0 —> 0 —>
A3 = A
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Complexes from the 2-complex

We use “commutative diagrams” A
“ . ”" “ . 7 - —> @ > @ o (]
@ whose “vertices” or “objects” are function spaces, l =
b " [ - " - - N
@ whose “arrows” or “morphisms” are differential operators.
[ ] oO—> 0 —> 0 —>
As Ay

Compositions of morphisms are called “paths.”

A path is a complex if compositions of 2 successive morphisms vanish:

Aj+]_ o} Aj =0.

A complex is exact if range(A;) = ker(Ajt1).

A path is a 2-complex if the compositions of 3 successive morphisms vanish: [Olver 1982]
Aj+2 (0] Aj+1 @) Aj = 0

Jay Gopalakrishnan 21/38



Scalar (R) and vector (V) valued fields in 3D

On a bounded contractible domain 2 C R? with Lipschitz boundary, let D denote the space
of infinitely differentiable functions compactly supported on (2. The de Rham complex

d .
0 D, pegv -, pyv N, D R
is exact.
Notation: V =R’ Tensor product X ® V is identifiable with the Cartesian product X x X x X.

Jay Gopalakrishnan 22/38



Scalar (R) and vector (V) valued fields in 3D

On a bounded contractible domain 2 C R? with Lipschitz boundary, let D denote the space
of infinitely differentiable functions compactly supported on 2. The de Rham complex

grad

0 D DoV —,pgv I, p R

is exact, and so is the Sobolev de Rham complex,

0 122 Bcurl) —rs F(div) —9 1, R
where
Fi(curl) = Do V! e, Fi(div) = Do V! e
lull3seuny = NellZ, + eurtull?,,  llallfay = lalZ, + I dival,.
Notation: V =R’ Tensor product X ® V is identifiable with the Cartesian product X x X x X.
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S and T valued matrix fields

grad

D DoV -, pgv 4, p

DV D®S DT DoV

Notation: @ symt = (7 + 77) for matrices 7. @ S = sym R**3, space of symmetric matrices.

@ devr =7 — i(tr7)/ for matrices 7, @ T =dev R®*3 = space of traceless matrices.

Jay Gopalakrishnan 23/38



S and T valued matrix fields

grad

D DoV <, curl D@V—»D

DoV —2 . pgs <, peT 9, pyvVv

e def v =¢(v) =symgradv, gradv = Jacobian matrix of vector field v,

Notation: @ symt = (7 + 7 1) for matrices 7. @ S = sym R**3, space of symmetric matrices.

© devr = 7 — L(tr7)/ for matrices 7, @ T = devR>*® = space of traceless matrices.
3 P

Jay Gopalakrishnan
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S and T valued matrix fields

grad

D DoV <, curl ®®V—>D

DoV —3f . pgs <, peT 9, pyvVv

o def v =¢(v) = symgradv, gradv = Jacobian matrix of vector field v,
@ curl and div on matrix-valued functions act row-wise.

@ curl of a symmetric matrix is traceless.

Notation: @ symt = (7 + 7 1) for matrices 7. @ S = sym R**3, space of symmetric matrices.

© devr = 7 — L(tr7)/ for matrices 7, @ T = devR>*® = space of traceless matrices.
3 P

Jay Gopalakrishnan
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S and T valued matrix fields

p_ 84  poy-_r, pgy 9, p
grad def % T dev grad % grad
DoV —3f . pgs <, peT 9, pyvVv

@ Connect vertically.

Notation: @ symt = (7 + 77) for matrices 7. @ S = sym R**3, space of symmetric matrices.

© devr =7 — i(tr7)/ for matrices 7, @ T =dev R®*3 = space of traceless matrices.
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S and T valued matrix fields

p_ 84  poy-_r, pgy 9, p
grad def % T dev grad % grad
DoV —3f . pgs <, peT 9, pyvVv

@ The diagram commutes.

1
curl def = 5 T dev grad curl

Notation: @ symt = (7 + 7 1) for matrices 7. @ S = sym R**3, space of symmetric matrices.

@ devr =7 — i(tr7)/ for matrices 7, @ T =dev R®*3 = space of traceless matrices.

Jay Gopalakrishnan 23/38



S and T valued matrix fields

p_ 9 L pgy-_, pgy 9, p
grad def % T dev grad % grad
DoV —3f . pgs <, peT 9, pyvVv

@ The diagram commutes.

1
curl def = 5 T dev grad curl

1 1
5 div T devgradu = 3 grad div

Notation: @ symt = (7 + 77) for matrices 7. @ S = sym R**3, space of symmetric matrices.

© devr = 7 — L(tr7)/ for matrices 7, @ T = devR>*® = space of traceless matrices.
3 P

Jay Gopalakrishnan
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Completing the picture

@ grad @ ® V curl D ® V div D
grad def % T dev grad % grad

DoV S ., pgs U, peT 9, pgv

curl T curl symcurl T 1 cur
1
5 devgrad sym curl i
DoVi— DT XEE Des 4, Dgv
div divT div div

%gmd

1 curl .
D DoV 2D Dgv —I D

Jay Gopalakrishnan 24/38



Completing the picture

rad
@ g

grad

DoV e,

curl

DV

div

1
% grad
D 2

% dev grad
_—

DoV curl

def

curl

PRS ——
T curl
sym curl

DT

divT

fD@V %curl

%Tdev grad
div
DRIT ——
symcurl T
div
PDRS —

div

1
divsymcurl T = 5 curldiv.

Jay Gopalakrishnan

D
%gmd

DV

1
5 curl

DV

div

D
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Completing the picture

rad
D g

grad

DoV e,

curl

DV

div

1
% grad
D 2

% dev grad
_—

DoV curl

def

curl

PRS ——
T curl
sym curl

DT

divT

fD@V %curl

%Tdev grad
div
DRIT ——
symcurl T
div
PDRS —

div

D
%gmd

DV

1
5 curl

DV

div

D

Note the symmetry in the diagram about the diagonal.

Jay Gopalakrishnan
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Completing the picture

rad i
D g DoV curl DRV div D
grad def %Tkkvgmd %gmd

DoV —Sf ., pgs U, peT 9, pgv

1

curl T curl symcurl T 5 curl
1
5 devgrad sym curl i
PRV I—S DT TN Des N, pyv
div div T div div

1
3 grad

1 curl .
D DoV 2D Dgv —I D

The four middle spaces extend to new Sobolev spaces of matrix fields.

Jay Gopalakrishnan 24/38



New and old Sobolev spaces

Let
Hfl _ (Fll)*,
I‘_”Ifl — (Hl)*

Define new Sobolev spaces of matrix fields:

ey

w={geA'®S: curlge A1 ®T, curl Tcurlg e H ' ® S}
w={reAreT: dvre AoV, symcurlr e A ' ®S, curldivr € A1 @ V}.
ﬁch =T ﬁcd-

Hiu={ce A '®S: dvoe H 1wV, divdive € A1},

Define Hcc, Heq, Heqr, Haq similarly, replacing A1 by H L.

Jay Gopalakrishnan 25/38



Two de Rham complexes

Recall the standard Sobolev de Rham complex:

grad curl © div

A(curl) —" A(div) —— [yp.

0 A
A version with lower regularity:

grad

Lor A L3 (curl) —curl, A 3 (div) —dv, ,”_73—)11'

Notation:
LQ,R:{UELQ: fQUZO},
Hai(cur)={ve A7 : curlve A7, v(r) =0 for all r € RT}, RT={a+bx:acV,beR},
Axp(div)={ge A" : divge A", g(r) =0 for all r € ND}, ND={a+dxx:adeV}

I/-blg:l1 ={weH " w(p)=0forall pe P}, P = polynomials of degree < k.

Jay Gopalakrishnan
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Two de Rham complexes

Recall the standard Sobolev de Rham complex:

0 A2 Feurl) —rs F(div) — s [op.

A version with lower regularity:

L r _grd | Iflg_{:lr(curl) _cud | ki;‘J(div) — ,”_73—)11'

(Why remove RT? wue Lhr = (gradu)(a+ bx) = —u(div(a + bx)) = b/ u=0.)
Q

Notation:
LQ,R:{UELQ: fQUZO},
Aga(cul)={ve A" : curlve A, v(r) =0 for all r € RT}, RT={a+bx:ae€V,beR},
Axn(div)={qge A" : divge A", g(r)=0forall r e ND}, ND={a+dxx:adeV},

I/-blg:l1 ={weHA™": wip)=0forall pe P}, P« = polynomials of degree < k.
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The diagram with Sobolev spaces

°) div

° rad ° .
F(grad) —22% A(curl) — A(div) LR
grad def % T dev grad %grad
° def i curl i div i7—1
H(curl) H e Hcq H %3(curl)
curl T curl symcurl T %curl
1
° 5 devgrad o sym curl s . o
: 2 ym cu div —1/:
H(div) ——— Hqr H a4 H 5 (div)
div divT div div
1 1
3 grad A seurl o 4 div a1
Lhr H z5(curl) = H 7, (div) H3,

Theorem: The diagram commutes and every differential operator in it is continuous (with
respect to the norms of the indicated domains and codomains) and has closed range.

Jay Gopalakrishnan
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2-complexes

F(grad) —220 F(curl) — s fi(div) —9v— [,q
grad def % T dev grad % grad
H(curl) def Ao — Aea —— Az (cur)
curl T curl symcurl T %curl
F(div) deverad gy symarl |y div A L (div)
div divT div div
Lor LNy 2 (curl) 2 gy o (div) — o A3

Theorem: All paths in the diagram are 2-complexes.

Jay Gopalakrishnan



2-complexes

%) div

° rad ° .
F(grad) =225 F(curl) —1 A(div) LR
grad def % T dev grad %grad
° def % curl % div i—1
H(curl) H e Hcq H 35 (curl)
curl T curl symcurl T %curl
o L devgrad | :
. P o sym cur| s div P
H(div) ——— Hqr H a4 H 5 (div)
div divT div div

1 1
3 grad A seurl o 4 div a1
Lhr H z5(curl) = H 7, (div) H3,

E.g., curlodefogradw = % T dev grad curl grad w = 0.

Jay Gopalakrishnan
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2-complexes

o

H(grad)

grad

H(curl)

°

A(div) 2————

Lyr

Jay Gopalakrishnan

curl

div

E.g., divodivosymcurlT = %divcurldivTT =0.

rad ° e - i
g A(curl) —0 A(div) —— [,
def % T dev grad %grad
def i curl i div i5—1
H e Hq H 35 (curl)
T curl symcurl T %curl
1
sdevgrad o sym | o f o
2 ym cur div -1 .
edT H aq H 3 (div)
divT div div
1 1
3 grad a1 seurl o 4 div ~_q
H z5(curl) = H 7, (div) H3,
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Diagonal second-order operators

H(grad)

peJ3

J4nd

np

rad T i
g H(curl) curl H(div) div
_|
6@\9 aQ Q”‘/ o
N e, S 2
™
2
def % curl % div
Hcc H cd
) <
< >
n % 3 %,
S RN
4{
1
5 dev grad S s | s
. P ym cur
A(div) ———— H s H aq
Q.
< =
3 <
1 1
3 grad o q seurl o g
H y5(curl) —— H 3 (div)

LR

Jay Gopalakrishnan
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Diagonal second-order operators

H(grad)

peJ3

J4nd

H(div) ————

np

LR

Jay Gopalakrishnan

grad | VT di
H(curl) —=— H(div) =
e, a N2 ;
N e, S 2
™
o
o
def % curl % div
Hcc H cd
e N
n % 3 N %,
e S 2 %
B =
1
5 dev grad S s | s
2 ym cur
H car H a4
Q.
< <
_| <
1 1
3 grad o q 5 curl f 1
H y5(curl) —— H 3 (div)

AIp

Operators that
appeared

@ in MCS:

curl div
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Diagonal second-order operators

grad

Operators that
appeared

@ in MCS:
curl div

@ in curvature:
inc = curl T curl

o I o .
H(grad) H(curl) —=— H(div) Logr
NI=
_|
@ 6@\9 g Q//y x> t;r‘;‘
Y N e, S 03 3
5
o
° def 7% curl % div 5 —1
H(curl) H . Hcq H 33(curl)
@ <
a — % 3 N %,
5 g N f:: % %curl
B =
1
o 5 dev grad S s | s
. 2 ym cur 1/
H(div) ———— H gt Haq o (div)
Q.
o < = Q.
< — < <
1 1
3 grad o q seurl o g _1
Lrr H y5(curl) —— H 3 (div) Hy.

Jay Gopalakrishnan
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Diagonal second-order operators

° rad T i
H(grad) —= A(curl) —"— A(div) div
NI=
_|
n 6@\9 a Q”‘/ o
Y N e, S :
P
o
o f‘ P I < H
H(curl) de b cur H div
v 4
. E 2q
g a % 2 ey
= < c %
4{
1
o 5 dev grad S s | s
. 3 ym cur
A(div) 22— H gy A aa
o
s < =
< — <
1 1
3 grad o q seurl o g
Lrr H y5(curl) —— H 3 (div)

Jay Gopalakrishnan
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Operators that
appeared

@ in MCS:

curl div
@ in curvature:

inc = curl T curl
@ in TDNNS:

div div
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Complexes

Theorem:

The following
paths are exact
complexes:

The hessian complex

Jay Gopalakrishnan

H(curl) def

J4nd

. 1d d
H(div) _2qevend |

AIp

i

e

N
_|
Q/ﬁ/ 3
o
® Qe <
i
o
o
curl i
cc H cd
wn
— - 3
/
0 o(‘ [e]
c c
= =
4{
sym curl f’? div
cdT dd
=2 7L
< g %
_{
1
scurl o div

1
N curl

b (div)

AIp
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Complexes

Theorem:

The following
paths are exact
complexes:

The hessian complex

The elasticity complex

Jay Gopalakrishnan

H(curl) def

J4nd

. 1d d
H(div) _2qevend |

AIp

i

e

N
_|
Q/ﬁ/ 3
o
® Qe <
i
o
o
curl i
cc H cd
wn
— - 3
/
0 o(‘ [e]
c c
= =
4{
sym curl f’? div
cdT dd
=2 7L
< g %
_{
1
scurl o div

1
N curl

b (div)

AIp
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Complexes

< —
@ 65’& &, Y L;;H
g R 2, a < Py}
Theorem: @ a
The following .
N def % curl %
paths are exact H(curl) H ¢ . Hq
complexes: "
<
; . s
The hessian complex o ; e 2
- B 4
The elasticity complex
1
- = dev grad o s | o
. 3 ym cur
o Adiv) 2 Ao A aa
The div div complex
[N 7
=" o .
5 5 S % s
1 1
3 grad o seurl o g div a1
LR H 35(curl) —— H 3 (div) Hy;
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@ Regular decompositions
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Generalized Bogovskil operators

o A classical regular right inverse of div(-) was developed by [Bogovskii 1979].
It was generalized to r-forms in n-dimensions by [Costabel +Mclntosh 2010]. In 3D,

52 Feurl) — s f(div) —Y s [op,
Ty Te Ta

where Ty, T., and Tq map into more regular subspaces with A components.

@ Consequently, the spaces can be split into smooth and rough parts:
£t H(curl) H(div) Lor

grad curl div
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Regular decompositions of the spaces

grad curl div

B A'  (the good)
i Ly (the bad)

The standard case

Thereo are continouous linear maps
Se : H(curl) = A* and
Sq : H(div) — H* ® V such that
Yu € H(curl) :
u = grad(Scu) + T.curlu,
Yq € H(div) :
qg = curl(Sqq) + Tqdivg.



Regular decompositions of the spaces

curl div
_‘
Q
o Q’/ % i}
® % < o
= Yl Ve a
i)
o
i o
def [ | curl -
>l
'_
= P =
2 3 U
- ~ 1
>
(0]
Tdevgrad WM sym curl [ ]
o
o <
= —
grad curl

AIp

Jay Gopalakrishnan

B A'  (the good)
L, (the bad)
A1 (the ugly)

The H cc case

Theorem: Any g in H . admits the

decomposition

g = hess(5{) g)
+ def(52) g)
4+ D..incg.
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Regular decompositions of the spaces
grad curl div
B A'  (the good)
&, o . w Lo (the bad)
% g = 2 B A7 (the ugly)
LD.
def | curl | | ] o
am The H .q case
- o
0 E Theorem: Any T in H .q admits the
= E decomposition
' 1)
Tdevgrad WM sym curl || T = curl def(S od )
+ curI(Sfd T)
g i &5 + T dev grad(S((d) T)
+ Dcq curldivr.
grad curl

Jay Gopalakrishnan
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Regular decompositions of the spaces

grad curl div
_{
Q
a &, gh' ®
S O ) a
o
o
def - curl
div
"
3
g 2
= =
i —
Tdevgrad M symcurl M
o
2 <
4|
grad curl

Jay Gopalakrishnan

AIp

B A'  (the good)
i Ly (the bad)
B A7 (the ugly)

The H dd case

Theorem: Any o in ﬁdd admits the

decomposition
o= inc(S((iil) o)
2
((1(,1) U)

+ Dgq divdivo.

+ sym curl(S
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@ A complementary diagram
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Diagram for the case without boundary conditions

Hl grad
_

H(curl) —" H(div) —3 [,
grad def % T dev grad % grad

H(curl) — 20 Hoo —<  pHg —  H(curl)

curl T curl symcurl T % curl
1
. 5 dev grad sym curl i _ .
H(div) 2——— Huqy —2 Haa —— H~Y(div)
div divT div div
%grad _1 %curl 1 div 1
Ly H™*(curl) = H™*(div) H

Prior results extend to this diagram also. (We can also start with H! /Py instead of H' and
mod out appropriate subspaces as in the next slide.)
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Duality
H* H(curl) H(div) Lor
N N | N
H! H=1(div) H™Y(curl) L>/R
H(curl) — A . A — H 53 (curl)
N N N RN
H=1(div) Haq l Hear H(div)/RT
H(div) —|— A car — > A — ﬁﬁ%(dlv)
N N N R
H™(curl) Heq l Hee H(curl)/ND
LR — lflg_z%(curl) —|— ﬁlilD(div — IA-LITJZI1
N ~N ~ ~N
H(div)/RT «—— H(curl)/ND H /P,

Lo/R

36/38
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Duality identities

000 0000 OO

Io

1)* — H—l

Hl)* — H -1

—~

div)* = H™}(curl
curl)* = H7(div

I I I

—~ o~~~
o
<
~
*
I
I
-
—~
0
c
=

~— ~—

T

Jay Gopalakrishnan
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Conclusion

Operator curldiv is natural for viscous stresses of Stokes flow with H(div) velocity.
Simple nt-continuous matrix finite elements can be designed: [G+Lederer+Schoberl 2019].
The MCS method yield optimal rates for fluid stresses and is Reynolds robust.

MCS convergence analysis: [G+Lederer+Schoberl 2020], [G+Kogler+Lederer+Schoberl 2023].

Other nn- and tt-continuous elements motivate study of accompanying Sobolev spaces.

They feature 2nd order operators curl div, divdiv, and inc on matrix fields.

Two commuting diagrams that give 2-complexes were seen. One is dual to the other.
They contain new Sobolev spaces He., Heq, Haq of matrix fields with low-regularity.
Through regular decompositions, we understand these spaces better.

Recent ArXiV preprint: [G+Hu+Schoberl 2025].
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