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Lowest order scalar (R) and vector (V) valued finite elements
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)
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Weight functions 
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Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)
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P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
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M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)
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("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)
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("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1
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4 43 4
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Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3
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r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2
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dP0 dP1
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P1
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P3 P3dP2 dP3

P3 P3

N11 N21 N21N11
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dP0 dP1
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dP2 dP3
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N1e N1f

N1e N1f
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2 21 2

3 32 3

4 43 4
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Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3
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Periodic Table of the Finite Elements
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)
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44 12
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6 121 4

8 12

20 304 10

15 20

45 6010 20
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grad, continuous curl, “t-continuous” div, “n-continuous”

grad curl div

Lagrange finite element space [Courant 1943]

Natural operator: grad
Continuous across elements

Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1
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r = 3
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k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)
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("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)
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P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2
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grad, continuous curl, “t-continuous” div, “n-continuous”

grad curl div

Nédélec finite element space [Nédélec 1980]

Natural operator: curl
Inter-element continuity: t-component

Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)
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Periodic Table of the Finite Elements
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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5
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8
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4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
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, 
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Raviart-Thomas finite element space [Raviart+Thomas 1977]

Natural operator: div
Inter-element continuity: n-component

Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
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Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Lowest order scalar (R) and vector (V) valued finite elements

(R-valued) (V-valued) (V-valued) (R-valued)
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3
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k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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grad, continuous curl, “t-continuous” div, “n-continuous”

grad curl div

These finite element spaces are now collectively understood using the de Rham complex.

Where do matrix-valued finite elements fit? And second-order differential operators?

Next example: curl div operator and “nt-continuous” matrix elements for viscous stresses.

Figure Source: [Arnold+Logg 2014] poster “The Periodic Table of Finite Elements.”
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Stokes system

Textbook version:

−ν∆u +∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω

Physical stress-based version:

1

2ν
σ − ε(u) = 0 in Ω

div σ −∇p = −f in Ω

div u = 0 in Ω

u = 0 on ∂Ω

Notation:

ν(x) = kinematic viscosity

f (x) = body force

u(x) = fluid velocity

p(x) = kinematic pressure

σ(x) = viscous stress

ε(u) = 1
2
(∇u + (∇u)′) = sym(∇u).

What topology on σ pairs well with
H(div)-topology on u?
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2 Mass-Conserving Stress-yielding (MCS) method

3 Viscous stress elements

4 Other matrix finite elements
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Kelvin-Helmholtz instability simulation

[Schroeder+John+Lederer+Lehrenfeld+Lube+Schöberl 2019]
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Different results from different discretizations

Source: P. Lederer’s thesis
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Mass conservation

Mass is neither created nor destroyed.

Mass =

∫
ρ, density integrated.

Incompressibility =⇒ the material derivative
Dρ

Dt
= 0.

Equivalent constraint on fluid velocity u:

Continuity equation (mass conservation) =⇒ Dρ

Dt
+ ρ div u = 0.

Hence, mass conservation in incompressible fluids ⇐⇒ div u = 0 .

A piecewise polynomial fluid velocity approximation uh has div uh = 0 if

its divergence is zero pointwise within elements,

and Juh · nK = 0, i.e., uh has at least n-continuity.
uh · nuh · n
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vh with n-continuity:

(div uh, qh) = 0 for all qh in the discrete pressure space Qh.

Hence uh is exactly mass conserving if divVh ⊆ Qh.

Two approaches to methods with mass conservation:

H(div)-based H1-based
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vh with n-continuity:

(div uh, qh) = 0 for all qh in the discrete pressure space Qh.

Hence uh is exactly mass conserving if divVh ⊆ Qh.

Two approaches to methods with mass conservation:

H(div)-based

H(div) = {u : ui ∈ L2,
∑

i∂iui ∈ L2}

H1-based

H1 ⊗ V = {u : ui ∈ L2, ∂jui ∈ L2}

(This is vector H1.)
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How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vh with n-continuity:

(div uh, qh) = 0 for all qh in the discrete pressure space Qh.

Hence uh is exactly mass conserving if divVh ⊆ Qh.

Two approaches to methods with mass conservation:

H(div)-based

When Vh ⊂ H(div):

⊕ Range of divergence is simple.

⊖ Discretizing viscous term is complex.

H1-based

When Vh ⊂ H1 ⊗ V:

⊖ Range of divergence is complex.

⊕ Viscous term easily discretized.

Jay Gopalakrishnan 8/38



How can methods gain exact mass conservation?

Discrete version of the incompressibility constraint in a space Vh with n-continuity:

(div uh, qh) = 0 for all qh in the discrete pressure space Qh.

Hence uh is exactly mass conserving if divVh ⊆ Qh.

Two approaches to methods with mass conservation:

H(div)-based

[Cockburn+Kanschat+Schötzau 2005]
...

[Cockburn+G+Nguyen+Peraire+Sayas 2011]
[Linke+Merdon 2016]
[G+Lederer+Schöberl 2019] (MCS method)

H1-based

[Scott+Vogelius 1985]
...

[Guzmán+Scott 2019]
[Neilan 2020]
[Ainsworth+Parker 2021]
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Punchlines of Mass-Conserving Stress-yielding (MCS) method

Structure-preservation:
Numerical solutions are exactly mass conserving.
Scheme is pressure robust.

Viscous stress σ approximation: New matrix-valued finite elements with continuous
shear component (or nt-component) used for approximating σ. (Jt · σ nK ≡ JσntK = 0.)

Optimally convergent in velocity (u), pressure (p), viscous stress (σ), and vorticity (ω).

More features:
▶ No stabilization parameters.
▶ Easy to incorporate stress boundary conditions.
▶ No vertex unknowns, facet couplings only: permits easy hybridization.
▶ Element mappings (even curvilinear) are straightforward.
▶ Stable for ∇u-forms as well as the more physical ε(u)-formulations.
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Deriving the MCS formulation

Standard form: With σ:

−ν∆u + grad p = 0 1
2ν

dev

σ − ε(u)

+ ω

= 0 in Ω

div σ − grad p = −f in Ω

div u = 0 div u = 0 in Ω

σ − σ′ = 0 in Ω

u = 0 u = 0 on ∂Ω

Derivation is completed by replacing the integrals (div σ, v) by functional actions ⟨div σ, v⟩.
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σ − σ′ = 0 in Ω

u = 0 u = 0 on ∂Ω

Notation:

devm := m − 1

3
(trm)δ, m in R3×3

,

σ = dev σ, in T T := dev(R3×3) ≡ {traceless matrices}

ω := vorticity, in K K := skw(R3×3) ≡ {skew-symmetric matrices}
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3
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ω := vorticity, in K K := skw(R3×3) ≡ {skew-symmetric matrices}

Derivation is completed by replacing the integrals (div σ, v) by functional actions ⟨div σ, v⟩.

Jay Gopalakrishnan 10/38



Deriving the MCS formulation

Standard form: With σ:

−ν∆u + grad p = 0 1
2ν
dev σ −∇u

)

+ ω = 0 in Ω

div σ − grad p = −f in Ω

div u = 0 div u = 0 in Ω

σ − σ′ = 0 in Ω

u = 0 u = 0 on ∂Ω

Test with τ : Ω → T, v : Ω → V, q : Ω → R, η : Ω → K:

( 1
2ν
devσ, dev τ) + (u, div τ) + (ω, τ) = 0

(div σ, v) + (p, div v) = −(f , v)

(div u, q) = 0

(σ, η) = 0.

Derivation is completed by replacing the integrals (div σ, v) by functional actions ⟨div σ, v⟩.
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The viscous stress space

MCS formulation: Find σ ∈ Σ, u ∈ H̊(div), p ∈ L2,R, ω ∈ L2 ⊗ K satisfying

( 1
2ν
devσ, dev τ) + ⟨div τ, u⟩+ (ω, τ) = 0, τ ∈ Σ,

⟨div σ, v⟩+ (p, div v) = −⟨f , v⟩, v ∈ H̊(div),

(div u, q) = 0, q ∈ L2,R,

(σ, η) = 0, η ∈ L2 ⊗ K.

Minimal requirement for any σ in Σ is div σ ∈ H̊(div)∗, the dual space of H̊(div).

Theorem: H̊(div)∗ = H−1(curl).

Space for viscous fluid stresses: Σ =
{
τ ∈ L2⊗T : curl div(τ) ∈ H−1

}
.

Notation: 1 T = {traceless matrices}, 2 K = {skew symmetric matrices}, 3 L2,R = {p ∈ L2 : (p, 1) = 0},
4 H−1(curl) = {ϕ ∈ H−1 ⊗ V : curlϕ ∈ H−1 ⊗ V}, 5 H̊(div) = {w ∈ H(div) : w · n|∂Ω = 0}.
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
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Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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grad, continuous curl, “t-continuous” div, “n-continuous”

JwK = 0 Jt · uK = 0 Jn · qK = 0

grad curl div

For the curl div operator, we make “nt-continuous” matrix elements for viscous stresses, i.e.,

Jt · σnK = 0

for any tangent vector t and normal vector n on element boundaries.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on ∂T except on one face?

Tetrahedron T

al

aj
ak

aiFi

nj

ni

Consider σ =

dev[

nj ⊗ (nk × nl)

] and σ = dev[nl ⊗ (nj × nk)].

Taking all faces, we get a basis for T = {m ∈ R3×3 : trm = 0}.
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Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on ∂T except on one face?

Tetrahedron T
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ak

ai

Fi

nj

ni

Consider σ =

dev[

nj ⊗ (nk × nl)

] and σ = dev[nl ⊗ (nj × nk)].

σn = 0 on Fk ∪ Fl and σnj is collinear with nj , so σnj · t|Fj
= 0.

Taking all faces, we

get a basis for T = {m ∈ R3×3 : trm = 0}.
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Designing finite elements for viscous stresses

Lowest order case: Is it possible to construct a constant matrix function whose
nt-component vanishes on ∂T except on one face?

Tetrahedron T

al

aj
ak

ai

Fi

nj

ni

Consider σ = dev[nj ⊗ (nk × nl)] and σ = dev[nl ⊗ (nj × nk)].

Taking all faces, we get a basis for T = {m ∈ R3×3 : trm = 0}.

More general shape functions: λαi
i λ

αj

j λαk
k dev[∇λi ⊗ (∇λj ×∇λk)].
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Unisolvent finite element

Ciarlet-style finite element definition:

Geometry: Tetrahedron T

Space: Pk(T )⊗ T = {m :T → T
∣∣ mij is a polynomial of degree ≤ k} for any k ≥ 0.

Degrees of freedom:∫
F
σnt · r , tangential r with ri ∈ Pk(F ) on each face F ,∫

T
σ : ς, ς ∈ Pk−1(T )⊗ T, if k ≥ 1.

Theorem: These degrees of freedom are unisolvent for Pk(T )⊗ T.
They generate global degrees of freedom suitable for enforcing
nt-continuity. [G+Lederer+Schöberl 2019]

The k = 0 case

Jay Gopalakrishnan 15/38



Mapping

Let T = image of reference element T̂
under (possibly curvilinear) map ϕ,

and define the curl div pullback by

σ̂ = det(∇ϕ) (∇ϕ)t (σ ◦ ϕ) (∇ϕ)−t .

T

T̂

ϕ

σσ̂

Theorem: Let F = ϕ(F̂ ) for a facet F̂ of T̂ with normal n̂ and t̂ ∈ n̂⊥. Let n and t be the
mapped normal and tangent on F . Then

There is a nonzero cF depending only on ϕ|F̂ such that t̂ · σ̂n̂ = cF (t · σn) ◦ ϕ,
The mapped σ̂ is traceless if and only if σ is.

Other MCS variables have standard pullbacks (e.g., standard Piola for H(div)-velocity).

Thus all elements used in the MCS method have natural mappings.

Jay Gopalakrishnan 16/38



Outline

1 Introduction

2 Mass-Conserving Stress-yielding (MCS) method

3 Viscous stress elements

4 Other matrix finite elements

5 A unifying 2-complex of Sobolev spaces

6 Regular decompositions

7 A complementary diagram
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Where do matrix-valued finite elements fit?

(R-valued) (V-valued) (V-valued) (R-valued)

k       

0
1

0
1
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0
1
2
3

0
1
2
3
4

k       

0
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0
1
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k       
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2

0
1
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3

0
1
2
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k       

0
1

0
1
2

0
1
2
3

0
1
2
3
4

r = 1

2
2
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6
3

4
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4

5
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r = 1

2
1

3
3
1

4
6
4
1

5
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5
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r = 1

2
1

4
4
1

8
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6
1
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8
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2
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8
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8
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2
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
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J. C. Nédélec, Numerische Mathematik 35, 1980.
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)

("Q", hexahedron, 2) ("S", hexahedron, 2)("NCE", hexahedron, 2) ("AAE", hexahedron, 2)("NCF", hexahedron, 2) ("AAF", hexahedron, 2)("DQ", hexahedron, 1) ("DPC", hexahedron, 2)

("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)
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("P", tetrahedron, 2) ("P", tetrahedron, 2)
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("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)
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("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2
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dP0 dP1
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P1
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P2 P2
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P3 P3
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dP1 dP2
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N1e N1f

N1e N1f
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n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
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in FEniCS
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grad, continuous curl, “t-continuous” div, “n-continuous”

grad curl div

Where does the nt-continuous T-valued matrix element fit?

How about matrix elements with tt-continuity?

How about matrix elements with nn-continuity?

Jay Gopalakrishnan 18/38



More matrix-valued elements

facet nn-moments (four)

interior moments (two) Coupling dofs:

σ 7→
∫
F
n · σn

S-valued HHJ element, aka TDNNS element [Hellan 1967] [Herrmann 1967] [Johnson 1973]
Natural operator: div div [Comodi 1989] [Pechstein+Schöberl 2011]
Continuous nn-component

Notation: 1 sym(τ) = 1
2
(τ + τ⊤) for matrices τ ∈ R3×3. 2 S = sym(R3×3), space of symmetric matrices.

3 dev τ = τ − 1
3
(tr τ)I for matrices τ , 4 T= devR3×3 = space of traceless matrices.
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More matrix-valued elements

edge tt-moments

Coupling dofs on each edge:

g 7→
∫
E
t · gt

S-valued Regge element [Regge 1961] [Christiansen 2011] [Li 2018]
Natural operator: curl⊤ curl or “inc” [G+Neunteufel+Schöberl+Wardetsky 2023]
Continuous tt-component

Notation: 1 sym(τ) = 1
2
(τ + τ⊤) for matrices τ ∈ R3×3. 2 S = sym(R3×3), space of symmetric matrices.

3 dev τ = τ − 1
3
(tr τ)I for matrices τ , 4 T= devR3×3 = space of traceless matrices.
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More matrix-valued elements

facet nt-moments

Two coupling dofs on each face:

τ 7→
∫
F
t · τn

T-valued viscous stress element [G+Lederer+Schöberl 2019]
Natural operator: curl div
Continuous nt-component

Notation: 1 sym(τ) = 1
2
(τ + τ⊤) for matrices τ ∈ R3×3. 2 S = sym(R3×3), space of symmetric matrices.

3 dev τ = τ − 1
3
(tr τ)I for matrices τ , 4 T= devR3×3 = space of traceless matrices.
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More matrix-valued elements

facet nt-moments

Two coupling dofs on each face:

τ 7→
∫
F
t · τn

T-valued viscous stress element [G+Lederer+Schöberl 2019]
Natural operator: curl div
Continuous nt-component

Recent understanding: An algebraic structure with matrix-valued Sobolev
space functions connected by curl div, curl⊤ curl, div div.

Notation: 1 sym(τ) = 1
2
(τ + τ⊤) for matrices τ ∈ R3×3. 2 S = sym(R3×3), space of symmetric matrices.

3 dev τ = τ − 1
3
(tr τ)I for matrices τ , 4 T= devR3×3 = space of traceless matrices.
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Outline

1 Introduction

2 Mass-Conserving Stress-yielding (MCS) method

3 Viscous stress elements

4 Other matrix finite elements

5 A unifying 2-complex of Sobolev spaces

6 Regular decompositions

7 A complementary diagram
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Complexes from the 2-complex

We use “commutative diagrams”

whose “vertices” or “objects” are function spaces,

whose “arrows” or “morphisms” are differential operators.

A1

A
2

A3 A4

Compositions of morphisms are called “paths.”

A path is a complex if compositions of 2 successive morphisms vanish:

Aj+1 ◦ Aj = 0.

A complex is exact if range(Aj) = ker(Aj+1).

A path is a 2-complex if the compositions of 3 successive morphisms vanish: [Olver 1982]

Aj+2 ◦ Aj+1 ◦ Aj = 0.
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Scalar (R) and vector (V) valued fields in 3D

On a bounded contractible domain Ω ⊂ R3 with Lipschitz boundary, let D denote the space
of infinitely differentiable functions compactly supported on Ω. The de Rham complex

0 D D⊗ V D⊗ V D R
grad curl div

is exact.

, and so is the Sobolev de Rham complex,

0 H̊1 H̊(curl) H̊(div) L2 R
grad curl div

where

H̊(curl) = D⊗ V
∥·∥H(curl) , H̊(div) = D⊗ V

∥·∥H(div)

∥u∥2H(curl) = ∥u∥2L2 + ∥ curl u∥2L2 , ∥q∥2H(div) = ∥q∥2L2 + ∥ div q∥2L2 .

Notation: V = R3. Tensor product X ⊗ V is identifiable with the Cartesian product X × X × X .
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S and T valued matrix fields

D D⊗ V D⊗ V D

D⊗ V D⊗ S D⊗ T D⊗ V

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def curl div

Notation: 1 sym τ = 1
2
(τ + τ⊤) for matrices τ . 2 S = symR3×3, space of symmetric matrices.

3 dev τ = τ − 1
3
(tr τ)I for matrices τ , 4 T = devR3×3 = space of traceless matrices.
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Completing the picture

D D⊗ V D⊗ V D

D⊗ V D⊗ S D⊗ T D⊗ V

D⊗ V D⊗ T D⊗ S D⊗ V

D D⊗ V D⊗ V D

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div
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1

2
curl div .
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⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
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2
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Note the symmetry in the diagram about the diagonal.
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The four middle spaces extend to new Sobolev spaces of matrix fields.
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New and old Sobolev spaces

Let

H−1 = (H̊1)∗,˜̊H −1 = (H1)∗.

Define new Sobolev spaces of matrix fields:

˜̊H cc := {g ∈ ˜̊H −1 ⊗ S : curl g ∈ ˜̊H −1 ⊗ T, curl⊤ curl g ∈ ˜̊H −1 ⊗ S}.˜̊H cd := {τ ∈ ˜̊H −1 ⊗ T : div τ ∈ ˜̊H −1 ⊗ V, sym curl τ ∈ ˜̊H −1 ⊗ S, curl div τ ∈ ˜̊H −1 ⊗ V}.˜̊H cd⊤ := ⊤ ˜̊H cd.˜̊H dd := {σ ∈ ˜̊H −1 ⊗ S : div σ ∈ ˜̊H −1 ⊗ V, div div σ ∈ ˜̊H −1}.

Define Hcc,Hcd,Hcd⊤,Hdd similarly, replacing ˜̊H −1 by H−1.
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Two de Rham complexes

Recall the standard Sobolev de Rham complex:

0 H̊1 H̊(curl) H̊(div) L2,R.
grad curl div

A version with lower regularity:

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

.
grad curl div

(Why remove RT? u ∈ L2,R =⇒ (grad u)(a+ bx) = −u(div(a+ bx)) = −b

∫
Ω
u = 0.)

Notation:

L2,R = {u ∈ L2 :
∫
Ω
u = 0},˜̊H −1

RT(curl) = {v ∈ ˜̊H −1 : curl v ∈ ˜̊H −1, v(r) = 0 for all r ∈ RT}, RT = {a+ bx : a ∈ V, b ∈ R},˜̊H −1
ND(div) = {q ∈ ˜̊H −1 : div q ∈ ˜̊H −1, q(r) = 0 for all r ∈ ND}, ND = {a+ d × x : a, d ∈ V},˜̊H −1

P1
= {w ∈ ˜̊H −1 : w(p) = 0 for all p ∈ P1}, Pk = polynomials of degree ≤ k.
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The diagram with Sobolev spaces

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

Theorem: The diagram commutes and every differential operator in it is continuous (with
respect to the norms of the indicated domains and codomains) and has closed range.
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2-complexes

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

Theorem: All paths in the diagram are 2-complexes.
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2-complexes

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

E.g., curl ◦ def ◦ gradw = 1
2 ⊤ dev grad curl gradw = 0.

Jay Gopalakrishnan 28/38



2-complexes

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)
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ND(div) ˜̊H −1
P1

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

E.g., div ◦ div ◦ sym curl τ = 1
2 div curl div⊤ τ = 0.
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Diagonal second-order operators

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12
⊤

d
ev

g
ra
d

1
3 grad div

13
g
ra
d

def

cu
rl

curl

⊤
cu

rl

inc

div

sym
cu

rl⊤

1
2 curl div 1

2
curl

1
2
dev grad

d
iv

sym curl

d
iv⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div

Jay Gopalakrishnan 29/38



Diagonal second-order operators

H̊(grad) H̊(curl) H̊(div) L2,R
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d
ev

g
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g
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def

cu
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curl

⊤
cu
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inc

div

sym
cu

rl⊤

1
2 curl div 1

2
curl

1
2
dev grad

d
iv

sym curl

d
iv⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div

Operators that
appeared

in MCS:

curl div

in curvature:

inc = curl⊤ curl

in TDNNS:

div div

Jay Gopalakrishnan 29/38



Diagonal second-order operators

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12
⊤

d
ev

g
ra
d

1
3 grad div

13
g
ra
d

def

cu
rl

curl

⊤
cu

rl

inc

div

sym
cu

rl⊤

1
2 curl div 1

2
curl

1
2
dev grad

d
iv

sym curl

d
iv⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div

Operators that
appeared

in MCS:

curl div

in curvature:

inc = curl⊤ curl

in TDNNS:

div div

Jay Gopalakrishnan 29/38



Diagonal second-order operators

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12
⊤

d
ev

g
ra
d

1
3 grad div

13
g
ra
d

def

cu
rl

curl

⊤
cu

rl

inc

div

sym
cu

rl⊤

1
2 curl div 1

2
curl

1
2
dev grad

d
iv

sym curl

d
iv⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div

Operators that
appeared

in MCS:

curl div

in curvature:

inc = curl⊤ curl

in TDNNS:

div div

Jay Gopalakrishnan 29/38



Complexes

Theorem:
The following
paths are exact
complexes:
The hessian complex

The elasticity complex

The div div complex

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12
⊤

d
ev

g
ra
d

1
3 grad div

13
g
ra
d

def

cu
rl

curl

⊤
cu

rl

inc

div

sym
cu

rl⊤
1

2 curl div 1
2
curl

1
2
dev grad

d
iv

sym curl

d
iv⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div
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Generalized Bogovskĭı operators

A classical regular right inverse of div(·) was developed by [Bogovskĭı 1979].
It was generalized to r -forms in n-dimensions by [Costabel+McIntosh 2010]. In 3D,

H̊1 H̊(curl) H̊(div) L2,R,
grad curl

Tg

div

Tc Td

where Tg,Tc, and Td map into more regular subspaces with H̊1 components.

Consequently, the spaces can be split into smooth and rough parts:

H̊1 H̊(curl)
grad

H̊(div)
curl

L2,R
div
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Regular decompositions of the spaces

grad curl div

g
ra
d

def

hess

d
ef

curl

curl def

⊤
d
ev

g
ra
d

g
ra
d

div

cu
rl

⊤ dev grad

⊤
cu

rl

sym curl

inc
inc

sym
cu

rl⊤

cu
rl

div

curl div

d
iv

grad

d
iv⊤

curl

d
iv

div

d
iv

div div

H̊1 (the good)
L2 (the bad)

˜̊H −1 (the ugly)

The standard case

There are continuous linear maps
Sc : H̊(curl) → H̊1 and
Sd : H̊(div) → H̊1 ⊗ V such that

∀u ∈ H̊(curl) :

u = grad(Sc u) + Tc curl u,

∀q ∈ H̊(div) :

q = curl(Sd q) + Td div q.
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Regular decompositions of the spaces

grad curl div

g
ra
d

def

hess

d
ef

curl

curl def

⊤
d
ev

g
ra
d

g
ra
d

div

cu
rl

⊤ dev grad

⊤
cu

rl

sym curl

inc
inc

sy
m

cu
rl
⊤

cu
rl

div

curl div

d
iv

grad

d
iv⊤

curl

d
iv

div

d
iv

div div

H̊1 (the good)
L2 (the bad)˜̊H −1 (the ugly)

The ˜̊H cc case

Theorem: Any g in ˜̊H cc admits the
decomposition

g = hess(S (1)
cc g)

+ def(S (2)
cc g)

+ Dcc inc g .
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Regular decompositions of the spaces

grad curl div
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d
ef
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curl def

⊤
d
ev

g
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d

g
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d

div

cu
rl

⊤ dev grad

⊤
cu

rl

sym curl

inc
inc

sy
m

cu
rl
⊤

cu
rl

div

curl div

d
iv

grad

d
iv⊤

curl

d
iv

div

d
iv

div div

H̊1 (the good)
L2 (the bad)˜̊H −1 (the ugly)

The ˜̊H cd case

Theorem: Any τ in ˜̊H cd admits the
decomposition

τ = curl def(S
(1)
cd τ)

+ curl(S
(2)
cd τ)

+⊤ dev grad(S
(3)
cd τ)

+ Dcd curl div τ .
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Regular decompositions of the spaces
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div

curl div

d
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grad

d
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curl

d
iv

div

d
iv

div div

H̊1 (the good)
L2 (the bad)˜̊H −1 (the ugly)

The ˜̊H dd case

Theorem: Any σ in ˜̊H dd admits the
decomposition

σ = inc(S
(1)
dd σ)

+ sym curl(S
(2)
dd σ)

+ Ddd div div σ.
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Diagram for the case without boundary conditions

H1 H(curl) H(div) L2

H(curl) Hcc Hcd H−1(curl)

H(div) Hcd⊤ Hdd H−1(div)

L2 H−1(curl) H−1(div) H−1

grad

grad

curl

def

div

1
2
⊤ dev grad

1
3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

Prior results extend to this diagram also. (We can also start with H1/P1 instead of H1 and
mod out appropriate subspaces as in the next slide.)
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Duality

H̊1 H̊(curl) H̊(div) L2,R

H−1 H−1(div) H−1(curl) L2/R

H̊(curl) ˜̊H cc ˜̊H cd ˜̊H −1
RT(curl)

H−1(div) Hdd Hcd⊤ H(div)/RT

H̊(div) ˜̊H cd⊤ ˜̊H dd ˜̊H −1
ND(div)

H−1(curl) Hcd Hcc H(curl)/ND

L2,R ˜̊H −1
RT(curl) ˜̊H −1

ND(div) ˜̊H −1
P1

L2/R H(div)/RT H(curl)/ND H1/P1

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
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Duality identities

1 (H̊1)∗ = H−1

2 (H1)∗ = ˜̊H −1

3 H̊(div)∗ = H−1(curl)

4 H̊(curl)∗ = H−1(div)

5 H(div)∗ = ˜̊H −1(curl)

6 H(curl)∗ = ˜̊H −1(div)

7 ˜̊H ∗
cc = Hdd

8 ˜̊H ∗
cd = Hcd⊤

9 ˜̊H ∗
dd = Hcc
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Conclusion

Operator curl div is natural for viscous stresses of Stokes flow with H(div) velocity.

Simple nt-continuous matrix finite elements can be designed: [G+Lederer+Schöberl 2019].

The MCS method yield optimal rates for fluid stresses and is Reynolds robust.

MCS convergence analysis: [G+Lederer+Schöberl 2020], [G+Kogler+Lederer+Schöberl 2023].

Other nn- and tt-continuous elements motivate study of accompanying Sobolev spaces.

They feature 2nd order operators curl div, div div, and inc on matrix fields.

Two commuting diagrams that give 2-complexes were seen. One is dual to the other.

They contain new Sobolev spaces Hcc,Hcd,Hdd of matrix fields with low-regularity.

Through regular decompositions, we understand these spaces better.

Recent ArXiV preprint: [G+Hu+Schöberl 2025].
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