An O(N) Helmholtz Solver from Time-Filtering the
Wave Equation

(Or how to turn a time domain solver into a Helmholtz solver)

Bill Henshaw

Rensselaer Polytechnic Institute, (e
Troy New York USA mﬁiﬁ({“ ‘

(N
|

FEM@LLNL Seminar Series, November 4, 2025 O
|! B Lawrence Livermore g/av/
National LabOI'atOI’y CALIFORNIA REPUBLIC




Collaborators -

Rensselaer
Polytechnic
Institute

Jeff Banks Bill Henshaw Don Schwendeman Ngan Le,
Grad Student

With support from the NSF

( . T
~ U.S. National D_an_le_l Appelo,
Virginia Tech

Science Foundation




Motivation ...

Helmholtz problems arise for wave propagation problems :
solid-mechanics, acoustics, electromagnetics

We have developed high-order accurate time domain solvers for
the dispersive Maxwell’s equations on overset grids:

i

Overset grid for Scattering from various dispersive solids
solid ellipsoids

Question: Can we use existing time-domain solvers to solve the
Helmholtz problem?

See publications at OvertureFramework.org



Question: Given a time-domain solver for the wave
equation how can we find the time-periodic solution?
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Wave equation with a time periodic Gaussian source:
Initial value problem (Dirichlet boundary conditions)




Answer: WaveHoltz can use a time domain solver to
find time-periodic solutions

max norms

Convergence of WaveHoltz with deflation. Iteration = one wave solve
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WaveHoltz: w1=10, Np=8, order=2, TS=implicit[20]

= = Theory: ACR=0.445

——FixPnt : CR=0.41, ECR=0.90|_
—&—Krylov : CR=0.18, ECR=0.81

S MultiObj, I, 02, N, = 8 ||
GMRES
5 10 15 20 25 30
iteration




Goal: Find time-periodic solutions to large scale PDE problems
Solve the Helmholtz equation.

There are many ways to solve Helmholtz problems. For example:

1. Boundary integral, boundary element methods, fast multipole methods
2. Fast direct solvers

3. Domain decomposition with special transmission conditions, sweeping
preconditioners, complex shifted Laplacian preconditioners, multigrid, ....

Possible issues with the current state of the art:

Poor performance for high frequencies.

Poor scaling (memory/CPU) as mesh is refined.

Pollution errors - low order methods require fine grids at high frequencies.
Poor parallel scaling or large initialization costs.

Limited to specialized geometries and or boundary conditions.

Gl e

D.Lahaye, J.Tang, K.Vuik, Modern Solvers for HelImholtz Problems, Birkhauser, 2017

O.G. Ernst, M.J. Gander, Why it is Difficult to Solve Helmholtz Problems with Classical Iterative
Methods, 2012.



WaveHoltz Algorithm (closed domains, energy conserving case):

Goal: Solve the Helmholtz problem (e.g. with Dirichlet/Neumann BCs):

Lu+w?u = f(x), xe€Q,
Bu = g(x), x € 012,

L =c’A

Given an initial guess v ~ u(x) solve the forced wave equation:

02w = Lw — f(x) cos(wt), xe, tel0,T]
Bw = g(x) cos(wt), x € 011,

w(x,0) = v*), x € (Q,

orw(x,0) = 0, \ x € ().

N

Current iterate is the initial condition

Compute v*+D  from the time filter of w:

i
v+ (x) = 2/ (cos(wt) — g) w® (x, ¢; 0*)) dt,
0

\ T 2

N

New iterate is the time filtered solution to the wave equation

v
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WaveHoltz Algorithm (closed domains, energy conserving case):

Algorithm 1 WaveHoltz Fixed-Point Iteration for Real Helmholtz Solutions.
1: function [u;] = WAVEHOLTZ(w, f) = Solve the Helmholtz problem with frequency w and forcing f

2: vi(o) = 0; > Initial guess (e.g. zero) for w(z,0).

3 for k=0,1,...do > WaveHoltz iterations.

A wy = vi(k) > Initial condition for wave equation solve.

5 {wl'}Y_y = SOLVEWAVEEQUATION( vi(k), cos(wt™) fi, 0,T) > Solve for wy’, over a period 7.

N

6 vi(k“) — % Z on (cos(wt™) — i) wy’, > Filter step for 'vi(k) (quadrature weights o).
n=0

7 end for

8: Ui = vi(kH) > Real Helmholtz solution

9: end function

\

In practice, line 6 is accumulated during the time-stepping to avoid storing the solution at all time-steps.

Some WaveHoltz References
D. Appeld, F. Garcia, O. Runborg, WaveHoltz: lterative solution of the Helmholtz equation via the wave equation, SIAM J.
Sci. Comput. 42 (4) (2020) A1950--A1983.

Z. Peng, D. Appel6, EM-WaveHoltz: A flexible frequency-domain method built from time-domain solvers, IEEE
Transactions on Antennas and Propagation 70(7) (2022) 5659--5671.

D.Appeld, F.~Garcia, A. Alvarez Loya, O. Runborg, EI-WaveHoltz: A time-domain iterative solver for time-harmonic elastic
waves, Computer Methods in Applied Mechanics and Engineering 401 (2022) 15603

D. Appeld, J.W. Banks, WDH, D.W. Schwendeman, An optimal O(N) Helmholtz solver for complex geometry using
WaveHoltz and overset grids, arXiv:2504.03074 (2025).
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WaveHoltz transformed the problem to one that is easier to solve

The WaveHoltz algorithm defines an affine operator:

v*(x) = Av®) + b

Where A has the same eigenfunctions as the Helmholtz (or A) operator:

WaveHoltz filter function

Loj ==X ¢; Ap; = —B; ¢; ' 5

x Aj (original eigenvalues)

x 51. (transformed eigenvalues)

But eigenvalues:

B0 w)

T 1
/0 (cos(wt) — Z) cos(At) dt




The Fixed-Point Iteration will converge if the
problem is not at resonance

Theorem 1 (WaveHoltz FPI Convergence Rate). Assume \,, # w are the eigenval-
ues of L (with boundary conditions) so that |B(Am)| < 1 for all \,,. The WaveHoltz fized-
point iteration has asymptotic convergence rate p given by

p = max | B

WaveHoltz filter function

N | |
| / \‘ x )\j (original eigenvalues)
Asympto’uc / ﬁj (transformed eigenvalues)
convergence M .
rate ' \
@ | \
O: x x/x x x_x5x X x ):/x x &\):-’:( 2 x 2\:(*):/*
| /, \./
-0.5 r
0 5 10 15 20
A
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Enhancements to the Basic WaveHoltz Algorithm:

1. Acceleration by matrix-free Krylov methods such as GMRES
2. Implicit time-stepping with a large time-step

3. Deflation using precomputed eigenvalues and eigenvectors

11



Time-stepping and time-corrections

Implicit/explicit time-stepping, f! = 1 — 2a’ (for 2nd order accuracy)

Dy ,D_W" = Ly, (af Wt 4 BTWE + of Wj“‘l) — f(x;) cos(@t™) (B" + 20 cos(@At))

Yl
\ al =0
Order p difference P
2 o=z
operator, Lph ~ Cc°A 2

. explicit

Second-order time
difference

(WL 2w + W/ Ar?

. Trapezodial

W =

Adjusted frequency

L ot (L0
At 1 + af (wAt)?

Time dispersion errors can be removed by adjusting the forcing

Note: the implicit time-stepping matrix M = [ — Atszh is definite

Amazingly only 10 implicit time-steps per period are needed for good convergence!
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Acceleration with Krylov space solvers

WaveHoltz can be accelerated with a matrix free Krylov solver.
The linear system to solve is (A is the discrete form of A)

(I — Ap)up = by,
.

Applying A4; : Wave solve and filter with zero forcing

1. Conjugate Gradient can be used for symmetric discretizations
2. For overset grids we use GMRES or bi-CG-stab

WaveHoltz: 1-beta for Krylov

Convergence depends on the eigenvalues 1-£(4,,)

13



“Direct” Eigenvector Deflation accelerates convergence

1. Uses precomputed eigenvalues 4, and eigenvectors ¢,
2. Typically deflate eigenpairs with 4, ~

Algorithm 1 WaveHoltz Algorithm with Eigenfunction Deflation.

1: function WAvVEHOLTZ(w, f,Np)
2: // Final time is T' = N,T where T' = 27 /w.

3: k=20 > WaveHoltz iteration counter.
4: v(F) =0 > Initial guess for Helmholtz iterate (deflate if non-zero)
ik fa=f— Z (f, dm)a ¢m \ > Deflate forcing.
#m D 1) Deflate forcin
6: while not converged do ( ) MM 1INk > Start WaveHoltz iterations.
7 w® (x,0) = v*) (x) > Initial condition for wave equation solve.
8: w® (x,0: T)= SOLVEWAVEEQUATION(w (k) (x,0),fa) = Solve for w(x,t) (deflated forcing fa).
9 [T
9: v * ) (x) = ?/ (cos(wt) — 5) w' (x, t) dt > Time filter.
0
10: p D) = R+ _ Z W b ) dm > Deflate iterate (skip with true eigenfunctions).
¢7TL€D
11: k=k+1
12: end while (f.6u) > End WaveHoltz iterations.
. (k) (k) m )2 .
13 v v ZD — 2 9m «——(2) Inflate solution > Inflate.
bdmE
14: u = v, > Approximate Helmholtz solution.

15: end function

On overset grids line 10 is added since eigenvectors are only approximately orthogonal
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We have implemented WaveHoltz on Overset Grids:

1. CgWave: Uses fast and efficient high-order accurate finite differences
for the wave equation (built on the Overture framework).

2. Matrix free geometric multigrid algorithms for overset grids can be
used to solve the implicit time-stepping equations.

3. High-order and accurate treatment of boundaries using compatibility
boundary conditions.

This leads to an optimal O(N) algorithm at fixed frequency
N= total humber of grid points

A.M. Carson, J.W. Banks, WDH, D.W. Schwendeman, High-order accurate implicit-explicit time-stepping schemes for
wave equations on overset grids, Journal of Computational Physics 520 (2025) 113513.

C.Liu, WDH, Multigrid with nonstandard coarse-level operators and coarsening factors, J. of Scientific Computing 94 (58)
(2023) 1-27.

N.G. Al Hassanieh, J.W. Banks, WDH, D.W. Schwendeman, Local compatibility boundary conditions for high-order
accurate finite-difference approximations of PDEs, SIAM J. Sci. Comput. 44 (2022) A3645-A3672.
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WaveHoltz CPU-time/N is a nearly constant function of N

Square: Normalized CPU(N)/N

1.5 — ————
Computations on a square and disk
- demonstrate O(N) scaling for WaveHoltz
E_, \ e _® —————
(@)
%
§%° Using the Ogmg geometric multigrid solver
for overset grids.
ol |
10° 108 107
N (total grid points)

A Disk: Normalized CPUN)/N

|
z
Z 1
z
@)
Egcxsw - - . "
2

0 L 1 H R L L L L L L

10* 10° 106
N (total grid points) Overset grid
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WaveHoltz example: Gaussian source in a disk

o = 20, order=4, implicit time-stepping,
2 periods, 10 time-steps per period Asymptotic convergence rate = .615

WaveHoltz: w=20, Np=2, order=4, TS=implicit[10] / \ WaveHoltz 3, w=20, Np=2
100 —e—FixPnt : CR=0.59, ECR=0.77 1L

—8—Krylov : CR=0.27, ECR=0.52
——Theory: ACR=0.615

0.8r
— B8\, @, T)]
< -5 . $ I o~
:N 10 | E 6067 * |/8(>‘h7w7T)|
= - ACR
— o4l o deflated (58)
10'10 - *] 02_
| Disk, G&, O4
0

0 5 10 15 20 25 30 35 40
iteration

Convergence with deflation. FPlI matches theory

Red x’s mark filter function
evaluated at eigenvalues of A

Overset grid for the disk, Dirichlet boundary conditions
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Example: knife edge, w = 100

—.5

0.5

Small cells pose no problem with implicit method

WaveHoltz: w=100, Np=1 6, order=4, TS=implicit[10]

10°

—e—FixPnt : CR=0.95, ECR=1.00
—&—Krylov : CR=0.74, ECR=0.98

1072 iy

10 N p §
o % Fixed Point |

= 10°¢

10'8 =

10710 ¢

teration

-12 | L Il 1
10 0 20 40 60 80
iteration

Convergence - no deflation

| GMRES + deflation

Gaussian source

WaveHoltz: w=100, Np=1 6, order=4, TS=implicit[10]

—6—FixPnt : CR=0.15, ECR=0.89
—&—Krylov : CR=0.08, ECR=0.85
—— Theory: ACR=0.191

Fixed Point Iteratié

n + deflation

._—Theory

0 2 4 6 8
iteration

‘Convergence - with 64 deflated eigenmodes




Penrose un-illuminable room: high frequency example...

A room with reflective walls such that a light (or sound) source placed
anywhere in the room will leave a dark (or quiet) region somewhere.

Source
1
v, w = 40, g(*¢) lv|, w = 40, G(18)
BESE
SS = ®
H | | s |
0 0.9

Overset g”d Source
(coarse version) Fourth-order scheme
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High Frequency Helmholtz problems can be very hard

The relative spacing between eigenvalues of the Laplacian scales as
1~%in d-dimensions — we are almost always close to resonance

Note closeness of eigenvalues

1 =287.62 1= 287.69\,1;287.88

. ’

Wit
oOVANARROR00PPAA o
OFRRIMA ooV

.......

il
)

= | |
0 ra 1
Selected eigenvectors of the Laplacian with Dirichlet BCs
Ap = —\2¢

The Helmholtz solution can change dramatically as @ varies
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Indirect Deflation using Augmented Krylov Solvers

1. Augmented Krylov solvers add user provided vectors to the Krylov
space

2. Also known as recycled Krylov solvers (i.e. recycle vectors from a
previous Krylov solve into a new Krylov solve)

3. May use exact eigenvectors or approximate eigenvectors (e.g.
from a coarse grid or lower-order accurate approximation)

Y. Saad, M. Yeung, J. Erhel, F. Guyomarc'h, A deflated version of the conjugate gradient algorithm, SIAM
Journal on Scientific Computing 21(5) (2000) 1909--1926.

J. Baglama, L. Reichel, Augmented GMRES-type methods, Numerical Linear Algebra with Applications 14(4)
(2007) 337-350.

A. Amritkar, E. de Sturler, K. Swirydowicz, D. Tafti, K. Ahuja, Recycling Krylov subspaces for CFD
applications and a new hybrid recycling solver, Journal of Computational Physics 303 (2015) 222--237.
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Comparison: Direct Deflation versus Augmented Krylov Solvers

WaveHoltz: w=175, Np=2, 04, Na=21 6, TS=implicit[10]

WaveHoltz G, w=175, N_=2
10° — P
] i BN, @, T)|
—o—FixPnt : CR=0.88 ; 1 . Iﬁ(S\, c%zf’)|
1072 gmres :CR=0.57 1 ACRh, ’
A7 —©—agmres : CR=0.57 ]
- —p—bicgstab : CR=0.68 | 08 | O deflated (216)
10.4 -~ S “\\‘333\‘3‘\‘\‘\ \\\\ —+—abicgstab: CR=0.68 4
_ : XV e - = FPITheory: ACR=0.911 |
S ol pi _ 06
© 6L o Q.
@ 107 000 =
o [ TN
: - 04 r
108 N R 3
10l § f 0.2} ]
1070 R
10-12 E I “‘ | . ] 0 ! | I |
20 40 60 80 100 0 50 100 150 200 250
iteration \mat-vects) A

atches
Augmented GMRES

bi-CG-stab + direct deflation matches
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Open Domains with Radiation Boundary Conditions

23



For open domains the Helmholtz solution is complex.
We iterate on the real and imaginary parts of the solution.

07w = Lw — f(x) cos(wt),
Bw = g(x) cos(wt),

xe(, tel0,T],
x € 0,

— |terate on two initial conditions

w(x,0) = v,

*:/)(EQV/
ow(x,0) = k), x € (.

T

«

a

v(kﬂ)(x) = %/OT (cos(wt) a5

ok (x) = 2 /T (cos(wt) — —) o,w® (x, t; v ) dt
T 0 2 77 Y

(k) . 0y(K)
)w b5 Bt ds Filter step

—

—

Helmholtz solution

T —

T

Note: we still solve for a single (real valued) w(x,t)

o4



WaveHoltz for High Frequency Scattering from a Cylinder

Incident field: w! = ale®**-D (we solve for the scattered field)

Absolute value of the (complex) total field.

Engquist Majda radiation boundary conditions are used on the outer boundaries.

25



WaveHoltz convergence for scattering from a cylinder

The radiation boundary conditions add damping (energy loss) to the problem
which leads to faster convergence rates of the WaveHoltz algorithm

Scattering 04 TS=I Np=4 kx=4

100 .
—FPI
——GMRES
- - ACR=0.60| |

—_
S
(&)

Residual

—_

o
o
o

0 10 20 30 40 50
iteration

Convergence

Convergence curve with no damping

\|}1\w=25.1327, ACR=0.60
1 _2 T T T T T T 5 .

Eigenvalues
— | p| 8/w=0
—— || 6/w=0.05
1r || 6/w=0.1 [ 0f ¥
—— |1] 6/w=0.15 SR | S —
08l |ul 8/w=0.2 || . Fun - * oax ;
: || 6/w=0.25 5 F " .
' % | . = = " | ¥ M
L — §t f‘
306 3 10 ““ = " #"'
B = » L
047 s -
-15 1 "
=
0.2 N ] .:
T=\_ A\ 20 »
=) — ¥
O._ v v v/\‘_ .
f . A

fl) 10 1‘5 20 215 3‘O 315 4IO 4’5 50 _25_310 720 -10 0 1I0 2'0 30
Re(\) Re())
Eigenvalues of Laplacian

Estimated FPI convergence rate with Radiation BCs

Negative imaginary part implies damping
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High Frequency Scattering from Three Shapes
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Open domain problems are often easier to solve than closed domain
(energy conserving) problems due to the implicit damping
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But, scattering on open domains with resonators can be hard...

[

it

1IN

B | | [ — :
0.0 S Seael 6.3

Cavity modes have little damping
M,ﬁ‘z.zw‘s, ACR=1.00 J/ \ Eigenvalues

—1.25 +1.25

Scattering 04 TS=I Np=4 k,=3.536

0 . 12 T T 5 T T T T
1 —FPI i ore=g \
—— || 6/w=0.05
—— GMRES ] 1 :Z: 5/:=01 i 0r N KU 2000 ® w % g MK L NOK K K i
- - ACR=1.00 x x
—— |l 6/w=0.15 W& * g
—— |yl 6/w=0.2 5t - - e - - |
0.8 || 6/w=0.25 . ,,.*, » » :.“' 3
10 ! 1
- - ] ] .
__06 1= " .
E E ¥ L] bt * | ] ¥
— -5+
0.4 * *
. Eigenvalues .
0.2 » %
A N\ 25 » *
0 v VQS ® »
10-12 ' ! ! I I I I I I I I I _30 : : * L L ® L 2
0 50 ’ 1°t9 150 200 5 10 15 20 25 30 35 40 45 50 40 30 -20 10 0 10 20 30 40
iteration Re(A) Re()\)
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Pollution/Dispersion Errors

Observed: Obtaining an accurate Helmholtz
solution requires a much finer grid than expected

Problem: How do we choose the mesh spacing?

29



High Frequency problems suffer from Pollution (Dispersion) Errors

Kreiss and Oliger [1972]: Points-per-wave-length (PPW) rule of thumb for

the advection equation u, — u, = 0 ( pth—order accurate FD scheme)

= 9 1/p

y Nperiods N periods — tﬁnal/ Tperiod
PPW ~ 2r 2ra,,)""” - e = relative error tol
L | p=24.,06,...
1 1 v
R - Pl

Helmholtz problems: FEM analysis indicates (Babuska et al. 1995)

P = polynomial degree

error ~ Kp (kL) (kh)"t1 L = domain length
/ \ h = mesh spacing
K (unknown) Pollution error k = @

P C

30



A new PPW rule of thumb for Helmholtz problems

Analysis of a model Helmholtz problem leads to an explicit rule-of-thumb
for finite difference approximations or order p (even):

PPW ~ 27 (7 by») e = relative error tolerance

p=24.,6,...

1 1 2(u!)?
b1=—,b2=—,bﬂ= (n!) \
12 90 Cu+12)!

Similar to Kreiss-Oliger PPW
foru,—u, =0

" [NA] 1/» | Ny, = domain length in wavelengths

Pollution Points-Per-Wavelength, € = 1072

1000 1

600 - —order 2| *
400 e
200 - —order 8 | |
= 100 A Pollution: PPW increases for
o 60| j 1. fixed frequency @, increasing L

40 |
20 r

10 K
0 200 400 600 800 1000

Ny

2.increasing w, fixed L

D. Appelo, J.W. Banks, WDH, D.W. Schwendeman, A rule of thumb for choosing points-per-wavelength
for finite difference approximations of Helmholtz problems, submitted (2025).

31



lllustrating Points-Per-Wavelength Requirements

o —Domain is N, = 100 wave lengths

o] w |

| | | | | |

X)) 1 1
0 10 40
PW versus order, e = 1072 N, =

— p=2 PPW=321
p=4 PPW=27

— p=6 PPW=12

—p=8 PPW=8

Cartoon of a Helmholtz Solution

relative errore = 1072

2nd order needs 321 points-per-wavelength!

0 0.2 0.4 0.6 0.8 1
X

Take away: High-order accuracy is very useful for high-frequency problems
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The rule-of-thumb works reasonably well in practice

One example: Helmholtz problem on a disk

Manufactured solution

DiskMS: Computed Errors versus Theory /lﬁﬁm
; Y 1 ' ' % b Rt o
O ~@-=30, 02 /- 2 o M "%.-
100 . - w=30, 04 | ':’ 'w m:::’r |Imﬁ‘ '.%
——theory ;ﬂ /:n o - ‘\\E&
O B CTRO

SO
Q!“f‘ “'ﬁ?. I‘.-J‘

‘f\* o;x% é '3
4 ‘- &
0 'Qt:\ ﬁ'b =3 :ﬂ./ﬁpgﬂr
\\#ﬁ' M:n ﬂrﬂ/
10CF : , 1 ! ! 1 Error, G32 02 PPW 67
0 50 / 100 150 200 250 300 — Ii‘? —
PPW -.16 16

Theory = error based on rule-thumb

RE = estimated errors from Order=2 is under-resolved at PPW=67
Richardson extrapolation for
comparison to true errors
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EigenWave: Computing Eigenvalues and Eigenvectors
using the WaveHoltz iteration

34



EigenWave: Computing Eigenvalues and Eigenvectors

Choose a target frequency w (target eigenvalue)
Apply Waveholtz algorithm with zero forcing

Power iteration gives eigenvector ¢ but transformed eigenvalue (A1)
Use Rayleigh quotient to obtain eigenvalue A from ¢

S Y

Algorithm 1 EigenWave algorithm - power iteration on 4;, to compute one eigenpair (A, ¢).
1: function [\, ¢] = EIGENWAVE(w,v'” ,N,)

2 // Input: target frequency w, initial guess v® with norm one, number of periods N,

3: T =2n/w, Ty = Np,T > Period and final time.
4: for k=0,1,... do > Start EigenWave iterations.
5: w® (x,0) = v*) (%) > Initial condition for wave equation solve.
6: w® (x,t) = soLvEWAVEEQuATION(w'® (x, 0), T)) > Solve for w(x,t) for t € [0, T}].

it
7 v+ () = T% / ! (cos(wt) - i) w® (x, £ 0" dt > oD = A,0®).
0

8: B+l — (v(k+1),v(k) > Rayleigh quotient estimate for eigenvalue of A},
9: v+ — gy(kF1) /g, (k+1) > Normalize
10: if [o®**tD —sign(B*TD)v*)| < tolerance then > sign(BFTD) = +1
11: break from loop
12: end if
13: end for > End EigenWave iterations.
14: o(x) = v (x) > Approximate eigenfunction.
o A =/(¢,—Lp) > Approximate eigenvalue of £ from a Rayleigh quotient.

16: end function
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EigenWave can be used with existing Eigenvalue software

Choose target w to find eigenvalues anywhere in the spectrum.
2. No need to invert a shifted Laplacian A, + o/ to find interior eigenvalues
(this indefinite matrix is hard to invert by iteration)
3. Use existing high-quality Arnoldi based eigenvalue software in a matrix-
free fashion (e.g. Implicitly Restarted Arnoldi Method, or Krylov-Schur)
4. O(N) algorithm as the mesh is refined
EigenWave: double ellipse, ts=implicit, w = 11, N, = 6, KrylovSchur
order | num | wave time-steps | wave-solves | time-steps max max max
eigs | solves | per period per eig per-eig eig-err evect-err eig-res
2 331 768 10 2.3 139 8.72e-14 | 7.29e-10 | 6.01e-10
4 324 | 768 10 <24 142 6.95e-13 | 2.46e-10 | 1.71e-09
/
Only 2.4 wave-solves per eigenpair

"""

Eigenwave results match direct computation

9|
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- WaveHoltz

Summary

thm can be used to solve Helmholtz problems
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igen

4. E

UMM

_...
{m .s..,~,..“q.__~‘...

"
' '

.u.‘,h..~

WL
L
.\..\.

._“....s_.:a?:..., :

i
" .o. .._..._.“.~

i

i

_z_:.2._:_..._:5:

Ul

ss_.:_.” et

:,:.::.:::..:3. |t

1L

T

i \
....,,...,.__JM"".,.

W W _:_::-
1)

MW

it .._._é.za...,

,,..
i

)
.'..._
1)

_....
....

W
\} ...

g%_%.__g_g_%,@A

"

Wi .“.“H.

)}

il

37




