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Motivation … 
Helmholtz problems arise for wave propagation problems :  
solid-mechanics, acoustics, electromagnetics

Question: Can we use existing time-domain solvers to solve the 
Helmholtz problem?

We have developed high-order accurate time domain solvers for 
the dispersive Maxwell’s equations on overset grids:

Overset grid for 
solid ellipsoids

Scattering from various dispersive solids

See publications at OvertureFramework.org
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Wave equation with a time periodic Gaussian source: 
Initial value problem (Dirichlet boundary conditions)

Question: Given a time-domain solver for the wave 
equation how can we find the time-periodic solution?

Time periodic solution
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Answer: WaveHoltz can use a time domain solver to 
find time-periodic solutions

Convergence of WaveHoltz with deflation. Iteration = one wave solve

GMRES
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Goal: Find time-periodic solutions to large scale PDE problems 
 Solve the Helmholtz equation.  

Possible issues with the current state of the art:  
1. Poor performance for high frequencies.

2. Poor scaling (memory/CPU) as mesh is refined.

3. Pollution errors - low order methods require fine grids at high frequencies.

4. Poor parallel scaling or large initialization costs.

5. Limited to specialized geometries and or boundary conditions.

D.Lahaye, J.Tang, K.Vuik, Modern Solvers for Helmholtz Problems, Birkhauser, 2017
O.G. Ernst, M.J. Gander, Why it is Difficult to Solve Helmholtz Problems with Classical Iterative 
Methods,  2012.

There are many ways to solve Helmholtz problems. For example:  

1. Boundary integral, boundary element methods, fast multipole methods

2. Fast direct solvers

3. Domain decomposition with special transmission conditions, sweeping 

preconditioners, complex shifted Laplacian preconditioners, multigrid, ….
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WaveHoltz Algorithm (closed domains, energy conserving case):  

Compute            from the time filter of w: v(k+1)

New iterate is the time filtered solution to the wave equation

Goal: Solve the Helmholtz problem (e.g. with Dirichlet/Neumann BCs): 

Given an initial guess                 solve the forced wave equation: v(k) ≈ u(x)

Current iterate is the initial condition

T̄ = Np
2π
ω

Number of periods 
to integrate over
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WaveHoltz Algorithm (closed domains, energy conserving case):  

Some WaveHoltz References  

In practice, line 6 is accumulated during the time-stepping to avoid storing the solution at all time-steps.

D. Appelö, F. Garcia, O. Runborg, WaveHoltz: Iterative solution of the Helmholtz equation via the wave equation, SIAM J. 
Sci. Comput. 42 (4) (2020) A1950--A1983.

Z. Peng, D. Appelö, EM-WaveHoltz: A flexible frequency-domain method built from time-domain solvers, IEEE 
Transactions on Antennas and Propagation 70(7) (2022) 5659--5671.
D.Appelö, F.~Garcia, A. Alvarez Loya, O. Runborg, El-WaveHoltz: A time-domain iterative solver for time-harmonic elastic 
waves, Computer Methods in Applied Mechanics and Engineering 401 (2022) 15603
D. Appelö, J.W. Banks, WDH, D.W. Schwendeman, An optimal O(N) Helmholtz solver for complex geometry using 
WaveHoltz and overset grids, arXiv:2504.03074 (2025).
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The transformed problem has eigenvalues   , largest near , and more easily 
solved with traditional iterative solvers! No need to invert an indefinite matrix.

βj ∈ [−.5,1] ω

WaveHoltz transformed the problem to one that is easier to solve  
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ω = 5

The WaveHoltz algorithm defines an affine operator: 

But eigenvalues:
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Where     has the same eigenfunctions as the Helmholtz (or ) operator:  Δ
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The Fixed-Point Iteration will converge if the 
problem is not at resonance  
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Enhancements to the Basic WaveHoltz Algorithm:  

1. Acceleration by matrix-free Krylov methods such as GMRES


2. Implicit time-stepping with a large time-step


3. Deflation using precomputed eigenvalues and eigenvectors
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Time-stepping and time-corrections

Implicit/explicit time-stepping,   (for 2nd order accuracy)βI = 1 − 2αI

Second-order time 
difference

Order p difference 
operator, Lph ≈ c2Δ

Adjusted frequency

Time dispersion errors can be removed by adjusting the forcing

Note: the implicit time-stepping matrix  is definite M = I − Δt2Lph

Amazingly only 10 implicit time-steps per period are needed for good convergence!
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(Wn+1 − 2Wn + Wn−1)/Δt2

αI = 0 : explicit

αI =
1
2

: Trapezodial



Acceleration with Krylov space solvers

WaveHoltz can be accelerated with a matrix free Krylov solver. 
The linear system to solve is (       is the discrete form of     )

1. Conjugate Gradient can be used for symmetric discretizations

2. For overset grids we use GMRES or bi-CG-stab

Convergence depends on the eigenvalues 1-β(λm)

  Applying       : Wave solve and filter with zero forcing

13

<latexit sha1_base64="kMvFxryz3F9IKcjFOZlC7OuKby0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdVNy4r2Ae0Q8mkmTY0k4xJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfju8xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6c2sP+qXK27VnQOtEi8nFcjR6Je/egNJkogKQzjWuuu5sfFTrAwjnM5KvUTTGJMxHtKupQJHVPvpPPQMnVllgEKp7BMGzdXfGymOtJ5GgZ3MQuplLxP/87qJCa/9lIk4MVSQxaEw4chIlDWABkxRYvjUEkwUs1kRGWGFibE9lWwJ3vKXV0nrourVqrWHy0r9Nq+jCCdwCufgwRXU4R4a0AQCT/AMr/DmTJwX5935WIwWnHznGP7A+fwB9LqSPQ==</latexit>

Ah

<latexit sha1_base64="kMvFxryz3F9IKcjFOZlC7OuKby0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdVNy4r2Ae0Q8mkmTY0k4xJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfju8xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6c2sP+qXK27VnQOtEi8nFcjR6Je/egNJkogKQzjWuuu5sfFTrAwjnM5KvUTTGJMxHtKupQJHVPvpPPQMnVllgEKp7BMGzdXfGymOtJ5GgZ3MQuplLxP/87qJCa/9lIk4MVSQxaEw4chIlDWABkxRYvjUEkwUs1kRGWGFibE9lWwJ3vKXV0nrourVqrWHy0r9Nq+jCCdwCufgwRXU4R4a0AQCT/AMr/DmTJwX5935WIwWnHznGP7A+fwB9LqSPQ==</latexit>

Ah

<latexit sha1_base64="75q59Ir/CrJ8pZbnKm+P350/T4A=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi1WXVjcsK9gHToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmltfWNzq7xd2dnd2z+oHh51jEo1ZW2qhNK9kBgmuGRt4CBYL9GMxKFg3XByl/vdJ6YNV/IRpgkLYjKSPOKUgJX8fkxgTInIbmaDas2tu3PgVeIVpIYKtAbVr/5Q0TRmEqggxviem0CQEQ2cCjar9FPDEkInZMR8SyWJmQmyeeQZPrPKEEdK2ycBz9XfGxmJjZnGoZ3MI5plLxf/8/wUousg4zJJgUm6+ChKBQaF8/vxkGtGQUwtIVRzmxXTMdGEgm2pYkvwlk9eJZ2LuteoNx4ua83boo4yOkGn6Bx56Ao10T1qoTaiSKFn9IreHHBenHfnYzFacoqdY/QHzucPc+CRYg==</latexit>

A



“Direct” Eigenvector Deflation accelerates convergence 

On overset grids line 10 is added since eigenvectors are only approximately orthogonal

1. Uses precomputed eigenvalues  and eigenvectors 

2. Typically deflate eigenpairs with 

λm ϕm
λm ≈ ω

14

(1) Deflate forcing

(2) Inflate solution



We have implemented WaveHoltz on Overset Grids:  

1. CgWave: Uses fast and efficient high-order accurate finite differences 
for the wave equation (built on the Overture framework).


2. Matrix free geometric multigrid algorithms for overset grids can be 
used to solve the implicit time-stepping equations.


3. High-order and accurate treatment of boundaries using compatibility 
boundary conditions.

This leads to an optimal O(N) algorithm at fixed frequency 
N= total number of grid points  

A.M. Carson, J.W. Banks, WDH, D.W. Schwendeman, High-order  accurate implicit-explicit time-stepping schemes for 
wave equations on  overset grids, Journal of Computational Physics 520 (2025) 113513.

C.Liu, WDH, Multigrid with nonstandard coarse-level operators and coarsening factors, J. of Scientific Computing 94 (58) 
(2023) 1-27.

N.G. Al Hassanieh, J.W. Banks, WDH, D.W. Schwendeman, Local compatibility boundary conditions for high-order 
accurate finite-difference approximations of PDEs, SIAM J. Sci. Comput. 44 (2022) A3645-A3672.
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WaveHoltz CPU-time/N is a nearly constant function of N

Computations on a square and disk 
demonstrate O(N) scaling for WaveHoltz

Using the Ogmg geometric multigrid solver 
for overset grids.

Overset grid
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WaveHoltz example: Gaussian source in a disk 
 

Convergence with deflation. FPI matches theory Red x’s mark filter function 
evaluated at eigenvalues of Δ

Asymptotic convergence rate = .615
, order=4, implicit time-stepping,  

2 periods, 10 time-steps per period
ω = 20
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Overset grid for the disk, Dirichlet boundary conditions



Example: knife edge,    ω = 100

Convergence - no deflation

GMRES

Fixed Point Iteration

Gaussian source

Convergence - with 64 deflated eigenmodes

GMRES + deflation

Fixed Point Iteration + deflation

Theory

Zoom of top

Zoom of tip

Small cells pose no problem with implicit method
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Penrose un-illuminable room: high frequency example… 

A room with reflective walls such that a light (or sound) source placed 
anywhere in the room will leave a dark (or quiet) region somewhere. 

Overset grid

(coarse version)

Source

Source

Fourth-order scheme

19



The relative spacing between eigenvalues of the Laplacian scales as  
 in d-dimensions  we are almost always close to resonanceλ−d →

High Frequency Helmholtz problems can be very hard 

The Helmholtz solution can change dramatically as  variesω
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�� = ��2�
Selected eigenvectors of the Laplacian with Dirichlet BCs

0 1

λ = 287.62 λ = 287.69 λ = 287.88

|ϕ |

Note closeness of eigenvalues
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Indirect Deflation using Augmented Krylov Solvers 

1. Augmented Krylov solvers add user provided vectors to the Krylov 
space


2. Also known as recycled Krylov solvers (i.e. recycle vectors from a 
previous Krylov solve into a new Krylov solve)


3. May use exact eigenvectors or approximate eigenvectors (e.g. 
from a coarse grid or lower-order accurate approximation)

21

Y. Saad, M. Yeung, J. Erhel, F. Guyomarc'h, A deflated version of the conjugate gradient algorithm, SIAM 
Journal on Scientific Computing 21(5)  (2000) 1909--1926.

J. Baglama, L. Reichel, Augmented GMRES-type methods, Numerical Linear Algebra with Applications 14(4) 
(2007) 337-350.

A. Amritkar, E. de Sturler, K. Świrydowicz, D. Tafti, K. Ahuja, Recycling  Krylov subspaces for CFD 
applications and a new hybrid recycling solver,  Journal of Computational Physics 303 (2015) 222--237.



Comparison: Direct Deflation versus Augmented Krylov Solvers 

GMRES + direct deflation matches

Augmented GMRES 

bi-CG-stab + direct deflation matches

augmented bi-CG-stab
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Open Domains with Radiation Boundary Conditions
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For open domains the Helmholtz solution is complex. 
We iterate on the real and imaginary parts of the solution.  

Note: we still solve for a single (real valued) w(x,t)

Filter step

Helmholtz solution

Iterate on two initial conditions
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WaveHoltz for High Frequency Scattering from a Cylinder 

Engquist Majda radiation boundary conditions are used on the outer boundaries.

wI = aIei(kxx−ωt)Incident field: 

25

(we solve for the scattered field) 

Absolute value of the (complex) total field.



WaveHoltz convergence for scattering from a cylinder 

The radiation boundary conditions add damping (energy loss) to the problem 
which leads to faster convergence rates of the WaveHoltz algorithm
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Convergence curve with no damping

Estimated FPI convergence rate

Negative imaginary part implies damping

Convergence

Re
si

du
al

Eigenvalues of Laplacian 
with Radiation BCs



High Frequency Scattering from Three Shapes 

Real part of total field Real part of scattered field
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Open domain problems are often easier to solve than closed domain 
(energy conserving) problems due to the implicit damping



But, scattering on open domains with resonators can be hard…

Cavity modes have little damping

Eigenvalues
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Pollution/Dispersion Errors
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Observed: Obtaining an accurate Helmholtz 
solution requires a much finer grid than expected

Problem: How do we choose the mesh spacing?



High Frequency problems suffer from Pollution (Dispersion) Errors 

30

Kreiss and Oliger [1972]: Points-per-wave-length (PPW) rule of thumb for 
the advection equation  ( -order accurate FD scheme)ut − ux = 0 pth

PPW ≈ 2π (2πap/2)1/p[
Nperiods

ϵ ]
1/p Nperiods = tfinal /Tperiod

ϵ =  relative error tol

a0 = 1, a1 =
1
6

, a2 =
1
30

, αν =
ν

4ν + 2
αν−1

p = 2,4,6,…

Helmholtz problems:  FEM analysis indicates (Babuška et al. 1995)

error ≈ KP (kL) (kh)P+1
P = polynomial degree
L = domain length
h = mesh spacing

 (unknown)Kp Pollution error k =
ω
c



A new PPW rule of thumb for Helmholtz problems

31

D. Appelo, J.W. Banks, WDH, D.W. Schwendeman, A rule of thumb for  choosing points-per-wavelength 
for finite difference approximations of Helmholtz problems, submitted (2025).

NΛ = domain length in wavelengths
ϵ = relative error tolerance

Analysis of a model Helmholtz problem leads to an explicit rule-of-thumb 
for finite difference approximations or order p (even):

Similar to Kreiss-Oliger PPW 
for ut − ux = 0

b1 =
1

12
, b2 =

1
90

, bμ =
2(μ!)2

(2μ + 2)!

p = 2,4,6,…

Pollution: PPW increases for 

1. fixed frequency , increasing L

2. increasing , fixed L

ω
ω



Illustrating Points-Per-Wavelength Requirements 

Take away: High-order accuracy is very useful for high-frequency problems
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2 Domain is  = 100 wave lengths NΛ

Cartoon of a Helmholtz Solution

2nd order needs 321 points-per-wavelength!

relative error ϵ = 10−2
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The rule-of-thumb works reasonably well in practice 

RE = estimated errors from 
Richardson extrapolation for 
comparison to true errors

Manufactured solution

Order=2 is under-resolved at PPW=67

Theory = error based on rule-thumb

One example: Helmholtz problem on a disk
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EigenWave: Computing Eigenvalues and Eigenvectors 
using the WaveHoltz iteration
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EigenWave: Computing Eigenvalues and Eigenvectors

1. Choose a target frequency  (target eigenvalue)

2. Apply Waveholtz algorithm with zero forcing

3. Power iteration gives eigenvector  but transformed eigenvalue 

4. Use Rayleigh quotient to obtain eigenvalue  from 

ω

ϕ β(λ)
λ ϕ
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EigenWave can be used with existing Eigenvalue software

1. Choose target  to find eigenvalues anywhere in the spectrum.

2. No need to invert a shifted Laplacian  to find interior eigenvalues 

(this indefinite matrix is hard to invert by iteration)

3. Use existing high-quality Arnoldi based eigenvalue software in a matrix-

free fashion (e.g. Implicitly Restarted Arnoldi Method, or Krylov-Schur)

4. O(N) algorithm as the mesh is refined


ω
Δh + σI

Only 2.4 wave-solves per eigenpair Eigenwave results match direct computation



Summary: WaveHoltz  

1. The WaveHoltz algorithm can be used to solve Helmholtz problems 
by time-filtering solutions to the wave equation.


2. Implicit time-stepping, GMRES, and deflation can accelerate the 
convergence and leads to an O(N) algorithm at fixed frequency.


3. High-order accuracy to over-come pollution errors.

4. EigenWave: solve for eigenpairs using the WaveHoltz iteration.

Thank-you for you attention !

37


