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Application areas

Application:
Turbulent flows

▶ Incompressible Navier-Stokes

▶ Fast solution of Poisson
equation

▶ Multigrid

Application: Coupled flows

▶ Simulation of flow in biomedical
settings

▶ Navier-Stokes coupled to
transport

▶ Poisson + multigrid

Application:
Acoustics

▶ Acoustic wave equation

▶ Explicit time stepping for
DG
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Model for incompressible fluid flow

Incompressible Navier–Stokes equations

∂u
∂ t

+∇ · (u⊗u)−∇ · (ν∇u)+∇p = f

∇ ·u = 0

▶ Unknowns: velocity u = [u1,u2,u3], pressure p
▶ Fluid kinematic viscosity ν

▶ Turbulent flow: ν much smaller than u

▶ External forces f (e.g. gravity)

Goal: Efficient discretization method (without resolving all
scales?)

fine resolution – physical

coarse resolution – how good?
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Spatial discretization with discontinuous Galerkin schemes

▶ Mesh of elements
▶ Polynomial solution of degree k on each element
▶ No continuity directly imposed between elements as in

the conventional continuous FEM, but use flux
functions instead

▶ Example for advection with constant speed a in 1D on Ω= (0,1):

∂tu+a∂xu = 0

⇒
∫
Ωe

v∂tu dx +
∫
Ωe

va∂xu dx = 0 for all v ∈ Vh

⇒
∫
Ωe

v∂tu dx︸ ︷︷ ︸
(v ,∂t u)Ωe

−
∫
Ωe

∂xvau dx︸ ︷︷ ︸
(∂x v ,au)Ωe

+
∫

∂Ωe

vn(au)∗dx︸ ︷︷ ︸
⟨vn,(au)∗⟩

∂Ωe

= 0 for all v ∈ Vh

Here, (au)∗ is the numerical flux, e.g. upwind
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Navier–Stokes spatial discretization: weak formulation

Find uh ∈ V u
h , ph ∈ V p

h such that for all (vh,qh) ∈ V u
h ×V p

h

mh,u

(
vh,

∂uh

∂ t

)
+ch (vh,uh)+vh (vh,uh)+gh (vh,ph) = fh (vh) ,

−dh(qh,uh) = 0 .

DG discretization of basic operators:
▶ Convective operator ch (vh,uh): Local Lax–Friedrichs flux
▶ Viscous operator vh (vh,uh): Symmetric interior penalty method
▶ Gradient operator gh (vh,ph): Central flux
▶ Divergence operator dh(qh,uh): Central flux

Fehn, Wall, Kronbichler: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin
discretizations, J Comput Phys 348, 2017
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h such that for all (vh,qh) ∈ V u
h ×V p

h

mh,u

(
vh,

∂uh

∂ t

)
+ch (vh,uh)+vh (vh,uh)+gh (vh,ph) = fh (vh) ,

−dh(qh,uh) = 0 .

DG discretization of basic operators:
▶ Convective operator ch (vh,uh): Local Lax–Friedrichs flux

ch (vh,uh) =− (∇vh,uh ⊗uh)Ωh +

〈
JvhK ,{{uh ⊗uh}} ·n+

Λ

2
JuhK

〉
Γh

▶ Viscous operator vh (vh,uh): Symmetric interior penalty method
▶ Gradient operator gh (vh,ph): Central flux
▶ Divergence operator dh(qh,uh): Central flux

Fehn, Wall, Kronbichler: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin
discretizations, J Comput Phys 348, 2017
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▶ Convective operator ch (vh,uh): Local Lax–Friedrichs flux
▶ Viscous operator vh (vh,uh): Symmetric interior penalty method
▶ Gradient operator gh (vh,ph): Central flux

gh (vh,ph) =−(∇ ·vh,ph)Ωh + ⟨JvhK ·n,{{ph}}⟩Γh
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Navier–Stokes spatial discretization: weak formulation

Find uh ∈ V u
h , ph ∈ V p

h such that for all (vh,qh) ∈ V u
h ×V p

h

mh,u

(
vh,

∂uh

∂ t

)
+ch (vh,uh)+vh (vh,uh)+gh (vh,ph) = fh (vh) ,

−dh(qh,uh) = 0 .

DG discretization of basic operators:
▶ Convective operator ch (vh,uh): Local Lax–Friedrichs flux
▶ Viscous operator vh (vh,uh): Symmetric interior penalty method
▶ Gradient operator gh (vh,ph): Central flux
▶ Divergence operator dh(qh,uh): Central flux

Computation of integrals: Numerical quadrature with (ku +1)d points for viscous and mass
matrix terms,

(⌊3
2ku
⌋
+1
)d

points for convection (non-linearity)
Fehn, Wall, Kronbichler: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin
discretizations, J Comput Phys 348, 2017
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Application to under-resolved turbulent flows

Questions:
▶ Is this basic discretization approach robust in the under-resolved regime?
▶ Do we need additional ingredients?

We have:
▶ DG robust for dominating convective

terms, h∥u∥
(k+1)ν > 1

▶ ku = kp +1 → inf–sup stable

Numerical test in underresolved regime with
ν

∥u∥max
= 0.00029:

→ Severe instabilities
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Robust scheme for all viscosities ν? Energy method

Mathematics help to assess stability of the scheme

1
2

d∥uh∥2

dt
=

(
uh,

∂uh

∂ t

)
Ωh

Insert PDE: viscous term dissipates energy, pressure gradient cancels due to continuity
equation → convective term left

1
2

d∥uh∥2

dt
≤−

〈
JuhK ,

Λ

2
JuhK

〉
Γint

h

− 1
2
(∇ ·uh,uh ·uh)Ωh

+
1
2

〈
JuhK ·n,u−

h ·u+
h

〉
Γint

h

▶ Lax–Friedrichs (upwind) term dissipates energy
▶ Divergence errors might produce energy
▶ Discontinuities of the velocity in normal direction across interior faces

between elements might produce energy
▶ Both violating terms tend to zero as discretization is refined, but resolution

requirement unrealistic for practical flows with Re > 10,000
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Robustness for under-resolved turbulent flows

▶ Robust method in under-resolved regime Reh =
hu
kν

> 1 must dominate problematic
terms. Possible realization by consistent penalty terms:

mh,u

(
vh,

∂uh

∂ t

)
+ch (vh,uh)+vh (vh,uh)+gh (vh,ph)+aD(vh,uh)+aC(vh,uh) = f e

h (vh) ,

−dh(qh,uh) = 0 ,

divergence penalty: aD(vh,uh) = (∇ ·vh,τD∇ ·uh)Ωh
,

continuity penalty: aC(vh,uh) =
〈
JvhK ·n,τC,f JuhK ·n

〉
∂Ωe\Γh

.

▶ Penalty terms mimic properties of H(div) conforming spaces with exact fulfillment of
∇ ·u = 0 condition, like Raviart–Thomas elements

Fehn, Wall, Kronbichler: Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows, J Comput Phys 372, 2018

Fehn, Kronbichler, Lehrenfeld, Lube, Schroeder: High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L2 and H(div) methods, Int J
Numer Meth Fluids 91, 2019

Fehn, Kronbichler, Lube: From anomalous dissipation through Euler singularities to stabilized finite element methods for turbulent flows, submitted, 2024,
https://doi.org/10.21203/rs.3.rs-4187657/v1
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Orr–Sommerfeld stability problem

▶ Geometry, initial condition given by perturbation of magnitude 10−5, Re = 7,500

u1 ≈ U1

u = 0

u1 −U1

u2

u1 −U1 ≪ u1

u2 ≪ u1

f1

periodic b.c.

x1

x2

L

2H
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Verification: Orr–Sommerfeld stability problem

Monitored quantities:
▶ perturbation energy E =

∫
Ω ∥u−U∥2dx

▶ linear stability theory: E(t)/E(t = 0) = exp(2ωit)

Stability of numerical LES approach for k = 3 at two resolution levels
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E
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E
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)
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linear stability

82 mesh

162 mesh
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Efficient discretizations

▶ Desire 1: Low number of degrees of freedom → high accuracy per unknown
▶ Desire 2: Methods applicable to general geometries

▶ Challenge: High-Reynolds number incompressible flows develop fine-scale features
▶ Need to track solution over long times
▶ Need accurate “dispersive” behavior

▶ Solution: High-order finite element methods
▶ Geometrically flexible by use unstructured

meshes

▶ Hexahedral meshes preferred

▶ High-order methods add unknowns inside
elements

▶ Range of attractive degrees: p = 3, . . . ,7

▶ Discontinuous Galerkin especially attractive:
upwind fluxes

degree 1, 82 mesh degree 4, 22 mesh
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Efficient time discretization: Splitting method

BDF of order J = 1,2,3 within dual splitting method:1

1. Explicit convective step

γ0û−
J−1

∑
i=0

αiun−i =∆t

(
J−1

∑
i=0

βi∇ · (un−i ⊗un−i)+ f n+1

)

2. Pressure step −∇2pn+1 =− γ0

∆t
∇ · û

Boundary condition for high-order accuracy in time

∇pn+1 ·n =−

(
∂gu(t

n+1)

∂ t
+

J−1

∑
i=0

βi

(
∇ · (un−i ⊗un−i)+ν∇× (∇×un−i)

)
− f n+1

)
·n

3. Projection step ˆ̂u = û−∆t
γ0

∇pn+1

4. Implicit viscous step
γ0

∆t

(
un+1 − ˆ̂u

)
= ν∇ ·∇un+1 (Helmholtz-like equation)

1Karniadakis, Israeli, Orszag, High-order splitting methods for the incompressible Navier–Stokes equations. JCP 97(2), 1991
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Test case for accuracy: vortex flow

▶ Analytic solution in Ω= (−0.5,0.5)2

u(x , t) =
(
−sin(2πx2)
sin(2πx1)

)
e−4νπ2t

p(x , t) =−cos(2πx1)cos(2πx2)e−8νπ2t

▶ Initial condition u(·, t = 0) = u0

▶ Boundary conditions:
▶ Dirichlet u = gu on inflow
▶ Neumann (−pI +2νε(u)) ·n = h on outflow

2D vortex flow

Computed together with Niklas Fehn
M. Kronbichler Efficient DG for CFD 16



Convergence for vortex problem

Vortex problem with 22 to 642 elements with polynomial degrees (ku,kp) = (2,1), . . . ,(5,4),
BDF3, ∆t = 10−4
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All scenarios converge with optimal order (k +1)!
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Convergence for vortex problem

Same data as before, but using number of unknowns instead of h
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From the number of unknowns to simulation cost

▶ For smooth problem with good resolution, high order methods clearly advantageous
▶ What about time step size for higher orders?

∆t ≲
h

k1.5∥u∥∞

▶ What about cost per unknown to solve pressure Poisson equation?
▶ What about convergence rates for realistic problems?

M. Kronbichler Efficient DG for CFD 19



Typical situation in turbulence: Underresolved flows

3D Taylor–Green vortex at Re = 1600, i.e., ν = 1
1600

▶ Periodic box, side length 2π

▶ Dual splitting scheme, BDF2
▶ Visualize on 163 mesh and (ku,kp) = (7,6) (1283 effective resolution)
▶ Iso-contours of q-criterion (value of 0.1) colored by velocity magnitude

t = 0 t = T/2 t = T
M. Kronbichler Efficient DG for CFD 20



Observed quantities in 3D Taylor–Green vortex

▶ Kinetic energy Ek =
1

2VΩ

∫
Ω |uh|2 dx and kinetic energy dissipation rate dEk

dt =
E i+1

k −E i−1
k

ti+1−ti−1

▶ Molecular dissipation (dissipation of resolved scales) ε = ν

VΩ

∫
Ω ∇uh : ∇uh dx

▶ Numerical dissipation εnum =−dEk
dt − ε

M. Kronbichler Efficient DG for CFD 21



3D Taylor–Green vortex problem

▶ Dissipation rates: divergence and continuity penalty terms for Taylor–Green vortex
problem at Re = 1600, effective resolution 643
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Taylor–Green vortex: Accuracy over unknowns (DoFs)

▶ Higher orders are better, but not much
▶ Asymptotic regime starts only beyond 108 DoFs2

2Fehn, Wall, Kronbichler: Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows. Int. J.
Numer. Meth. Fluids 88, 2018
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Efficient simulation: error versus compute time

Conclusion: high order brings down resolution requirement by at most a factor of 10 in 3D:
need efficient implementation with similar cost per unknown as low-order method

2D vortex: well-resolved 3D Taylor–Green: under-resolved

M. Kronbichler Efficient DG for CFD 24
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Design philosophy: Composition of libraries

Application 1: ExaDG Other applications

deal.II

PETSc/Trilinos/hypre

MPI
Node level architectures

CUDA ROCm/HIP oneAPI SIMD

meshing

[native
/Kokkos]

Applications

FEM infrastructure,
matrix-free algorithms

Linear algebra,
preconditioning,
partitioning

Back-ends,
hardware

M. Kronbichler Efficient DG for CFD 26



Code activities in my group – library approach

CFD application code development with ExaDG
▶ Implementation of CFD equations

▶ Based on appropriate data structures from deal.II library
▶ Simulation control based on library components

▶ Iterative solvers, multigrid suited for equations at hand
▶ Embeds equation evaluator into existing interfaces

Code development within deal.II finite element library
▶ Building blocks targeting particular hardware (SIMD, CUDA)
▶ MPI parallelization of mesh
▶ Interface to linear algebra libraries like Trilinos/PETSc
▶ Move common functionality to deal.II library

▶ Separation of concerns
▶ Forces split of application-specific vs generic FEM toolbox
▶ Reuse among many applications with more resources

M. Kronbichler Efficient DG for CFD 27



The deal.II finite element library

▶ A C++ software library to ease the development of adaptive finite
element codes on HPC systems

▶ Name origin: Differential Equations Analysis Library
▶ Homepage: www.dealii.org
▶ Code hosted on https://github.com/dealii/dealii
▶ Provides many continuous, discontinuous, Hcurl and Hdiv

conforming finite elements
▶ Pre- and post-processing with many formats and external tools
▶ Linear algebra in deal.II partly implemented directly, partly via

PETSc, Trilinos, LAPACK and many other packages
▶ Parallelization with MPI, shared memory

Parasitic conductivities & impedances, Yuhan Zhou

Optical imaging, Wolfgang Bangerth

Plastic deformation, Joerg Frohne
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Efficient implementation: Matrix-free methods

Matrix-based algorithm in finite elements
▶ Loop through cells and assemble from cell

matrices into global sparse matrix
▶ Apply action of sparse matrix in iterative solver

(CG, GMRES, . . . )
▶ Build preconditioner from sparse matrix

Matrix-free algorithm
▶ Memory access is expensive, computations cheap
▶ Apply action of discretized operator within iterative

solver on the fly
▶ Redundantly compute FEM integrals
▶ Preconditioner selection more restricted (ILU not

possible, must choose specific ingredients)

matrix-based: A =
Nel

∑
e=1

GT
eAeGe (assembly)

v = Au (matrix-vector product
within iterative solver)

matrix-free:

v =
Nel

∑
e=1

GT
eAe (Geu)

Matrix-vector product

Included in deal.II finite element library, www.dealii.org

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3), 29, 2019
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Matrix-free vs. matrix-based methods

▶ Performance of matrix-vector product
essential for iterative solvers

▶ Sparse matrices unsuitable for higher
orders p ≥ 2 on modern hardware due to
memory-bandwidth limit

▶ Matrix-free algorithm successful in
trading computations for less memory
transfer
▶ Software: Specify operation at

quadrature points
▶ Combine with reference cell

interpolation matrices
▶ Indirect access into vector entries for

continuous FEM

Throughput of matrix-vector product (unknowns pro-
cessed per second) of 3D Laplacian
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DG, affine DG, curved FEM, curved FEM, SpMV

System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (SuperMUC-NG)
Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SISC 40(5):A3423–48, 2018
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019
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Matrix-free solvers and preconditioners

▶ Matrix-free approach provides fast operator evaluation (matrix-vector product), but
implicit solvers need preconditioners

▶ For Poisson-type problems, multigrid with selected smoothers works well
▶ Point-Jacobi Chebyshev smoothers3 or overlapping Schwarz smoothers with fast

diagonalization techniques4 5 well-established

▶ For other operators in Navier–Stokes, situation is less clear
▶ Analyze penalty step:

(vh,uh)Ωh +(∇ ·vh,τD∇ ·uh)Ωh
+
〈
JvhK ·n,τC,f JuhK ·n

〉
∂Ωe\Γh

= (vh, ũh)Ωh

▶ Similar ingredients needed for augmented-Lagrangian techniques of coupled
Navier–Stokes solver
▶ But we prefer splitting methods for computational efficiency

3Kronbichler, Ljungkvist: Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans. Parallel Comput. 6, 2019
4P. Munch and M. Kronbichler, Cache-optimized and low-overhead implementations of additive Schwarz methods for high-order FEM multigrid computations.

IJHPCA, 38(3):192–209, 2024
5M. Wichrowski, P. Munch, M. Kronbichler, and G. Kanschat. Smoothers with localized residual computations for geometric multigrid method. SISC, accepted, 2024
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Efficient solvers for penalty step

(vh,uh)Ωh +(∇ ·vh,τD∇ ·uh)Ωh
+
〈
JvhK ·n,τC,f JuhK ·n

〉
∂Ωe\Γh

= (vh, ũh)Ωh

▶ Matrix system is mostly block-diagonal across elements apart from continuity penalty
M

M
. . .

M

+


AD

AD
. . .

AD

+


AC,i AC,e

AC,e AC,i AC,e
. . . . . . . . .

AC,e AC,i


▶ Challenge:

▶ Choose large-ish parameters τD and τC to ensure good conservation
▶ Matrix possesses many small eigenvalues related to unconstrained DoFs, large

eigenvalues for penalized DoFs via singular matrices AD and AC

▶ Our approach: Precondition by block-diagonal matrix
(
M +AD +AC,i

)−1
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Efficient solver for element block

Find cheap element-wise matrix inverse expression despite ill-conditioning(
M +AD +AC,i

)−1

▶ Exact inverse would be too expensive
▶ For degree p = 4, have 125×3 = 375 degrees of freedom → 100× slower than matrix-free

operator evaluation
▶ Choose simple preconditioner M−1

▶ Cheap to apply6

▶ Would work surprisingly well for (M +AD)
−1 because all eigenvalues to unconstrained

modes exactly 1 → CG method finds two clusters of eigenvalues and is fast
▶ However, AC,i destroys nice property

▶ Develop new solver for combined terms

6M. Kronbichler, S. Schoeder, C. Müller, W. A. Wall, Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation.
IJNME 106(9), 2016.
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Efficient solver for element block II

Constant-coefficient form of matrix in 2D with Kronecker products:

M2D +A2D
D +A2D

C,i

=

(
My ⊗Mx 0

0 My ⊗Mx

)
+

(
Sy ⊗Dx

Dy ⊗Sx

)(
S⊤

y ⊗D⊤
x D⊤

y ⊗S⊤
x
)
+

(
My ⊗Gx 0

0 Gy ⊗Mx

)
,

with
▶ Mx ,My 1D mass matrices,
▶ Sx ,Sy one-dimensional shape values with square root of quadrature weight such that

Mi = SiST
i ,

▶ Dx ,Dy 1D derivatives of shape values times penalty factor, and
▶ Gx ,Gy jump penalty matrix

Strategy: Collect matrix as(
My ⊗Ax 0

0 Ay ⊗Mx

)
+

(
Sy ⊗Dx

Dy ⊗Sx

)(
S⊤

y ⊗D⊤
x D⊤

y ⊗S⊤
x
)
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Efficient solver for element block III

Aim to cheaply form inverse of matrix(
My ⊗Ax 0

0 Ay ⊗Mx

)
︸ ︷︷ ︸

B

+

(
Sy ⊗Dx

Dy ⊗Sx

)(
S⊤

y ⊗D⊤
x D⊤

y ⊗S⊤
x
)

︸ ︷︷ ︸
CC⊤

▶ Matrix inversion of (
My ⊗Ax 0

0 Ay ⊗Mx

)−1

cheaply formed by fast diagonalization method7

▶ Use Sherman–Morrison–Woodbury formula to account for singular divergence matrix(
B+CC⊤

)−1
= B−1 −B−1C

(
I −C⊤B−1C

)−1
C⊤B−1

▶ All factors in this expression are tensor products or sum of tensor products, with cheap
inversion via fast diagonalization method

7R. E. Lynch, J. R. Rice, and D. H. Thomas. Direct solution of partial difference equations by tensor product methods. Numer. Math., 6(1), 1964
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Evaluation on channel flow

Iteration count for degree p = 5, penalty factors 10 · ∥u∥,
▶ No preconditioner: CG does not converge in 1,000 iterations
▶ Mass matrix preconditioner: 19.9 iterations/solve over 100k time steps, throughput per

CG iteration: 2.8 GDoF/s
▶ Proposed preconditioner: 4.7 iterations/solve over 100k time steps, throughput per CG

iteration on node with 128 cores (AMD Zen 3): 2.4 GDoF/s
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Extreme-scale parallel multigrid solvers

▶ Matrix-free ingredients
▶ Chebyshev smoother
▶ Mixed precision
▶ h-multigrid (different

meshes), p-multigrid
(different polynomial
degrees)

▶ Tuning for node-level
performance and scalability
to supercomputer scale

Arndt, Fehn, Kanschat, Kormann, Kronbichler, Munch,
Wall, Witte: ExaDG: High-order discontinuous Galerkin for
the exa-scale. In H.-J. Bungartz et al. (Eds.), Software for
Exascale Computing – SPPEXA 2016–2019, 2020

Kronbichler, Ljungkvist: Multigrid for matrix-free high-order
finite element computations on graphics processors. ACM
Trans. Parallel Comput. 6, 2019
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Arithmetic performance of geometric multigrid with 1.9 trillion
DoFs on SuperMUC-NG (#64 of top500.org, 11/2024):
5.8 PFlop/s, 180 GB/s per node
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Impact of matrix-free algorithms on CFD application

3D Taylor–Green vortex at Re=
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude
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Result of my research group around 10x faster than all results of Wang et
al. (2013), normalized run time
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ExaDG, k = 7, 2018

ExaDG, k = 7, 2021

Daten Wang et al (2013)

FLEXI (2018), k = 7

OpenFOAM (2019)

Huismann (2019), k = 8,16

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved
turbulent incompressible flows, Int. J. Numer. Meth. Fluids 88, 2018
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Applications

Robust discontinuous Galerkin methods for turbulent flows

Efficient high-order methods

Software development with the deal.II library

Efficient solvers for Navier–Stokes operators

Efficient CutFEM algorithms

Summary
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Simulation on complicated geometries: CutFEM

▶ Hexahedral elements most efficient for
sum-factorization algorithms

▶ However, all-hex mesh generation is
challenging
▶ Often bad element qualities with bad CFL

conditions

▶ Alternative: Use unfitted meshes on
interface immersed to domain

▶ We consider level set description of interface
▶ Consider problems where near-boundary

region is crucial
▶ Combine adaptive mesh refinement with

high-order methods

Image by Maximilian Bergbauer
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Integration on cut elements and faces

▶ Cut approach necessitates integration on parts of cells and faces only
▶ Use approach by Saye3

▶ Sum factorization with cost O(kd+1) per cell relies on tensor product
of shape functions and quadrature points

▶ Impossible on irregular points of cuts
▶ Must resort to generic evaluation of cost O(k2d) per cell

▶ Separate interpolation for each point

Comparison of approximate computational effort (operations / DoF), where
nDoF = ncells(k +1)d(d +1)

pol. degree p = k −1 1 2 3 4 5 6
2D transport, sum fact 60 50 60 60 70 70
2D transport, generic 120 300 450 600 800 1000
3D transport, sum fact 90 80 90 90 100 110
3D transport, generic 300 700 1300 2200 3400 5000

8
Saye (2015): High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37(2):A993–A1019
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Matrix-free evaluation for CutFEM

▶ Sum factorization on regular elements
▶ Generic integration on cut cells
▶ Domain: 2D circle / 3D ball immersed
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M. Bergbauer, P. Munch, W. A. Wall, M. Kronbichler, High-performance matrix-free unfitted finite element operator evaluation, arXiv preprint arXiv:2404.07911, 2024

M. Kronbichler Efficient DG for CFD 43



CutFEM on complicated geometries

▶ Fluid simulations on cut geometries promising
▶ Ghost penalty stabilization to account for

small-cut problem
▶ BDF time integration
▶ Solvers: Multigrid solvers in pressure Poisson

and momentum operator
▶ Challenge: Need direct solver of cut elements

▶ block Jacobi or overlapping Schwarz with
element-wise patches

▶ Work with M. Bergbauer, W. A. Wall
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Summary

▶ High-order methods attractive in fluid dynamics
▶ Correct mathematical ingredients essential: H(div) conforming solutions
▶ Mathematical developments must be combined with good implementations to deliver full

potential
▶ Matrix-free finite element algorithms good target for high performance computing
▶ Iterative solvers need specific preconditioners
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