
wsmoses@illinois.edu
MFEM Seminar
Mar 14, 2024

William S. Moses

1

Supercharging Programming Through Compiler Technology

Valentin Churavy Ludger Paehler Johannes
Doerfert Jan Hückelheim

Sri Hari Krishna
Narayanan

Michel
Schanen

Paul Hovland

Leila Ghaffari

Tim GymnichPraytush Das

Manuel
Drehwald

&
more

Charles E.
Leiserson

TB Schardl

Nicolas
Vasliache Alex Zinenko Theodoros

Theodoridis

Zach Devito Andrew Adams

Albert Cohen
Sven

Verdoolaege

Priya Goyal Ivan R. Ivanov Jens Domke Toshio Endo

Lorenzo
Chelini

Ruizhe Zhao

Ameer
Haj Ali Jenny

Huang
Ion

Stoica
Krste

Asanovic
John

Wawrzynek

The Programmer’s Burden

3

• The decline of Moore's law and an increasing
reliance on computation => explosion of
specialized software packages and hardware
architectures.

• Domain-experts must customize programs and
learn platform-specific API's, instead of working
on their intended problem.

• Rather than each user bearing this burden,
compilers can automatically generate fast,
portable, and composable programs!

Extending the Boundaries of Compilers

Enzyme: fast, parallel, and rewrite-free derivative generation;

Tapir: understand and optimize parallel programs

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code,
preserve program structure to leverage device parameters perform HLS

Tensor Comprehensions (TC): automatically generate fast tensor

arithmetic

AutoPhase: ML-based optimization of programs/circuits
4

Extending the Boundaries of Compilers

5

Enzyme: fast, parallel, and rewrite-free derivative generation;

Tapir: understand and optimize parallel programs

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code,
preserve program structure to leverage device parameters perform HLS

Tensor Comprehensions (TC): automatically generate fast tensor

arithmetic

AutoPhase: ML-based optimization of programs/circuits

AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)

• Derivatives are used widely across science

• Machine learning (back-propagation, Bayesian inference)

• Scientific computing (modeling, simulation, uncertainty quantification)

6 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs  
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

7

AD

double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

// Numeric differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon
double grad_input[100];

for (int i=0; i<100; i++) {
 double input2[100] = input;
 input2[i] += 0.01;
 grad_input[i] = (f(input2) - f(input))/0.001;
}

// Automatic differentiation
double grad_input[100];

grad_f(input, grad_input)

Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original
code

• Fast if DSL matches original code well import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.cond(x > 0,
 lambda: tf.math.pow(x,3),
 lambda: 0
)
print(tape.gradient(out, x).numpy())

double relu3(double val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

Manually
Rewrite

Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)

• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either
// double or adouble
template<typename T>
T relu3(T val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);

Existing AD Approaches (3/3)

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// myfile.c
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

11

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

12

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
 double res = mag(in);
 for (int i=0; i<n; i++) {
 out[i] = in[i] / res;
 }
}

13

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)
for i=0..n {
 out[i] /= mag(in)
}

14

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)

15

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

Optimize

16

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
Optimize

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

17

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

18

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %result

cond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

define double @relu3(double %x)

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}

C Source LLVM

Enzyme Usage

19

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %result

cond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @relu3(double %x)

Active Instructions

20

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero
shadow memory for

active values

21

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

22

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

23

entry
%cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2)
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}

Post
Optimization

24

Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

25

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!
26

Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels

1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

27

Efficient GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

28

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

29

double* x_cache = new double[…];

// Forward Pass

out[i] = x[i] * x[i];
x_cache[i] = x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x_cache[i]
 * grad_out[i];
...

delete[] x_cache;

Cache Reduction Example
• By considering the dataflow graph

we can perform a min-cut to
approximate smaller cache sizes.

30

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 ...
 grad_use(sum);
}

X Y

Sum

Overwritten:

Required for
Reverse:

XX

Cache Reduction Example

31

double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Naive Cache

Sum

Cache Reduction Example

32

double* sum_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {

 grad_use(sum_cache[i]);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Smallest Cache

Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)  
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

• [AD] Cache LICM/CSE

• [AD] Min-Cut Cache Reduction

• [AD] Cache Forwarding

• [GPU] Merge Allocations

• [GPU] Heap-to-stack (and register)

• [GPU] Alias Analysis Properties of SyncThreads

• …
33

https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead

34

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

GPU Gradient Overhead

35

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA
Register Allocator

36

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

37

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

38

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

39

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!

 Enzyme-Powered Applications

40

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022,  
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
 5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference

The HPC Landscape Today

• Cutting-edge scientific computing requires efficiently leveraging parallelism

• Multicore chips

• Distributed clusters

• Accelerators (e.g. GPUs, TPUs)

41

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

42

N = 64M

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

43

 Serial Running time: 0.312 s

N = 64M

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

44

 Serial Running time: 0.312 s

N = 64M

A parallel loop replaces
the original serial loop

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

45

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 180.657s

A parallel loop replaces
the original serial loop

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

46

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 180.657s

 1-core Running time: 2600.287s

A parallel loop replaces
the original serial loop

Why the Parallel Slowdown?

47

CodeGenParallel
Lower Optimize

Frontend directly translates
parallel language constructs

Compiling Parallel Code

48

void norm(double[] out, double[] in)
{
 struct args_t args = { out, in };
 __cilkrts_pfor(body, args, 0, n);
}

void body(struct args_t args, int i)
{
 double *out = args.out;
 double *in = args.in;
 out[i] = in[i] / mag(in);
}

void norm(double[] out, double[] in)
{
 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

Parallel
Lower

Compiling Parallel Code

49

void norm(double[] out, double[] in)
{
 struct args_t args = { out, in };
 __cilkrts_pfor(body, args, 0, n);
}

void body(struct args_t args, int i)
{
 double *out = args.out;
 double *in = args.in;
 out[i] = in[i] / mag(in);
}

void norm(double[] out, double[] in)
{
 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

Parallel
Lower

X
The compiler doesn’t understand the
parallel runtime and cannot move mag

Compiling Parallel Code (Realistic)

50

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = spawn fib(n - 1);
 y = fib(n - 2);
 sync;
 return x + y;
}

Parallel
Lower

int fib(int n) {
 __cilkrts_stack_frame_t sf;
 __cilkrts_enter_frame(&sf);
 if (n < 2) return n;
 int x, y;
 if (!setjmp(sf.ctx))
 spawn_fib(&x, n-1);
 y = fib(n-2);
 if (sf.flags & CILK_FRAME_UNSYNCHED)
 if (!setjmp(sf.ctx))
 __cilkrts_sync(&sf);
 int result = x + y;
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
 return result;
}

void spawn_fib(int *x, int n) {
 __cilkrts_stack_frame sf;
 __cilkrts_enter_frame_fast(&sf);
 __cilkrts_detach();
 *x = fib(n);
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
}

Idea: New Parallel Compilation Pipeline

51

CodeGenParallel
Lower Optimize

CodeGenParallel
Lower Optimize

New IR that encodes parallelism for optimization!

Parallel IR: A Bad Idea?

From “[LLVMdev] LLVM Parallel IR,” 2015:

• “[I]ntroducing [parallelism] into a so far ‘sequential’ IR will cause severe breakage and

headaches.”

• “[P]arallelism is invasive by nature and would have to influence most optimizations.”  

Other communications, 2016–2017:

• “There are a lot of information needs to be represented in IR for [back end]

transformations for OpenMP.” [Private communication]

• “If you support all [parallel programming features] in the IR, a *lot* [of LOC]…would

probably have to be modified in LLVM.” [[RFC] IR-level Region Annotations]

Example Previous Parallel IR

entry

join

 rv = phi [n, entry], [add, join]
 ret rv

exit

 br (n < 2), exit, if.else

 forkif.else

 x = fib(n - 1)
 br join

• Previous CFG-based parallel IR’s represented
tasks symmetrically.

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = spawn fib(n - 1);
 y = fib(n - 2);
 sync;
 return x + y;
}

 y = fib(n - 2)
 br join

 join
 add = x + y
 br exit

Problem: The join block breaks implicit
assumptions made by the compiler.

Example: Values from all predecessors of a
join must be available at runtime [LMP97].

Tapir: Task-Based Asymmetric Parallel IR

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

• Tapir models parallel tasks asymmetrically via
three new instructions: detach, reattach, and sync

• The successors of a detach may run in parallel.

• Code after a sync is guaranteed to have completed
previously detached tasks.

• Tapir simultaneously represents the serial and
parallel semantics of the program.

det

Tapir: Task-Based Asymmetric Parallel IR

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

• Reasoning about parallelism is a minor change to reasoning about the serial projection.

det

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 br detif.else

 x0 = fib(n - 1)
 store x = x0
 br cont

 y = fib(n - 2)
 noop
 x1 = load x
 add = x1 + y
 br exit

det

Maintaining Correctness

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

Problem: How does the compiler ensure that code
motion does not introduce a determinacy race into
otherwise race-free code?

● Consider moving memory operations around each
new instruction.

● Moving code above a detach or below a sync
serializes it and is always valid.

● Other potential races are handled by giving
detach, reattach, and sync appropriate attributes
and by slight modifications to mem2reg.

det

Maintaining Correctness

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

Problem: How does the compiler ensure that code
motion does not introduce a determinacy race into
otherwise race-free code?

● Consider moving memory operations around each
new instruction.

● Moving code above a detach or below a sync
serializes it and is always valid.

● Other potential races are handled by giving
detach, reattach, and sync appropriate attributes
and by slight modifications to mem2reg.

det

Serial optimization passes
do not create bugs!

 Vector Normalization with a Parallel-Aware Compiler

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

58

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 0.081 s

 1-core Running time: 0.321 s

A parallel loop replaces
the original serial loop Great work efficiency!

TS / T1 = 97%

 Vector Normalization with a Parallel-Aware Compiler

59

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Decreasing difference between Tapir/LLVM and Reference

Polygeist: Extending Parallel IRs beyond Multicore

60

• Good IR representations are especially necessary
for device-specific constructs, like GPU
syncthreads

• Necessary for good performance, but
complexity means they’re often used poorly

• General abstracts can enable code written in
one framework to be used and high-
performance on many others without rewriting

• Recompiled PyTorch’s GPU backend to
produce an efficient CPU backend that runs
2.7x faster than PyTorch’s native CPU code!

Revisiting The Programmer’s Burden

61

Revisiting The Programmer’s Burden (published at SC22)

62

Conclusions
• Explosion of specialized software packages and hardware architectures -> scientists spending more

time learning how to optimize programs and use platform-specific API’s than working on their intended
problem.

• Rather than burdening the user, compilers can automatically generate fast, portable, and composable
code.

• Enzyme generates fast derivatives of programs needed for science and machine learning, without
user rewriting

• Tapir understands the parallelism within programs, enabling existing optimizations to apply with
minimal modification. Polygeist extends these ideas to GPU programs and enables write-once run-
anywhere.

• All these tools are open source and used in academia and industry and in disciplines that range from
climate science to physics to material science

63

Acknowledgements

• Thanks to my family for supporting me, including Marina Moses, John Moses, Sophia Moses,
and Panayoti Stefanidis.

• Many thanks to so many colleagues for help with this work including: Srini Devadas, James
Bradbury, Jed Brown, Alex Chernyakhovsky, Valentin Churavy, Lilly Chin, Hal Finkel, Marco
Foco, Leila Gharaffi, Laurent Hascoet, Patrick Heimback, Paul Hovland, Jan Hueckelheim, Mike
Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Ludger Paehler, Chris Rackauckas, TB Schardl,
Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, Sarah Williamson, Alex
Zinenko, Pat McCormick, George Stelle, Stephen Olivier, Joanna Balme, Eric Brown-Dymkosky,
Victor Guerrero, Stephen Jones, Andre Kessler, Adam Lichtl, Kevin Lung, Ken Museth, Nathan
Robertson, Youseef Marzouk, Kevin Sabo, Jesse Michel, Cat Zeng, Allison Tam, Kevin Kwok,
Will Bradbury, Alex Atanasov, Joe Murphy, Jamie Voros, Logan Engstrom, Douglas Kogut,
Jiahao Li, Bojan Serafimov, Carl Guo, Sanath Govindarajan, Walden Yan, Sage Simhon,
Chuyang Chen, Shakil Ahmed, Abhishek Vu, Chris Hill, Chris Peterson, Emma Batson, & more.

• Thank you to all my friends from MIT, TJ, NOVA, and beyond.
64

Valentin Churavy Ludger Paehler Johannes
Doerfert Jan Hückelheim

Sri Hari Krishna
Narayanan

Michel
Schanen

Paul Hovland

Leila Ghaffari

Tim GymnichPraytush Das

Manuel
Drehwald

&
more

Charles E.
Leiserson

TB Schardl

Nicolas
Vasliache Alex Zinenko Theodoros

Theodoridis

Zach Devito Andrew Adams

Albert Cohen
Sven

Verdoolaege

Priya Goyal Ivan R. Ivanov Jens Domke Toshio Endo

Lorenzo
Chelini

Ruizhe Zhao

Ameer
Haj Ali Jenny

Huang
Ion

Stoica
Krste

Asanovic
John

Wawrzynek

Acknowledgements

• This work was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323.
This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity
within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program,
under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC).
Research was sponsored by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000.

• This work was funded and/or supported by NSF Cyberinfrastructure for Sustained Scientific Innovation
(CSSI) award numbers: 2104068, 2103942, and 2103804, Argonne Leadership Computing Facility, which is
a U.S. Department of Energy (DOE) Office of Science User Facility supported under Contract DE-
AC02-06CH11357, NSF (grants OAC-1835443, AGS-1835860, and AGS-1835881), DARPA under
agreement number HR0011-20-9-0016 (PaPPa), Schmidt Futures program, Paul G. Allen Family
Foundation, Charles Trimble, Audi Environmental Foundation, DOE, National Nuclear Security
Administration under Award Number DE-NA0003965, LANL grant 531711, and German Research Council
(DFG) under grant agreement No. 326472365.

• The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government.66

Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending
more time learning how to optimize programs and use platform-specific API’s than working on
their intended problem.

• Rather than burdening the user, compilers can automatically generate fast, portable, and
composable code.

• Enzyme generates fast derivatives of programs needed for science and machine learning,
without user rewriting

• Tapir understands the parallelism within programs, enabling existing optimizations to apply
with minimal modification.

• All these tools are open source and used in academia and industry and in disciplines that range
from climate science to physics to material science

67

