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Outline

e Motivation & Nektar++

e Efficient high-order FEM operations on non-tensorial elements
e NektarlR: a domain-specitic compiler for high-order FEM operations

e Summary
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Why use a high-order method?
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v computational advantage: reduced memory
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The challenge: meshing

* Most efficient high-order
elements are hexahedra.

e However unstructured hex-only
(or even hex-dominant) meshing
is still an open problem.

e Theretore need to consider
high-order non-tensorial
elements: tetrahedra, prisms,
pyramids.

Mesh for IFW geometry, P = 5

e How do we make FEM
operations on these elements
efficient?



Nektar++

spectral/hp element framework

v

Nektar++ is an open source framework for the spectral/hp element method.

Want to use these methods in many areas, not just fluids; designed with complex

geometries in mind, supports hybrid 2D/3D meshes.

Designed to support a range of discretisations (CG, DG) at scales from desktop to HPC.

Solvers for incompressible/compressible Navier-Stokes & others, with a wide range of
features for fluids-based problems (variable p, non-conformal meshes for DG, ...)

Started in 2004: has been CPU-only since the outset, but now significant project
underway to port to the GPU.
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High-order splitting scheme )
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Navier-Stokes: 9,u + N(u) = —Vp + V2u v
V-u=0 u-Vu
>k
. . . u
CG Velocity correction scheme (aka stiffly stable): !
Orszag, Israeli, Deville (?0), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003) q
7 71 vVu — Vp =f
Advection: u* = — Z a,u’ 1 — At Z BN (u"™7) \ Veou=0o
| 5 ntl 1 ) n=n-4+1
Pressure Poisson: Vp — Ktv - u !

Majority of computational time in linear

Helmholtz:  WV2u”t! o uttl — u | 1 solves: need fast matrix-vector operator,
good preconditioners




Virtual wind tunnel

Tbn degrees of freedom

Uses only CFD for design

Design 2: +33% Downforce

Mengaldo, Moxey, Turner, Jassim, Taylor, Peiro & Sherwin, SIAM Review (2021) Design 3: +270% Downforce



Performant kernels for high-order FEM

e Modern hardware: lots of FLOPS,
bottlenecked on memory bandwidth.

* Need codes and algorithms that have high
arithmetic intensity and exploit SIMD
parallelism of the hardware.

e Matrix-free methods and sum factorisation/

tensor contractions help achieve this at high
order: widely used by MFEM, deal.ii, ...

* Examine whether this can be applied to more
general element types, not just quads/hexes.




"Defining" features of spectral/hp method
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"Defining" features of spectral/hp method

GeneraHy not collocated
p o 4—— order can vary

u(éy;n &) = Z i,B,E) = ) Y ()b (&)
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quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-

tensor product shapes, e.g. tetrahedron:
P O-pR-p-q

(s s fzja 53]) — Z Z Z Upgr a(fn) q(fzj) pqr(§3k)

\ p=0 g=0 r=0 '\

non-uniform quadrature  basis function indexing harder




Implementation choices

Finite element operation evaluations (e.g. mass matrix) form bulk of
simulation cost; however can be evaluated in several ways.

—_ 000 00 000 0000
~ lo 08°° cecee’e 3°35 °%2°° ||o — 000 | — o000 (000 0000
::o:o:oo . ..::.: ::oo:: ° ::: 00 00 0000
Global matrix Local evaluation Matrix free
assemble a sparse matrix ~ create elemental dense no local matrices at all
matrices + assembly map speedup

—) |Creasing arithmetic intensity



Matrix-free sum-factorisation

e Key to performance at high P: do not assemble matrix but evaluate its action
instead: matrix-free approach.

e Can reduce cost from O(P?%) to O(P41) by using sum-factorisation:
P QO

O

Z ﬁpq¢q(52j) \

qg=0

P
By b E10(E) = D By(E1)
p=0

p=0 g=0 :
store this

e Works in essentially the same way for more complex indexing for e.g.
triangles:

P O-p P O—p
2 2 i E0pE) = DI | X&) | <
p=0 g=0 p=0 qg=0

store this



Standard matrix approach

e Can consider alternative implementation where:
> compute operator matrices on the standard element;
> use large (skinny) matrix-matrix multiplication across all elements;

> incorporate appropriate metrics (Jacobian, derivative factors, etc) with
pointwise operators as required.

e Disregards sum-tfactorisation and potentially >1 matrix multiplication involved,
but can exploit optimised small-matrix implementations (e.g. 11bxsmm).

 On GPU, this can be chunked into small groups that are appropriately
parallelised over threads.



Data StOI"age & IayOUt degrees of freedom =————-

NN

Either lay out data by element
P
‘ ;

I

Group elements by type, polynomial order, Or interleave to explicitly

integration order, curved/regular exploit vectorisation



Element vectorisation

* Operations can occur over groups
of elements of size of vector width.

elements

e Use C++ data type that encodes
operations using compiler intrinsics.

e Templating used to allow compiler
to unroll as much as possible.

T

256-bit AVX2

'

basis functions
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Threaded over elements parallelism
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Throughput (GPU, NVIDIA GH200)
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Throughput (CPU, Intel Xeon 6526Y)
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Throughput (CPU, Intel Xeon 6526Y)
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Performance observations

* For more arithmetically intense operators,
sum factorisation almost always

100

preferred, but in certain cases matrix-
based approaches outperform
considerably.
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Local memory overhead in %

e Crossover point in performance between N i s (i
J/ - uad per thread (curve
threading models on the GPU mostly A 4 Quad per thread (cur. & red. BW)
dictated by register pressure and fallback L e

to local memory. |
y Quadrilaterals

e 3D results suggest almost always better
to use entry-by-entry approach.



Implementation flexibility

* |f we are interested in best performance there are a signiticant number of
critical parameters:

> polynomial order (may also vary in different directions within the element);
> shape type & implementation approach;

» whether the element has constant or variable Jacobian:

> quadrature order (and whether dealiasing is required);

> basis type (e.g. collocation property for Lagrange basis/nodal elements);

> underlying data type (e.g. double, single, half) and the hardware.



Towards NektarIR

e Current approach is to rely on C++ templating, but this leads to parameter explosion in the
general case.

 Code generation clearly an alternative, but how to approach this? Certain desirable qualities:
> capture as much optimisation at different levels as we can: e.g. collocation
> be able to target different architectures & optimise for them;

> just-in-time compiled for e.g. adaptive simulations that vary p, quadrature order or any of
the other parameters listed previously;

> don't want to build everything from the ground up.

* To this end we are building an intermediate representation (IR) to represent these operators,
and capitalise on the existing infrastructure within LLVM.



Outline:
 MLIR and LLVM

* QOur Abstraction: An MLIR Dialect for Elemental Operations

* The Compiler Pipeline: Journey from NektarlR to CPU and
GPU Kernels

* Performance: Compiler Overhead and Runtime

* The Code




The LLVM Compiler Infrastructure
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» (Collection of compiler toolchains

https://llvm.org/

 Hardware independent intermediate

representation (IR) of a source Iangue?,

——l LLVM IR ===

» Used in for e.g. Clang, Rust, Julia, Swift\




LLVM IR

 Assembly-like language
» Static single-assignment form (SSA)

* Optimizations in the form of passes

* LLVM IR might be too low an abstraction for several
applications




MLIR:

S

* Multi-Level Intermediate Representation
 Significantly easier to interface with LLVM and build a compiler

» Used extensively in Al and ML applications, e.g Tensorflow and
Mojo

* Less popular in scientific computing (for now)




MLIR:

S

* Uses dialects to represent operations at various
abstraction levels

» Dialects for high-level constructs: func, scf, memref
* Architecture independent abstractions: gpu and vector

» Dialect operations, types and attributes are reusable

* |R Is rewritten using MLIR passes




MLIR Pipeline Example:

 Alinear algebra operation is
converted to loops and
arithmetic operations before
being lowered further

« Alow-level llvm dialect can be
translated to LLVM IR before

JIT compilation to the desired
hardware

LLVM IR

https://mlir.llvm.org/




MLIR: Example rewrite pattern N

.
d ef f(X) : https://mlir.llvm.org/

\

a = transpose(x); Redundant transposition
— that the compileris not
going to catch

b =transpose(a);

return b; -

transpose(transpose(x)) -> X

def f(X)Z IR transformation removes

return x;

the redundancy




Our Goals:

» (Create an abstraction of common finite element operations as
an MLIR dialect

» Facilitate the just-in-time compilation of high-order finite
element kernels for use in CFD solvers

» Leverage LLVM to support both CPU and GPU hardware




The NektarIR Dialect Design:

* Abstraction Level: basic elemental operations acting on
blocks of alike elements in a mesh

. . AL, '

Backward Transform Inner Product

Collocation Differentiation

» Each elemental operation produces SSA value result(s)

* No “destination-passing” style or “in-place” operations




IR Examples
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lcoeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type
fmap2 = affine_map<(d0,dl) -> (d1,d0)>
module {
func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,
bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)

attributes {llvm.emit _c_interface}

{

b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

$blt = bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe4d>

b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>
scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]

Shape: hex

Basis: (modified, modified, modified)

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !'coeffBlockType

Bases: %b0t, 3%blt, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xfe4d>] -> IphysBlockType

// Indicates which buffer to store the output of the backward transform to
nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>)

return

—->

()
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'coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified,

Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type

tmapZ2 = atffine _map<(dl, o -> (dl,d0)>

module {

func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,
bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)

attributes {llvm.emit _c_interface}

{

b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

$blt = bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe4d>

b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>
scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]

Shape: hex

Basis: (modified, modified, modified)

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !coeffBlockType

Bases: %b0t, S%blt, %b2t: tensor<9x8xf64>, tensor<9x8xfe4>, tensor<9x8xfe4>] -> IphysBlockType

// Indicates which buffer to store the output of the backward transform to

modified),

nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>) ->

return

()
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lcoeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type
fmap2 = affine_map<(d0,dl) -> (d1,d0)>
module {
func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,

memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %Bu: memref<lxl104x729xf64>)

attributes {llvm.emit _c_interface}

b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

$blt = bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe4d>

b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>
scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]

Shape: hex

Basis: (modified, modified, modified)

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !coeffBlockType

Bases: %b0t, S%blt, %b2t: tensor<9x8xf64>, tensor<9x8xfe4>, tensor<9x8xfe4>] -> IphysBlockType

// Indicates which buffer to store the output of the backward transform to
nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>)

return

->

()
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'coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified,
Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type
fmap2 = affine_map<(d0,dl) -> (d1,d0)>
module {
func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,
bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)

attributes {llvm.emit _c_interface}

bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]

Shape: hex

Basis: (modified, modified, modified)

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !coeffBlockType

Bases: %b0t, S%blt, %b2t: tensor<9x8xf64>, tensor<9x8xfe4>, tensor<9x8xfe4>] -> IphysBlockType
// Indicates which buffer to store the output of the backward transform to

modified),

nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>) ->

return

()
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lcoeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type
fmap2 = affine_map<(d0,dl) -> (d1,d0)>
module {
func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,
bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)

attributes {llvm.emit _c_interface}

{

b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>
$blt = bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe4d>
b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data
Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]
Shape: hex
Basis: (modified, modified, modified)
BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !coeffBlockType

Bases: %b0t, S%blt, %b2t: tensor<9x8xf64>, tensor<9x8xfe4>, tensor<9x8xfe4>] -> IphysBlockType

// Indicates which buffer to store the output of the backward transform to
nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>)

return
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'coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified,
Size:1x104x8x8x8xf64, Layout: (d0,dl, d2) -> (d0,dl,d2)> // coefficient space block type

'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type

fmap2 = affine_map<(d0,dl) -> (d1,d0)>

module {

func.func

$uhat:

bl: memref<9x8xf64, #map2>, %b2:
attributes {llvm.emit _c_interface}
{
b0t = bufferization.to_tensor
%blt = bufferization.to_tensor
b2t = bufferization.to_tensor
$coeffBlock = nir.block_from_memref |
Data: %uhat memref<lx104x512xf64d>
Fields: [u]
Shape: hex
Basis: (modified, modified, modified)
BlockSize: [8,8,8]
Deformed: false] -> !coeffBlockType

$out =
Block:

Bases:

nir.bwd
$coeffBlock
$b0t,

[

coeffBlockType

$blt, %b2t:

memref<lxl104x512xf64>, $%$bO:
memref<9x8xfo4,

$b0 restrict
$bl restrict

$b2 restrict

tensor<9x8xfodd>,

memref<9x8xfo4,
memref<lx104x729xf64>)

#map2>,

#map2>, %u:

memref<9x8xf o4,
memref<9x8xf o4,
memref<9x8xf o4,

#map2> to tensor<9x8xfo4>
#map2> to tensor<9x8xfo4>
#map2> to tensor<9x8xfo4>

// Associates the buffer containing the coefficient data
// to the coefficient block type.

// The backward transform operation

tensor<9x8xf64>, tensor<9x8xfe4>] -> I!physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination

return

Sout 1in restrict writable

('physBlockType, memref<lx104x729xf64>)

giaale
su.

->

modified),

()
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'coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified,
Size:1x104x8x8x8xf64, Layout: (d0,dl, d2) -> (d0,dl,d2)> // coefficient space block type

'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type

fmap2 = affine_map<(d0,dl) -> (d1,d0)>

module {

func.func

$uhat:

memref<lx104x512xf64>, %bO:

memref<9x8xf64, #map2>,

bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)
attributes {llvm.emit _c_interface}
{
b0t = bufferization.to_tensor %b0 restrict memref<9x8xf64, #map2> to tensor<9x8xf6i>
$blt = bufferization.to_tensor %bl restrict memref<9x8xf64, #map2> to tensor<9x8xfe6i>
b2t = bufferization.to_tensor %b2 restrict memref<9x8xf64, #map2> to tensor<9x8xf6i>
scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data
Data: %uhat memref<1lx104x512xf64> // to the coefficient block type.
Fields: [u]
Shape: hex
Basis: (modified, modified, modified)
BlockSize: [8,8,8]
Deformed: false] -> !coeffBlockType
g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock 'coeffBlockType
Bases: %b0t, $%blt, %b2t: tensor<9x8xfo64>, tensor<9x8xfe64d>, tensor<9x8xfe64d>] -> I!physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination

return

Sout 1in restrict writable

('physBlockType, memref<lx104x729xf64>)

giaale
su.

->

modified),

()
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lcoeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

Size:1x104x8x8x8xfo4, Layout: (d0,dl, d2) -> (d0,dl1,d2)> // coefficient space block type
'physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),
Size: 1x104x9x9x9xfe64d4, Layout: (d0,dl,d2) -> (d0, dl1 ,d2)> // physical space block type
fmap2 = affine_map<(d0,dl) -> (d1,d0)>
module {
func. func uhat: memref<lx104x512xf64>, %$b0: memref<9x8xf64, #map2>,
bl: memref<9x8xf64, #map2>, %b2: memref<9x8xf64d, #map2>, %u: memref<lxl1l04x729xf64>)

attributes {llvm.emit _c_interface}

{

b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>

$blt = bufferization.to_tensor %bl restrict : memref<9x8xf64, #map2> to tensor<9x8xfe4d>

b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xfe64d>
scoeffBlock = nir.block_from_memref | // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.
Fields: [u]

Shape: hex

Basis: (modified, modified, modified)

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

g$out = nir.bwd | // The backward transform operation
Block: %coeffBlock : !'coeffBlockType

Bases: %b0t, 3%blt, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xfe4d>] -> IphysBlockType

// Indicates which buffer to store the output of the backward transform to
nir . materialize_in_destination %out in restrict writable %u: (!'physBlockType, memref<lx104x729xf64>)

return

—->

()



Helmholtz:

$helm = nir.helmholtz |
Block: %coeffBlock : !'coeffBlockType
Bases: %$b0t, $%$blt, %b2t: tensor<4x3xfod>, tensor<bxi4dxfed>, tensor<oxbxfod>
DMats: %d0t, %dlt, %d2t : tensor<4x4dxfo4d>, tensor<bHxbxfo4d>, tensor<oxoxfod>
Jac: %jacobianBlock : !jJacobianBlockType
Weights: %wOt, %wlt, %w2t: tensor<dxf64>, tensor<bxfo64>, tensor<eoxfod>
DiffCoeffs: %diffCoeffT : tensor<oxfod>
Factors: %dft : tensor<9xfe4d>
Scale: 2.0] -> !'coeffBlockType

O 0O N O U1 »H» W N -

» Operations acting on blocks of elements are lowered to a loop over elements
and a series of operations that act on a single element (or a vector-width
number of elements)
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%

13

nir.empty_block () : !'coeffBlockType

$c0 = arith.constant 0 : index
%$cl000 = arith.constant 1000 : index

}

Q
=
Il

arith.constant 1 : index

14 = scf.for %argld = %c0 to %cl000 step %cl iter_args(%argld = %13) -> (!'coeffBlockType) {

%15 = nir.extract_slice %11 (0, %argl4, O, O, O] T[1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !'coeffBlockType to
%16 = nir.extract_slice %12 (0, %argl4, O, O, O] (1, 1, 1, 1, 1] [1, 1, 1, 1, 1] : !'jacobianBlockType to

%$17 = nir.elmnt_bwd|[ // backward transform

Block : %15 : !singleCoeffType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<bx4xf64>, tensor<6xbxf64>] -> !singlePhysType
%$18:3 = nir.elmnt_standard_deriv| // derivative in local coordinates

Block : %17 : !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5xbxfo64d4d>, tensor<oxoxfocd>]

-> IsinglePhysType, !'singlePhysType, !singlePhysType

%$19:3 = nir.elmnt_deriv_metric|[ // apply the derivative metric and diffusion
Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType
Factors : %9 : tensor<9xf64>

DiffCoeffs : %10 : tensor<eoxfe4d>
] -> !singlePhysType, !singlePhysType, !singlePhysType

$20:4 = nir.elmnt_apply_ijw|[ // apply weights and jacobian determinants

Blocks : %17, %19#0, %19#1, %19#2 : !'singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

Jac : %16 : !singleJacobianType
Weights : %3, %4, %5 : tensor<4xfo64>, tensor<bxf64d>, tensor<eoxf64>]
-> I!singlePhysType, !singlePhysType, !'singlePhysType, !singlePhysType

%21 = nir.elmnt_test|[ // action of B"T

Block : %20#0 : !'singlePhysType

Bases : %0, %1, %2 : tensor<4x3xfo64>, tensor<5bx4dxfod>, tensor<oxbxfo4d>
Scale : 2.0: f64] -> !'singleCoeffType

%22 = nir.elmnt_test_grad|[ // "dot product"”" grad(v) and grad(u) and action of B"T

Blocks : %20#1, %20#2, %20#3 : !singlePhysType, !singlePhysType, !singlePhysType
DMats : %6, %7, %8 : tensor<i4x4xf64>, tensor<bxbxf64>, tensor<oxoxfod>
Bases : %0, %1, %2 : tensor<4x3xfo64>, tensor<bx4dxfo64d>, tensor<ox5xf64d>]

-> !singleCoeffType

$23 = nir.add]|

Blocks : %21, %22 : !'singleCoeffType, !singleCoeffType]

-> !singleCoeffType

%24 = nir.insert_slice %23 into %argl5[0, %argl4, O, O, O] (1, 1, 3, 4, 5] [1, 1, 1, 1, 1]

scf.yield %24 : !coeffBlockType

{element_shape = #nir.element_shape<hex>}

!singleCoeffType into

!singleCoeffType

!singleJacobianType

!coeffBlockType




nir.empty_block () : !'coeffBlockType
arith.constant 0 : index
= arith.constant 1000 : index
arith.constant 1 : index L I m t
scf.for %argld = %c0 to %cl000 step %cl iter_args (%arglb %$13) -> ('coeffBlockType) { Oop Over e e en S
= nir.extract_slice %11 [0, %argl4, : lcoeffBlockType to !singleCoeffType EXtraCt a Sin Ie bIOCk
= nir.extract_slice %12 [0, %argl4, : !'jacobianBlockType to !singleJacobianType g;
10 %$17 = nir.elmnt_bwd|[ // backward transform
11 Block : %15 : !singleCoeffType
1 Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<bx4xf64>, tensor<6xbxf64>] -> !singlePhysType
13
L %$18:3 = nir.elmnt_standard_deriv| // derivative in local coordinates
e Block : %17 : !singlePhysType
e DMats : %6, %7, %8 : tensor<4x4xf64d4>, tensor<5xbxf64d>, tensor<oxoxf6d>]
. -> IsinglePhysType, !'singlePhysType, !singlePhysType
18
%$19:3 = nir.elmnt_deriv_metric|[ // apply the derivative metric and diffusion
19
Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType
20 Factors : %9 : tensor<9xf64>
2! DiffCoeffs : %10 : tensor<6xfe64d>
22
] -> !singlePhysType, !singlePhysType, !singlePhysType
23
o $20:4 = nir.elmnt_apply_ijw|[ // apply weights and jacobian determinants
d Blocks : %17, %19#0, %19#1, %19#2 : !'singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType
27 Jac : %16 : !singleJacobianType
28 Weights : %3, %4, %5 : tensor<4xfo64>, tensor<bxf64d>, tensor<eoxf64>]
29 -> I!singlePhysType, !singlePhysType, !'singlePhysType, !singlePhysType
30
31 %21 = nir.elmnt_test|[ // action of B"T
39 Block : %20#0 : !singlePhysType
33 Bases : %0, %1, %2 : tensor<4x3xfo64>, tensor<5bx4dxfod>, tensor<oxbxfo4d>
34 Scale : 2.0: f64] -> !'singleCoeffType
35
» %22 = nir.elmnt_test_grad|[ // "dot product"”" grad(v) and grad(u) and action of B"T
27 Blocks : %20#1, %20#2, %20#3 : !'singlePhysType, !singlePhysType, !singlePhysType
29 DMats : %6, %7, %8 : tensor<4x4xfe64>, tensor<bxbxfo4d>, tensor<oxoxfod>
29 Bases : %0, %1, %2 : tensor<4x3xfo4d>, tensor<bx4dxfo64d>, tensor<oxbxf64d>]
20 -> !singleCoeffType
41
» %23 = nir.add]|
Blocks : %21, %22 : !'singleCoeffType, !singleCoeffType]
43
-> !singleCoeffType
44
45
%24 = nir.insert_slice %23 into %argl5[0, %argl4, O, O, O] T[1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !'singleCoeffType into !coeffBlockType
46
v scf.yield %24 : !coeffBlockType
48
9 } {element_shape = #nir.element_shape<hex>}
50
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%13

$c0 = arith.constant 0
$cl000 = arith.constant 1000

}

Q
=
|

14 = scf.for %argld = %c0 to %cl000 step %cl iter_args(%argld = %13) ->

nir.empty_block () !coeffBlockType
index

index

arith.constant 1 index

('coeffBlockType) {

%15 = nir.extract_slice %11 (0, %argl4, O, O, O] T[1, 1, 3, 4, 5] [1, 1, 1, 1, 1] 'coeffBlockType to !singleCoeffType
%16 = nir.extract_slice %12 (0, %argl4, O, O, O] (1, 1, 1, 1, 1] Tr[1, 1, 1, 1, 1] !jacobianBlockType to !singleJacobianType
%$17 = nir.elmnt_bwd|[ // backward transform
Block : %15 !singleCoeffType
Bases : %0, %1, %2 tensor<4x3xf64>, tensor<5x4xf6d>, tensor<6xbxf64>] -> !singlePhysType 1. BaCkward TranSform
%18:3 = nir.elmnt_standard_deriv|[ // derivative in local coordinates
Block : %17 !singlePhysType m m m
DMats : %6, %7, %8 tensor<4dx4xfod>, tensor<bx5xf64>, tensor<oxoxfo64d>] 2. COIlocatlon Derlvatlve
-> I!singlePhysType, !singlePhysType, !singlePhysType
%$19:3 = nir.elmnt_deriv_metric|[ // apply the derivative metric and diffusion . - -
Blocks $18#0, %18#1, <18#2 !singlePhysType, !singlePhysType, !singlePhysType 3 Derlvatlve Metrlc
Factors : %9 tensor<9xfo4> .
DiffCoeffs : %10 tensor<eoxf64>
] -> !singlePhysType, !singlePhysType, !singlePhysType
|
%$20:4 = nir.elmnt_apply_jw[ // apply weights and jacobian determinants 4 Apply Welghts and
Blocks $17, %1940, S19#1, %1942 !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType "
Jac : %16 !singleJacobianType [ [
Neishts : 33, B4, 35 : tencor<ixfél>, fensor<Sxf6ls, fensor<éx£6i>] Jacobian determinants
-> I!singlePhysType, !singlePhysType, !'singlePhysType, !singlePhysType
%21 = nir.elmnt_test|[ // action of B"T
Block $20#0 !singlePhysType 5 u V
Bases : %0, %1, %2 tensor<4x3xf64>, tensor<5x4xf64>, tensor<6xbxf64> n ( b )
Scale 2.0: £64] -> !'singleCoeffType

%22 = nir.elmnt_test_grad|[ // "dot product"”" grad(v) and grad(u) and action of B"T

Blocks $20#1, %20#2, %20#3 !singlePhysType, !'singlePhysType, !singlePhysType
DMats : %6, %7, %8 tensor<4x4xfod>, tensor<bx5xf64>, tensor<oxoxfo6d>
Bases : %0, %1, %2 tensor<4x3xfod4>, tensor<bx4dxf64>, tensor<oxbxf64d>]
-> !singleCoeffType
$23 = nir.add]|
Blocks %21, %22 !singleCoeffType, !singleCoeffType]
-> !singleCoeffType
%24 = nir.insert_slice %23 into %argl5[0, %argl4, O, O, O] (1, 1, 3, 4, 5] [1, 1, 1, 1, 1]
scf.yield %24 !coeffBlockType
{element_shape = #nir.element_shape<hex>}

6. (grad(u), grad(v))

7. Add mass and
stiffness contributions

!singleCoeffType into !'coeffBlockType
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%

13 = nir.empty_block () !coeffBlockType
%c0 = arith.constant 0 index
%cl000 = arith.constant 1000 index
%cl = arith.constant 1 index
%14 = scf.for %argl4d = %c0 to %cl000 step %cl iter_args(%argl5 = %13) -> (!coeffBlockType) {
%15 = nir.extract_slice %11 (0, %argl4, O, O, O] T[1, 1, 3, 4, 5] [1, 1, 1, 1, 1] 'coeffBlockType to !singleCoeffType
%16 = nir.extract_slice %12 (0, %argl4, O, O, O] (1, 1, 1, 1, 1] Tr[1, 1, 1, 1, 1] !jacobianBlockType to !singleJacobianType
%$17 = nir.elmnt_bwd|[ // backward transform
Block %15 !singleCoeffType
Bases %0, %1, %2 tensor<4x3xf64>, tensor<bx4xf64>, tensor<6x5bxfe4>] -> !singlePhysType
%$18:3 = nir.elmnt_standard_deriv| // derivative in local coordinates
Block %17 !singlePhysType
DMats %6, %7, %8 tensor<4dx4xfod>, tensor<bx5xf64>, tensor<oxoxfo64d>]
-> IsinglePhysType, !'singlePhysType, !singlePhysType
%$19:3 = nir.elmnt_deriv_metric|[ // apply the derivative metric and diffusion
Blocks $18#0, %18#1, %18#2 !singlePhysType, !'singlePhysType, !singlePhysType
Factors %9 tensor<9xfe64>
DiffCoeffs %10 tensor<oxfo64d>
] -> !singlePhysType, !singlePhysType, !singlePhysType
$20:4 = nir.elmnt_apply_ijw|[ // apply weights and jacobian determinants
Blocks %17, %19#0, S19#1, %1942 !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType
Jac %16 !singleJacobianType
Weights $3, %4, %5 tensor<4xfe64d4>, tensor<5xf64>, tensor<oxfoid>]
-> I!singlePhysType, !singlePhysType, !'singlePhysType, !singlePhysType
%21 = nir.elmnt_test|[ // action of B"T
Block %20#0 ! singlePhysType
Bases $0, %1, %2 tensor<4x3xf64>, tensor<bxdxf64d4>, tensor<oxbxfed>
Scale : 2.0: f64] -> !'singleCoeffType
%22 = nir.elmnt_test_grad[ // "dot product" grad(v) and grad(u) and action of B"T
Blocks $20#1, %20#2, %20#3 !singlePhysType, !'singlePhysType, !singlePhysType
DMats %6, %7, %8 tensor<4x4xfod>, tensor<bx5xf64>, tensor<oxoxfo6d>
Bases $0, %1, %2 tensor<4x3xfod4>, tensor<bx4dxf64>, tensor<oxbxf64d>]
-> !singleCoeffType
$23 = nir.add]|
Blocks %21, %22 !singleCoeffType, !singleCoeffType]
-> !singleCoeffType

}

%24 =

scf.yi

{element_shape =

nir.insert_slice %23 into %argl5[0, %argl4, O, !singleCoeffType into

eld %24

!coeffBlockType

#nir.element_shape<hex>}

!coeffBlockType

Insert result block
and update the result




NektarIR pipeline:

nektarlR
affine/scf memref
vector
Other vendor
specific dialects
exist

binaries LLVM [R s E

target

JIT compiled kernels can be =
called from the application target




NektarIR interface:

* Programmatic construction of the IR using our C++
IRGenerator library

 JIT-compilation of generated or written IR snippets using
the LLVM execution engine

« JIT library creates a function pointer to the compiled kernel

» Python bindings are planned




Compiler Overhead and Runtime Performance:

* How long does lowering and compiling a kernel take?

* |s there a difference in the overhead for CPU and GPU
code-gen?

* How does runtime performance compare to Nektar++?




Runtime Comparison:

» Comparison of both vectorized and GPU kernels from
NektarlR and the Nektar++ Redesign

« Host: 128 cores on two AMD EPYC 9554 CPUs

« Device: NVIDIA H100
Overhead:

« Measured time to lower from NektarIR to the LLVM dialect
and time to compille




Tetrahedral Elements, AVX512:
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Hexahedral Elements, AVX512:
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Hexahedral Elements, AVX512:

NektarlR - Helmholtz

Nektar++ - Helmholtz
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Hexahedral Elements, AVX512 with loop fusion:

NektarlR - Helmholtz Nektar++ - Helmholtz

Throughput (dof/s)
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Hexahedral Elements: Overhead Comparison
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GPU: Hexahedral Elements, Threading Over Elements
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GPU: Tetrahedral Elements, Threading Over Elements

NektariR - BwdTrans Nektar++ - BwdTrans
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GPU: Hexahedral Elements, Threading Over Elements

NektarlR - Helmholtz

Throughput (dof/s)
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Compiler Overhead: Target: NVIDIA H100, Hexahedral Elements

1 BwdTrans
Mean Time To Lower
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Summary:

Code-generation of JIT compiled kernels for both CPU and
GPU targets from a single representation using MLIR and
LLVM.

Good performance on CPU without many optimizations.

GPU kernels need optimization.

MLIR gives control of the kernel from "math to metal” and
lots of optimizations remain to be tested.



Future work:

e Optimization.
e Jest on more hardware.

» (et all operators working on all shapes.

* Nodal expansions and the collocation property.




The Code:

* Will be open-sourced and independent of Nektar++.

* Nearly ready for release but if you want access, you can
contact us!




Thank you for listening!




GPU: Hexahedral Elements, Threading Over Elements
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GPU: Hexahedral Elements, Threading Over Elements
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Hexahedral Elements, AVX512

NektariR - IProductWRTBase
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Hexahedral Elements, AVX512:

Throughput (dof/s)
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