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Goal: enable scale-resolving simulations for complex 
geometries of interest to industry at high order.

High-fidelity simulation of a IFW cross-section

Imperial Front Wing: a 
prototype F1 geometry

Full 3D simulation of  
IFW + rotating wheel

Nektar++ 
spectral/hp element 
framework
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Why use a high-order method?
✓ error decays exponentially (smooth solutions); 

✓ favorable diffusion & dispersion characteristics; 

✓model complex domains 

✓ computational advantage: reduced memory 
bandwidth, better use of hardware.

h-refinement 
(algebraic)

p-refinement 
(exponential)



The challenge: meshing
• Most efficient high-order 

elements are hexahedra. 

• However unstructured hex-only 
(or even hex-dominant) meshing 
is still an open problem. 

• Therefore need to consider 
high-order non-tensorial 
elements: tetrahedra, prisms, 
pyramids. 

• How do we make FEM 
operations on these elements 
efficient?

Mesh for IFW geometry, P = 5



Nektar++ 
spectral/hp element framework

• Nektar++ is an open source framework for the spectral/hp element method. 

• Want to use these methods in many areas, not just fluids; designed with complex 
geometries in mind, supports hybrid 2D/3D meshes. 

• Designed to support a range of discretisations (CG, DG) at scales from desktop to HPC. 

• Solvers for incompressible/compressible Navier-Stokes & others, with a wide range of 
features for fluids-based problems (variable p, non-conformal meshes for DG, ...) 

• Started in 2004: has been CPU-only since the outset, but now significant project 
underway to port to the GPU.
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High-order splitting scheme
∂tu + N(u) = −∇p + ν∇2uNavier–Stokes:

CG Velocity correction scheme (aka stiffly stable): 
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Advection: u∗ = −
J∑

q=1

αqun−q − ∆t
J−1∑

q=0

βqN(un−q)

Pressure Poisson: ∇2pn+1 =
1

∆t
∇ · u∗

Helmholtz: ∇2un+1 − α0

ν∆t
un+1 = − u∗

ν∆t
+

1
ν
∇pn+1

u · ∇u

ν∇2u −∇p = f
∇ · u = 0

un

un+1

n = n + 1

u∗

∇ · u = 0

Majority of computational time in linear 
solves: need fast matrix-vector operator, 

good preconditioners



Virtual wind tunnel

Mengaldo, Moxey, Turner, Jassim, Taylor, Peiro & Sherwin, SIAM Review (2021)

Design 2: +33% Downforce 

Design 3:   +270% Downforce 

1bn degrees of freedom 
Uses only CFD for design



Performant kernels for high-order FEM
• Modern hardware: lots of FLOPS, 

bottlenecked on memory bandwidth. 

• Need codes and algorithms that have high 
arithmetic intensity and exploit SIMD 
parallelism of the hardware. 

• Matrix-free methods and sum factorisation/
tensor contractions help achieve this at high 
order: widely used by MFEM, deal.ii, ... 

• Examine whether this can be applied to more 
general element types, not just quads/hexes.



"Defining" features of spectral/hp method
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⌘ = (⌘1, ⌘2) 2 [�1, 1]2

collapsed element
⇠ = (⇠1, ⇠2) 2 ⌦tri

st

standard element
x = (x1, x2) 2 ⌦e

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

ment a basis for a quadrilateral can be formed as �pq(⇠1, ⇠2) = �p(⇠1)�q(⇠2).224

Evaluation of an expansion at a given point can then be represented as225
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where the brackets denote the use of a temporary storage. At a given di-227

mension d, and considering a tensor product of quadrature or solution points228

that require evaluation, this technique thereby substantially reduces operator229

evaluations from O(P 2d) to O(P 2(d�1)).230

The relative performance of these approaches, specifically on modern hardware,231

has been considered previously in separate work (e.g. [21]), but only for elements that232

naturally lend themselves to a tensor-product basis: namely quadrilaterals and hexa-233

hedra. In this paper, however, we consider how e↵ectively this matrix-free evaluation234

can be applied in the context of unstructured elements to yield e�cient solvers for235

very complex geometries. To do this requires the selection of a basis permitting tensor236

product decomposition, which we discuss in the following section.237

2.2. Choice of polynomial basis. The selection of the polynomial basis on238

each element is a key consideration of this paper. Much of the prior work considered239

in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange240

basis functions, where on the standard segment [�1, 1], these are defined as241

`p(⇠) =
Y

0qP
q 6=p

⇠ � ⇠̂q

⇠̂p � ⇠̂q
242

where ⇠̂q 2 [�1, 1] denote a set of P + 1 data points frequently chosen to align or243

collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). Al-244

though this approach can readily be extended to higher dimensional tensor-product245

elements, a formulation of these basis functions inside hybrid or simplicial elements246

such as triangles and tetrahedra leads to a set of basis functions that lack the tensor247

product structure required to enable the use of sum factorisation. More details on248

this approach can be found in e.g. [16].249

To arrive at a tensor product formulation, we follow standard practice [18] and250

employ the use of a square-to-triangle Du↵y transformation [10] to define two inde-251

pendent coordinate directions over which to perform the decomposition (or otherwise252

This manuscript is for review purposes only.
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Spectral/hp element methods

⌦
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Boundary-interior
decomposition

Assembly matrix

A x = χe(ξ)

(L + λM)û = ̂f

assemble +  
solve large system



Generally not collocated

u(ξ1i, ξ2j) =
P2

∑
n=0

̂unϕn(ξ) =
P

∑
p=0

Q

∑
q=0

̂upqϕp(ξ1i)ϕq(ξ2j)

"Defining" features of spectral/hp method

quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes, e.g. tetrahedron:

u(ξ1i, ξ2j, ξ3j) =
P

∑
p=0

Q−p

∑
q=0

R−p−q

∑
r=0

̂upqrϕa
p(ξ1i)ϕb

pq(ξ2j)ϕc
pqr(ξ3k)

basis function indexing harder

order can vary

non-uniform quadrature



Implementation choices
Finite element operation evaluations (e.g. mass matrix) form bulk of  

simulation cost; however can be evaluated in several ways.Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation

Global matrix 
assemble a sparse matrix

Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation Local evaluation 

create elemental dense 
matrices + assembly map

Implementation strategies

=
Sum-factorisation

Matrix free 
no local matrices at all 

sum factorisation speedup

increasing arithmetic intensity

1D basis functions



Matrix-free sum-factorisation
• Key to performance at high P: do not assemble matrix but evaluate its action 

instead: matrix-free approach. 

• Can reduce cost from  to  by using sum-factorisation: 

• Works in essentially the same way for more complex indexing for e.g. 
triangles:

O(P2d) O(Pd+1)

store this

P

∑
p=0

Q

∑
q=0

̂upqϕp(ξ1i)ϕq(ξ2j) =
P

∑
p=0

ϕp(ξ1i)
Q

∑
q=0

̂upqϕq(ξ2j)

P

∑
p=0

Q−p

∑
q=0

̂upqϕa
p(ξ1i)ϕb

pq(ξ2j) =
P

∑
p=0

ϕa
p(ξ1i)

Q−p

∑
q=0

̂upqϕb
pq(ξ2j)

store this



Standard matrix approach
• Can consider alternative implementation where: 

‣ compute operator matrices on the standard element; 

‣ use large (skinny) matrix-matrix multiplication across all elements; 

‣ incorporate appropriate metrics (Jacobian, derivative factors, etc) with 
pointwise operators as required. 

• Disregards sum-factorisation and potentially >1 matrix multiplication involved, 
but can exploit optimised small-matrix implementations (e.g. libxsmm). 

• On GPU, this can be chunked into small groups that are appropriately 
parallelised over threads.



Data storage & layout

Polynomial Order, Shape, Deformation

Performance developments

Group elements by type, polynomial order,  
integration order, curved/regular

degrees of freedom

Either lay out data by element

Or interleave to explicitly 
exploit vectorisation



Element vectorisation
• Operations can occur over groups 

of elements of size of vector width. 

• Use C++ data type that encodes 
operations using compiler intrinsics. 

• Templating used to allow compiler 
to unroll as much as possible.

elements

basis functions

✖

✖

✖

✖

256-bit AVX2



GPU considerations
• Richer memory and execution hierarchy (warp of 

32/64 threads & SM) 

• More cores & parallelism, less memory per core 
and more cache pressure. 

• Need to consider different memory storage 
options & parallelism strategies: 

• threaded over elements: each thread owns 
an entire element & data are interleaved as in 
CPU implementation. 

• threaded over points: element assigned to 
block, threads given a quadrature point or 
mode to process.

J. Eichstädt, J. Peiró and D. Moxey Computer Physics Communications 284 (2023) 108624

Fig. 2. Default memory layout with stride = 1. The data corresponding to the first two elements are framed in orange and violet, with each element having 4 entries. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Interleaved memory layout with stride = 32 (size of a GPU warp). The data corresponding to the first two elements are framed in orange and violet, with each element 
having 4 entries.

kernel for a quadrilateral element. It shows the template param-
eters relating to the polynomial order (number of modes and 
quadrature points), a few important input parameters (the point-
ers to the utility data arrays are not shown for brevity), and the 
employed vectorisation width of 32. The indexing for the variable
elmt ensures each thread is assigned a single element until all el-
ements have been processed. As the data is interleaved with the 
vector width of 32 as illustrated in Fig. 3, a sophisticated indexing 
to receive the element local pointer to the input and output array 
is employed. Finally, loops i and j over the quadrature points for 
the elemental operation are executed in serial.

3.1.2. Element per-block parallelism
As the second option, each elemental operation is mapped to 

a single CUDA-block. This approach has been applied in the EXA-
DUNE project [37] in the context of CPUs and in references [38,39]
in the context of GPUs. This option is illustrated in Fig. 5, where 
each elemental operation, depicted with a circle, is assigned to a 
streaming multiprocessor (SMX) on which the CUDA-block oper-
ates. Here it is critical to harness the parallelism within the ele-
mental operations by assigning one or more quadrature points or 
modes (depending if the operation is in physical or transformed 
space) to one CUDA-thread. In this case the default memory lay-
out achieves contiguous memory access and is therefore employed. 
One drawback of this method is that the number of quadrature 
points or modes is rarely divisible by the block size, and so a few 
threads will run idle. To minimise the number of idle threads, we 
choose a different block size for each polynomial order being the 
next natural multiple of 32, the warp size. Additionally, special 
care needs to be taken to assign each thread the correct indices 
within the kernels. As we employ the sum-factorisation approach, 
these assignments often change within one operation. For the stor-
age of temporary results, we use shared memory arrays to create 
a workspace that can be suitably addressed by all threads within a 
block.

In terms of the CUDA syntax, we refer to Listing 2, in order to 
highlight the differences with the first option. The indexing of the 
variable elmt ensures that each element is assigned one CUDA-
block. Here the pointers to the input and output arrays are much 
simpler, as these arrays have a vector-width of 1 and are thus 
not interleaved. To introduce the parallelism over the quadrature 
points, the loop indices i, and j need to be assigned to the in-
dividual CUDA-threads threadIdx.x. Using a for-loop ensures 

Fig. 4. Element per thread parallelism mapped to the GPU hardware, each operation 
is executed by one CUDA core.

Fig. 5. Element per block parallelism mapped to the GPU hardware, each operation 
is executed by one SMX.

that all quadrature points are computed, even if the number of 
threads scheduled in this block would be smaller. To yield the 
correct and contiguous index for each thread, we utilise the tech-
nique of integer division, even though it incurs the cost of around a 
dozen cycles per integer division operation. After each loop-block, 
all threads need to be synchronised.

6

Threaded over elements parallelism
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that all quadrature points are computed, even if the number of 
threads scheduled in this block would be smaller. To yield the 
correct and contiguous index for each thread, we utilise the tech-
nique of integer division, even though it incurs the cost of around a 
dozen cycles per integer division operation. After each loop-block, 
all threads need to be synchronised.

6

Threaded over points parallelism



Throughput (GPU, NVIDIA GH200)

Figure 7: NVIDIA GH200 Grace Hopper Superchip (a) and Intel Xeon 6526Y (b) throughput performance versus
elemental degrees of freedom for the Helmholtz operator for hexahedral (Hex), prismatic (Prism), pyramidic (Pyr),
and tetrahedral (Tet) elements. For di!erent polynomial degree (P) the standard matrix (StdMat) approach is
labelled in red, the vectorised sum factorisation (SumFac) is labelled in blue and the sum factorisation threaded on
output point (SumFacTOP) is labelled in green.

17

Elemental Helmholtz operator He



Throughput (CPU, Intel Xeon 6526Y)

Elemental Helmholtz operator He

Figure 7: NVIDIA GH200 Grace Hopper Superchip (a) and Intel Xeon 6526Y (b) throughput performance versus
elemental degrees of freedom for the Helmholtz operator for hexahedral (Hex), prismatic (Prism), pyramidic (Pyr),
and tetrahedral (Tet) elements. For di!erent polynomial degree (P) the standard matrix (StdMat) approach is
labelled in red, the vectorised sum factorisation (SumFac) is labelled in blue and the sum factorisation threaded on
output point (SumFacTOP) is labelled in green.
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Throughput (CPU, Intel Xeon 6526Y)

Mass matrix operator Me

Figure 6: (a) NVIDIA GH200 Grace Hopper Superchip and (b) Intel Xeon 6526Y throughput performance versus
elemental degrees of freedom for the mass operator for hexahedral (Hex), prismatic (Prism), pyramidic (Pyr) and
tetrahedral (Tet) elements. For di!erent polynomial degree (P) the standard matrix (StdMat) approach is labelled
in red, the vectorised sum factorisation (SumFac) is labelled in blue and the sum factorisation threaded on output
point (SumFacTOP) is labelled in green.

16



Performance observations

J. Eichstädt, J. Peiró and D. Moxey Computer Physics Communications 284 (2023) 108624

Fig. 11. Local memory overhead of thread-parallel kernels for quadrilateral elements. All kernels are employing the optimal memory space for utility data.

Fig. 12. Performance of thread-parallel and block-parallel kernels for regular triangular elements. The usage of global, constant, and shared memory space for utility data is 
compared.

42% of the theoretical FLOP maximum. However, the vectorised 
kernels’ performance only drops significantly for polynomial or-
ders P > 5 and does not for P > 4, suggesting the register pres-
sure for triangles is smaller than for quadrilaterals. Additionally, 
the performance difference between the thread-parallel and the 
block-parallel kernels for higher polynomial orders is not as sig-
nificant for triangles (being almost identical for P = 6 and P = 8) 
as for quadrilaterals, due to a combination of the factors discussed 
above.

For curved triangular elements, the same trends as for curved 
quadrilateral elements are observed, as shown in Fig. 13. How-
ever, the achieved FLOP rate for the block-parallel kernels of higher 
polynomial orders is significantly reduced compared with quadri-
laterals. This could be explained by the triangular C0-basis that 
contains additional boundary modes that need to be processed 
individually, so that at these instances many threads are running 
idle.

Looking at the triangular element kernels’ performance in terms 
of throughput (DoF/s) in Fig. 14, the same trend as for quadrilat-
eral elements can be observed. The magnitude of the throughput 
however is about 20% lower than for quadrilaterals. The main fac-
tor towards this result will be the higher number of operations 

required for each DoF. Here the reduced bandwidth kernel for 
curved triangles, that computes the Jacobian | J e| and the deriva-
tive factors ! 

(
∂ξ
∂x

)
from the geometric mapping χ e , achieves a 

higher throughput than its default version for P < 4, by around 
25-30%.

On the two roofline plots in Fig. 15 and Fig. 16, these re-
duced bandwidth kernels show very high FLOP rates of 40-50% of 
peak FLOP on the Titan V GPU. These kernels are also not only 
bandwidth-bound anymore, but show a mix of stall reasons in 
the profiling results. Generally the same performance results as 
for quadrilaterals are displayed: the per-thread parallel kernels are 
bandwidth bound at DRAM level, as they stream most of the data 
through the kernel and do little data-reusing, whereas the per-
block parallel kernels are memory bound at L1 cache, and reuse 
more data on higher cache levels due to using shared memory ar-
rays used as workspaces.

As in the case of quadrilaterals, we consider the local memory 
overhead in Fig. 17. Comparing the data with the achieved FLOPS 
in Fig. 12, we can again recognise the two regimes: low local mem-
ory utilisation and register pressure resulting in high FLOP rates 
for P ≤ 5, as opposed to high local memory usage and lower FLOP 
rates for P > 5.

13

Quadrilaterals

• For more arithmetically intense operators, 
sum factorisation almost always 
preferred, but in certain cases matrix-
based approaches outperform 
considerably. 

• Crossover point in performance between 
threading models on the GPU mostly 
dictated by register pressure and fallback 
to local memory. 

• 3D results suggest almost always better 
to use entry-by-entry approach.

Eichstädt, Peiró and Moxey, Comp. Phys. Comm. (2023)



Implementation flexibility
• If we are interested in best performance there are a significant number of 

critical parameters: 

‣ polynomial order (may also vary in different directions within the element); 

‣ shape type & implementation approach; 

‣ whether the element has constant or variable Jacobian; 

‣ quadrature order (and whether dealiasing is required); 

‣ basis type (e.g. collocation property for Lagrange basis/nodal elements); 

‣ underlying data type (e.g. double, single, half) and the hardware.



Towards NektarIR
• Current approach is to rely on C++ templating, but this leads to parameter explosion in the 

general case. 

• Code generation clearly an alternative, but how to approach this? Certain desirable qualities: 

‣ capture as much optimisation at different levels as we can: e.g. collocation  

‣ be able to target different architectures & optimise for them; 

‣ just-in-time compiled for e.g. adaptive simulations that vary p, quadrature order or any of 
the other parameters listed previously; 

‣ don't want to build everything from the ground up. 

• To this end we are building an intermediate representation (IR) to represent these operators, 
and capitalise on the existing infrastructure within LLVM.
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Outline:

• MLIR and LLVM

• Our Abstraction: An MLIR Dialect for Elemental Operations

• The Compiler Pipeline: Journey from NektarIR to CPU and 

GPU Kernels

• Performance: Compiler Overhead and Runtime

• The Code
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The LLVM Compiler Infrastructure

• Collection of compiler toolchains

• Hardware independent intermediate 

representation (IR) of a source language

https://llvm.org/

Source code LLVM IR

CPU

GPU

Other• Used in for e.g. Clang, Rust, Julia, Swift  
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LLVM IR

• Assembly-like language

• Static single-assignment form (SSA)

• Optimizations in the form of passes

• LLVM IR might be too low an abstraction for several 

applications

https://llvm.org/
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MLIR:

• Multi-Level Intermediate Representation

• Significantly easier to interface with LLVM and build a compiler

• Used extensively in AI and ML applications, e.g Tensorflow and 

Mojo

• Less popular in scientific computing (for now)

https://mlir.llvm.org/



5

MLIR:

https://mlir.llvm.org/• Uses dialects to represent operations at various 

abstraction levels

• Dialects for high-level constructs: func, scf, memref

• Architecture independent abstractions: gpu and vector

• Dialect operations, types and attributes are reusable 

• IR is rewritten using MLIR passes



6

MLIR Pipeline Example:

https://mlir.llvm.org/
• A linear algebra operation is 

converted to loops and 

arithmetic operations before 

being lowered further

• A low-level llvm dialect can be 

translated to LLVM IR before 

JIT compilation to the desired 

hardware

linalg

scf arith memref

cf

llvm

LLVM IR

CPU GPU Other



7

MLIR: Example rewrite pattern

https://mlir.llvm.org/def f(x):
 a = transpose(x);
 b = transpose(a);
 return b;

Redundant transposition 
that the compiler is not 
going to catch

def f(x):
 return x;

IR transformation removes 
the redundancy 

transpose(transpose(x)) -> x
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Our Goals: 

• Create an abstraction of common finite element operations as 

an MLIR dialect 

• Facilitate the just-in-time compilation of high-order finite 

element kernels for use in CFD solvers

• Leverage LLVM to support both CPU and GPU hardware
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The NektarIR Dialect Design:

• Abstraction Level: basic elemental operations acting on 

blocks of alike elements in a mesh

Backward Transform Inner Product Collocation Differentiation

• Each elemental operation produces SSA value result(s)

• No “destination-passing” style or “in-place” operations   



IR Examples 

10



%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 }



%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

14

15

16

17

18

19

20

21
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

14
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17
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

14
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>
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%coeffBlock = nir.block_from_memref [ // Associates the buffer containing the coefficient data

Data: %uhat : memref<1x104x512xf64> // to the coefficient block type.

Fields: [u] 

Shape: hex

Basis: (modified, modified, modified) 

BlockSize: [8,8,8]

Deformed: false] -> !coeffBlockType

%out = nir.bwd [ // The backward transform operation

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<9x8xf64>, tensor<9x8xf64>, tensor<9x8xf64>] -> !physBlockType

// Indicates which buffer to store the output of the backward transform to

nir.materialize_in_destination %out in restrict writable %u: (!physBlockType, memref<1x104x729xf64>) -> () 

return

}

1 !coeffBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Basis: (modified, modified, modified),

2 Size:1x104x8x8x8xf64, Layout: (d0,d1, d2) -> (d0,d1,d2)> // coefficient space block type

3 !physBlockType = !nir.block<Fields: [u], SEShape: hex, Deformed: false, Quadrature: (gll, gll, gll),

4 Size: 1x104x9x9x9xf64, Layout: (d0,d1,d2) -> (d0, d1 ,d2)> // physical space block type

5 #map2 = affine_map<(d0,d1) -> (d1,d0)>

6 module{

7 func.func @bwd(%uhat: memref<1x104x512xf64>, %b0: memref<9x8xf64, #map2>,

8 %b1: memref<9x8xf64, #map2>, %b2: memref<9x8xf64, #map2>, %u: memref<1x104x729xf64>)

9 attributes {llvm.emit_c_interface}

10 {

11 %b0t = bufferization.to_tensor %b0 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

12 %b1t = bufferization.to_tensor %b1 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

13 %b2t = bufferization.to_tensor %b2 restrict : memref<9x8xf64, #map2> to tensor<9x8xf64>

14
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%helm = nir.helmholtz [

Block: %coeffBlock : !coeffBlockType

Bases: %b0t, %b1t, %b2t: tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64> 

DMats: %d0t, %d1t, %d2t : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64> 

Jac: %jacobianBlock : !jacobianBlockType

Weights: %w0t, %w1t, %w2t: tensor<4xf64>, tensor<5xf64>, tensor<6xf64> 

DiffCoeffs: %diffCoeffT : tensor<6xf64>

Factors: %dft : tensor<9xf64> 

Scale: 2.0] -> !coeffBlockType

Helmholtz:

• Operations acting on blocks of elements are lowered to a loop over elements 

and a series of operations that act on a single element (or a vector-width 

number of  elements)



chch
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%13 = nir.empty_block() : !coeffBlockType

%c0 = arith.constant 0 : index

%c1000 = arith.constant 1000 : index

%c1 = arith.constant 1 : index

%14 = scf.for %arg14 = %c0 to %c1000 step %c1 iter_args(%arg15 = %13) -> (!coeffBlockType) {

%15 = nir.extract_slice %11 [0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !coeffBlockType to !singleCoeffType

%16 = nir.extract_slice %12 [0, %arg14, 0, 0, 0] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] : !jacobianBlockType to !singleJacobianType

%17 = nir.elmnt_bwd[ // backward transform

Block : %15 : !singleCoeffType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>] -> !singlePhysType

%18:3 = nir.elmnt_standard_deriv[ // derivative in local coordinates

Block : %17 : !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType

%19:3 = nir.elmnt_deriv_metric[ // apply the derivative metric and diffusion

Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType

Factors : %9 : tensor<9xf64> 

DiffCoeffs : %10 : tensor<6xf64>

] -> !singlePhysType, !singlePhysType, !singlePhysType

25 %20:4 = nir.elmnt_apply_jw[ // apply weights and jacobian determinants

Blocks : %17, %19#0, %19#1, %19#2 : !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

Jac : %16 : !singleJacobianType

Weights : %3, %4, %5 : tensor<4xf64>, tensor<5xf64>, tensor<6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

%21 = nir.elmnt_test[ // action of B^T

Block : %20#0 : !singlePhysType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64> 

Scale : 2.0: f64] -> !singleCoeffType

%22 = nir.elmnt_test_grad[ // "dot product" grad(v) and grad(u) and action of B^T

Blocks : %20#1, %20#2, %20#3 : !singlePhysType, !singlePhysType, !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>]

-> !singleCoeffType

%23 = nir.add[

Blocks : %21, %22 : !singleCoeffType, !singleCoeffType]

-> !singleCoeffType

%24 = nir.insert_slice %23 into %arg15[0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !singleCoeffType into !coeffBlockType

scf.yield %24 : !coeffBlockType
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%13 = nir.empty_block() : !coeffBlockType

%c0 = arith.constant 0 : index

%c1000 = arith.constant 1000 : index

%c1 = arith.constant 1 : index

%14 = scf.for %arg14 = %c0 to %c1000 step %c1 iter_args(%arg15 = %13) -> (!coeffBlockType) {

%15 = nir.extract_slice %11 [0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !coeffBlockType to !singleCoeffType

%16 = nir.extract_slice %12 [0, %arg14, 0, 0, 0] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] : !jacobianBlockType to !singleJacobianType

%17 = nir.elmnt_bwd[ // backward transform

Block : %15 : !singleCoeffType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>] -> !singlePhysType

%18:3 = nir.elmnt_standard_deriv[ // derivative in local coordinates

Block : %17 : !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType

%19:3 = nir.elmnt_deriv_metric[ // apply the derivative metric and diffusion

Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType

Factors : %9 : tensor<9xf64> 

DiffCoeffs : %10 : tensor<6xf64>

] -> !singlePhysType, !singlePhysType, !singlePhysType

25 %20:4 = nir.elmnt_apply_jw[ // apply weights and jacobian determinants

Blocks : %17, %19#0, %19#1, %19#2 : !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

Jac : %16 : !singleJacobianType

Weights : %3, %4, %5 : tensor<4xf64>, tensor<5xf64>, tensor<6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

%21 = nir.elmnt_test[ // action of B^T

Block : %20#0 : !singlePhysType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64> 

Scale : 2.0: f64] -> !singleCoeffType

%22 = nir.elmnt_test_grad[ // "dot product" grad(v) and grad(u) and action of B^T

Blocks : %20#1, %20#2, %20#3 : !singlePhysType, !singlePhysType, !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>]

-> !singleCoeffType

%23 = nir.add[

Blocks : %21, %22 : !singleCoeffType, !singleCoeffType]

-> !singleCoeffType

%24 = nir.insert_slice %23 into %arg15[0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !singleCoeffType into !coeffBlockType

scf.yield %24 : !coeffBlockType
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} {element_shape = #nir.element_shape<hex>}

Loop over elements

Extract a single block
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%13 = nir.empty_block() : !coeffBlockType

%c0 = arith.constant 0 : index

%c1000 = arith.constant 1000 : index

%c1 = arith.constant 1 : index

%14 = scf.for %arg14 = %c0 to %c1000 step %c1 iter_args(%arg15 = %13) -> (!coeffBlockType) {

%15 = nir.extract_slice %11 [0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !coeffBlockType to !singleCoeffType

%16 = nir.extract_slice %12 [0, %arg14, 0, 0, 0] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] : !jacobianBlockType to !singleJacobianType

%17 = nir.elmnt_bwd[ // backward transform

Block : %15 : !singleCoeffType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>] -> !singlePhysType

%18:3 = nir.elmnt_standard_deriv[ // derivative in local coordinates

Block : %17 : !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType

%19:3 = nir.elmnt_deriv_metric[ // apply the derivative metric and diffusion

Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType

Factors : %9 : tensor<9xf64> 

DiffCoeffs : %10 : tensor<6xf64>

] -> !singlePhysType, !singlePhysType, !singlePhysType

25 %20:4 = nir.elmnt_apply_jw[ // apply weights and jacobian determinants

Blocks : %17, %19#0, %19#1, %19#2 : !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

Jac : %16 : !singleJacobianType

Weights : %3, %4, %5 : tensor<4xf64>, tensor<5xf64>, tensor<6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

%21 = nir.elmnt_test[ // action of B^T

Block : %20#0 : !singlePhysType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64> 

Scale : 2.0: f64] -> !singleCoeffType

%22 = nir.elmnt_test_grad[ // "dot product" grad(v) and grad(u) and action of B^T

Blocks : %20#1, %20#2, %20#3 : !singlePhysType, !singlePhysType, !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>]

-> !singleCoeffType

%23 = nir.add[

Blocks : %21, %22 : !singleCoeffType, !singleCoeffType]

-> !singleCoeffType

%24 = nir.insert_slice %23 into %arg15[0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !singleCoeffType into !coeffBlockType

scf.yield %24 : !coeffBlockType
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} {element_shape = #nir.element_shape<hex>}

1. Backward Transform

2. Collocation Derivative

3. Derivative Metric

4. Apply weights and 

Jacobian determinants

5. (u,v)

6. (grad(u), grad(v))

7. Add mass and 

stiffness contributions
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%13 = nir.empty_block() : !coeffBlockType

%c0 = arith.constant 0 : index

%c1000 = arith.constant 1000 : index

%c1 = arith.constant 1 : index

%14 = scf.for %arg14 = %c0 to %c1000 step %c1 iter_args(%arg15 = %13) -> (!coeffBlockType) {

%15 = nir.extract_slice %11 [0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !coeffBlockType to !singleCoeffType

%16 = nir.extract_slice %12 [0, %arg14, 0, 0, 0] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] : !jacobianBlockType to !singleJacobianType

%17 = nir.elmnt_bwd[ // backward transform

Block : %15 : !singleCoeffType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>] -> !singlePhysType

%18:3 = nir.elmnt_standard_deriv[ // derivative in local coordinates

Block : %17 : !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType

%19:3 = nir.elmnt_deriv_metric[ // apply the derivative metric and diffusion

Blocks : %18#0, %18#1, %18#2 : !singlePhysType, !singlePhysType, !singlePhysType

Factors : %9 : tensor<9xf64> 

DiffCoeffs : %10 : tensor<6xf64>

] -> !singlePhysType, !singlePhysType, !singlePhysType

25 %20:4 = nir.elmnt_apply_jw[ // apply weights and jacobian determinants

Blocks : %17, %19#0, %19#1, %19#2 : !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

Jac : %16 : !singleJacobianType

Weights : %3, %4, %5 : tensor<4xf64>, tensor<5xf64>, tensor<6xf64>]

-> !singlePhysType, !singlePhysType, !singlePhysType, !singlePhysType

%21 = nir.elmnt_test[ // action of B^T

Block : %20#0 : !singlePhysType

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64> 

Scale : 2.0: f64] -> !singleCoeffType

%22 = nir.elmnt_test_grad[ // "dot product" grad(v) and grad(u) and action of B^T

Blocks : %20#1, %20#2, %20#3 : !singlePhysType, !singlePhysType, !singlePhysType

DMats : %6, %7, %8 : tensor<4x4xf64>, tensor<5x5xf64>, tensor<6x6xf64>

Bases : %0, %1, %2 : tensor<4x3xf64>, tensor<5x4xf64>, tensor<6x5xf64>]

-> !singleCoeffType

%23 = nir.add[

Blocks : %21, %22 : !singleCoeffType, !singleCoeffType]

-> !singleCoeffType

%24 = nir.insert_slice %23 into %arg15[0, %arg14, 0, 0, 0] [1, 1, 3, 4, 5] [1, 1, 1, 1, 1] : !singleCoeffType into !coeffBlockType

scf.yield %24 : !coeffBlockType
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} {element_shape = #nir.element_shape<hex>}

Insert result block 

and update the result
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NektarIR pipeline:
nektarIR

affine/scf arith memref bufferization

cfgpu vector

nvvm

llvm

LLVM IR
GPU 

binaries

CPU targetGPU target
JIT compiled kernels can be 

called from the application

Other vendor 

specific dialects 

exist

Other 
target
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NektarIR interface:

• Programmatic construction of the IR using our C++ 

IRGenerator library

• JIT-compilation of generated or written IR snippets using 

the LLVM execution engine

• JIT library creates a function pointer to the compiled kernel

• Python bindings are planned 
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Compiler Overhead and Runtime Performance:

• How long does lowering and compiling a kernel take?

• Is there a difference in the overhead for CPU and GPU 

code-gen?

• How does runtime performance compare to Nektar++? 
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Runtime Comparison:

• Comparison of both vectorized and GPU kernels from 

NektarIR and the Nektar++ Redesign

• Host: 128 cores on two AMD EPYC 9554 CPUs

• Device: NVIDIA H100 

Overhead:

• Measured time to lower from NektarIR to the LLVM dialect 

and time to compile
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Tetrahedral Elements, AVX512:
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Hexahedral Elements, AVX512:
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Hexahedral Elements, AVX512:
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Hexahedral Elements, AVX512 with loop fusion:
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Hexahedral Elements: Overhead Comparison
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GPU: Hexahedral Elements, Threading Over Elements
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GPU: Tetrahedral Elements, Threading Over Elements
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GPU: Hexahedral Elements, Threading Over Elements
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Compiler Overhead: Target: NVIDIA H100, Hexahedral Elements 



Summary:

• Code-generation of JIT compiled kernels for both CPU and 

GPU targets from a single representation using MLIR and 

LLVM.

• Good performance on CPU without many optimizations.

• GPU kernels need optimization.

• MLIR gives control of the kernel from “math to metal” and 

lots of optimizations remain to be tested. 
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Future work:

• Optimization.

• Test on more hardware.

• Get all operators working on all shapes.

• Nodal expansions and the collocation property.
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The Code:

• Will be open-sourced and independent of Nektar++.

• Nearly ready for release but if you want access, you can 

contact us!



Thank you for listening!

40



41

GPU: Hexahedral Elements, Threading Over Elements
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GPU: Hexahedral Elements, Threading Over Elements
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Hexahedral Elements, AVX512
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Hexahedral Elements, AVX512:


