An Efficient and Effective FEM Solver for Diffusion Equation with Strong Anisotropy

D. Green, X. Hu, J. Lore, L. Mu, and M. Stowell

Department of Mathematics
University of Georgia, Athens

Dec. 13th, 2022, FEM@LLNL Seminar Virtual Seminar

Collaborators

- David Green, Oak Ridge National Laboratory
- Xiaozhe Hu, Tufts University
- Jeremy Lore, Oak Ridge National Laboratory
- Mark L. Stowell, Lawrence Livermore National Laboratory

This work is partially supported by RF SciDAC-4 project from DOE.

Outline

(1) Motivation and Background
(2) Previous Work
(3) High Order Finite Element Methods (Accuracy)

- Continuous Galerkin Methods
- Discontinuous Galerkin Methods
- Numerical Examples

4 Auxiliary Space Pre-conditioner (Efficiency)

- Methods
- Numerical Examples
(5) Conclusions and Future Work

Figure: Major Fusion Breakthrough @ LLNL

- https://www.llnl.gov/news/ national-ignition-facility-achieves-fusion-ignition

Figure: Unlimited Energy and Amazing Machine: Video from ITER

- References (Iter Website)
- https://www.iter.org/

Motivation and Background

- Magnetically confined plasma applications for which anisotropy is generated by the magnetic field.
- The anisotropy ratio between $D_{\|} / D_{\perp}$ can range from 10^{6} (boundary) to 10^{12} (core region).
- Computational Challenges:
- Numerical Pollution in the perpendicular diffusion or transport, due to the fast parallel dynamics

For interaction with RF, we need to solve
the anisotropic transport problem in this
"far-SOL" region where the geometfy is
not aligned with the B field.

Figure: Demonstration of Anisotropy

Motivation and Background

- Magnetically confined plasma applications for which anisotropy is generated by the magnetic field.
- The anisotropy ratio between $D_{\|} / D_{\perp}$ can range from 10^{6} (boundary) to 10^{12} (core region).
- Computational Challenges:
- Numerical Pollution in the perpendicular diffusion or transport, due to the fast parallel dynamics
- Traditional approach is a field aligned mesh (e.g., SOLPS / UEDGE) which avoids the pollution issue

Figure: Demonstration of Anisotropy

Motivation and Background

- Magnetically confined plasma applications for which anisotropy is generated by the magnetic field.
- The anisotropy ratio between $D_{\|} / D_{\perp}$ can range from 10^{6} (boundary) to 10^{12} (core region).
- Computational Challenges:
- Numerical Pollution in the perpendicular diffusion or transport, due to the fast parallel dynamics
- Traditional approach is a field aligned mesh (e.g., SOLPS / UEDGE) which avoids the pollution issue
- For our far-SOL use case where we need non-field aligned coordinates to

Figure: Demonstration of Anisotropy handle the high geometric fidelity in the boundary

Literature Review: Spatial Discretization

Isotropic diffusion

Anisotropic diffusion

Literature Review: Spatial Discretization

- Aligned Mesh
- FDM with flux algined coordinates, [Dudson 2009, van Es 2014]
- Finite Volume Method [Crouseilles 2015]
- FEM with anisotropy adaptive mesh [Li 2010]
- Non-aligned Mesh
- FDM with modified interpolation schemes [Soler2020]
- FVM with high-order scheme [Holleman 2013]
- FEM with high-order scheme [Gunter 2007, Held 2016, Giorgiani 2020]
- Spectral element [Meier 2010]

Anisotropic diffusion

Literature Review: Spatial Discretization

- Aligned Mesh
- FDM with flux algined coordinates, [Dudson 2009, van Es 2014]
- Finite Volume Method [Crouseilles 2015]
- FEM with anisotropy adaptive mesh [Li 2010]
- Non-aligned Mesh
- FDM with modified interpolation schemes [Soler2020]
- FVM with high-order scheme [Holleman 2013]
- FEM with high-order scheme [Gunter 2007, Held 2016, Giorgiani 2020]
- Spectral element [Meier 2010]
- Fast Solver
- Schwarz [Antonietti 2007], Multilevel [Dobrev 2006], Multigrid [Brenner 2005] Methods
- Subspace Correction [Xu 1992] and Auxiliary Space Preconditioning [S. Nepomnyaschikh 1992, Xu 1996]

Goal of this project

We will address the issues in the Diffusion Equations with Strong Anisotropy ($D_{\|} / D_{\perp} \geq 1 \mathrm{E} 6$):

- Accuracy on the Non-aligned Mesh
- Efficiency of the Linear Solver

Goal of this project

We will address the issues in the Diffusion Equations with Strong Anisotropy ($D_{\|} / D_{\perp} \geq 1 \mathrm{E} 6$):

- Accuracy on the Non-aligned Mesh
- By High-order Scheme
- Efficiency of the Linear Solver

Goal of this project

We will address the issues in the Diffusion Equations with Strong Anisotropy ($D_{\|} / D_{\perp} \geq 1 \mathrm{E} 6$):

- Accuracy on the Non-aligned Mesh
- By High-order Scheme
- Efficiency of the Linear Solver
- By Auxiliary Space Pre-conditioner

Problem Setting

We consider the following steady state anisotropic diffusion equation:

$$
\begin{align*}
-\nabla \cdot(\mathbb{D} \nabla u) & =f, \text { in } \Omega \tag{1}\\
u & =0, \text { on } \partial \Omega \tag{2}
\end{align*}
$$

where the diffusion coefficient tensor is given by

$$
\mathbb{D}=\left(\begin{array}{cc}
b_{1} & -b_{2} \\
b_{2} & b_{1}
\end{array}\right)\left(\begin{array}{cc}
D_{\|} & 0 \\
0 & D_{\perp}
\end{array}\right)\left(\begin{array}{cc}
b_{1} & b_{2} \\
-b_{2} & b_{1}
\end{array}\right) .
$$

The direction of the anisotropy, or the magnetic field, is given by a unit vector $\mathbf{b}=\left(b_{1}, b_{2}\right)^{\top}$. Here $D_{\|}$and D_{\perp} represent the parallel and the perpendicular diffusion coefficient. For example, $D_{\perp}=1$.

Finite Element Space

Let finite element spaces be

$$
\begin{align*}
V_{\mathrm{CG}} & =\left\{v \in H_{0}^{1}(\Omega)|v|_{T} \in P_{k}(T), \forall T \in \mathcal{T}_{h}\right\}, \tag{3}\\
V_{\mathrm{DG}} & =\left\{v \in L^{2}(\Omega)|v|_{T} \in P_{k}(T), \forall T \in \mathcal{T}_{h}\right\} . \tag{4}
\end{align*}
$$

where $P_{k}(T)(k \geq 1)$ denotes the polynomials with degree $\leq k$.

Figure: DG has more DoFs compared to CG on the same mesh.

Continuous Galerkin FEMs

The H^{1}-FEM is to find the numerical solution $u_{h} \in V_{\mathrm{CG}}$, such that

$$
\begin{equation*}
A_{\mathrm{CG}}\left(u_{h}, v\right)=\sum_{T \in \mathcal{T}_{h}} \int_{T} f v d T, \forall v \in V_{\mathrm{CG}} \tag{5}
\end{equation*}
$$

where the bilinear form

$$
\begin{equation*}
A_{\mathrm{CG}}(w, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \mathbb{D} \nabla w \cdot \nabla v d T . \tag{6}
\end{equation*}
$$

Continuous Galerkin FEMs

The H^{1}-FEM is to find the numerical solution $u_{h} \in V_{\mathrm{CG}}$, such that

$$
\begin{equation*}
A_{\mathrm{CG}}\left(u_{h}, v\right)=\sum_{T \in \mathcal{T}_{h}} \int_{T} f v d T, \forall v \in V_{\mathrm{CG}} \tag{5}
\end{equation*}
$$

where the bilinear form

$$
\begin{equation*}
A_{\mathrm{CG}}(w, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \mathbb{D} \nabla w \cdot \nabla v d T . \tag{6}
\end{equation*}
$$

Remark

- Fewest Degrees of Freedom (DoFs).
- No conservation preserving property
- The CG scheme will be only used in constructing the preconditioner.

Discontinuous Galerkin FEMs

The interior penalty discontinuous Galerkin (IPDG) numerical algorithm is to find $u_{h} \in V_{\mathrm{DG}}$ such that

$$
\begin{align*}
A_{\mathrm{DG}}\left(u_{h}, v\right)= & \sum_{T \in \mathcal{T}_{h}} \int_{T} f v d T, \forall v \in V_{\mathrm{DG}}, \text { where } \tag{7}\\
A_{\mathrm{DG}}\left(u_{h}, v\right)= & \sum_{T \in \mathcal{T}_{h}} \int_{T} \mathbb{D} \nabla u_{h} \cdot \nabla v d T-\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\left\{\mathbb{D} \nabla u_{h} \cdot \mathbf{n}\right\} \llbracket v \rrbracket d s\right. \\
& -\beta \sum_{e \in \mathcal{E}_{h}} \int_{e}\{\mathbb{D} \nabla v \cdot \mathbf{n}\} \llbracket u_{h} \rrbracket d s+\sum_{e \in \mathcal{E}_{h}} \int_{e} \alpha \llbracket u_{h} \rrbracket \llbracket v \rrbracket d s .
\end{align*}
$$

Remark:

- $\beta=1$ - symmetric IPDG scheme; $\beta=-1$ - non-symmetric IPDG scheme
- For $\beta=1, \alpha$ has to be chosen to ensure stability.
- Features: Flexibility and Conservation

Choice of Penalty Parameter

We shall only focus on the symmetric IPDG scheme

- Penalty parameter α can be chosen as

$$
\begin{equation*}
\alpha_{1}=\frac{4 k(k+1) D_{\|}}{h}, \alpha_{2}=\frac{4 k(k+1)}{h} \mathbf{n} \cdot(\mathbb{D} \mathbf{n}) . \tag{8}
\end{equation*}
$$

- Error Estimate

$$
\begin{equation*}
\left\|u-u_{h}\right\| \approx \frac{\lambda_{\max }}{\lambda_{\min }} h^{k+1}\|u\|_{k+1} \tag{9}
\end{equation*}
$$

Remark:

- For our case, $\lambda_{\min }=1=D_{\perp}$ with varying values in $\lambda_{\max }=D_{\|}$.
- The big ratio of anisotropy $\frac{\lambda_{\max }}{\lambda_{\min }}$ may destroy the approximation.
- High order scheme with larger k will HELP!
- We may have bad condition number.

Accuracy Test 1

Set $f=\sin \pi x$ and Dirichelet BC at $x=1$. Exact solution $u=\frac{1}{\pi^{2}} \sin \pi x$

(a) Aligned Mesh

(b) Non-aligned Mesh

Results on (Non-)Aligned with $h=1 / 16$

Results on (Non-)Aligned with $h=1 / 16$

(a) $D_{\|}=1.0$

(b) $D_{\|}=10^{9}$

Accuracy Test 2: Annulus Test

Let Ω be an annulus with $\mathrm{R}=1, \mathrm{r}=0.5$ and

$$
\begin{aligned}
u & =\sqrt{\frac{3}{4 r}} \sin (2 \pi r-\pi), \\
b_{1} & =\frac{y}{r}, b_{2}=-\frac{x}{r}, \mathbf{b}=\left(\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right)^{\top} \\
f & =\sqrt{\frac{3}{4 r^{5}}}\left(4 \pi^{2} r^{2}-\frac{1}{4}\right) \sin (2 \pi r-\pi) .
\end{aligned}
$$

Accuracy Test 2: Annulus Test

Let Ω be an annulus with $\mathrm{R}=1, \mathrm{r}=0.5$ and

$$
\begin{aligned}
u & =\sqrt{\frac{3}{4 r}} \sin (2 \pi r-\pi), \\
b_{1} & =\frac{y}{r}, b_{2}=-\frac{x}{r}, \mathbf{b}=\left(\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right)^{\top} \\
f & =\sqrt{\frac{3}{4 r^{5}}}\left(4 \pi^{2} r^{2}-\frac{1}{4}\right) \sin (2 \pi r-\pi) .
\end{aligned}
$$

Error Plot $\left|u-u_{h}\right|$ for $D_{\|}=1 \mathrm{E} 6$ on:
(a) $N_{r}=1024, k=1$;
(b) $N_{r}=48, k=2$;
(c) $N_{r}=8, k=3$.

Accuracy Test 3: Two Magnetic Islands

Let $\Omega=[-1,1] \times[-0.5,0.5]$ and the exact solution be

$$
\begin{align*}
u & =\cos \left(\frac{1}{10} \cos (2 \pi(x-3 / 2))+\cos (\pi y)\right) \tag{10}\\
\mathbf{b} & =\frac{\mathbf{B}}{|\mathbf{B}|}, \mathbf{B}=\binom{-\pi \sin (\pi y)}{\frac{2 \pi}{10} \sin (2 \pi(x-3 / 2))} \tag{11}
\end{align*}
$$

| 1/h | $D_{\\|}=1 \mathrm{E} 1$ | | $D_{\\|}=1 \mathrm{E} 2$ | | $D_{\\|}=1 \mathrm{E} 4$ | | $D_{\\|}=1 \mathrm{E} 6$ | | $D_{\\|}=1 \mathrm{E} 8$ | | | | | | |
|---|
| | $\left\\|u-u_{h}\right\\|$ | order | $\left\\|u-u_{h}\right\\|$ | order | $\left\\|u-u_{k}\right\\|$ | order | $\left\\|u-u_{h}\right\\|$ | order | $\left\\|u-u_{h}\right\\|$ | order |
| $k=1$ | | | | | | | | | | |
| 8 | $2.44 \mathrm{E}-02$ | | $5.54 \mathrm{E}-02$ | | 7.12E-02 | | $7.14 \mathrm{E}-02$ | | 7.14E-02 | |
| 16 | 8.31E-03 | 1.56 | $3.26 \mathrm{E}-02$ | 0.77 | $5.66 \mathrm{E}-02$ | 0.33 | $5.70 \mathrm{E}-02$ | 0.33 | $5.70 \mathrm{E}-02$ | 0.33 |
| 32 | 2.39E-03 | 1.80 | $1.40 \mathrm{E}-02$ | 1.22 | $4.73 \mathrm{E}-02$ | 0.26 | $4.85 \mathrm{E}-02$ | 0.23 | $4.85 \mathrm{E}-02$ | 0.23 |
| 64 | 6.33E-04 | 1.92 | $4.50 \mathrm{E}-03$ | 1.64 | $3.90 \mathrm{E}-02$ | 0.28 | $4.27 \mathrm{E}-02$ | 0.18 | $4.28 \mathrm{E}-02$ | 0.18 |
| 128 | 1.62E-04 | 1.97 | $1.24 \mathrm{E}-03$ | 1.86 | 2.84E-02 | 0.46 | $3.86 \mathrm{E}-02$ | 0.15 | 3.87E-02 | 0.14 |
| 256 | $4.10 \mathrm{E}-05$ | 1.99 | $3.23 \mathrm{E}-04$ | 1.94 | $1.51 \mathrm{E}-02$ | 0.91 | $3.54 \mathrm{E}-02$ | 0.12 | $3.59 \mathrm{E}-02$ | 0.11 |
| $k=2$ | | | | | | | | | | |
| 4 | 5.68E-03 | | $1.20 \mathrm{E}-02$ | | $1.73 \mathrm{E}-02$ | | $1.74 \mathrm{E}-02$ | | $1.74 \mathrm{E}-02$ | |
| 8 | 6.01E-04 | 3.24 | $1.36 \mathrm{E}-03$ | 3.14 | $7.80 \mathrm{E}-03$ | 1.15 | 8.26E-03 | 1.08 | 8.26E-03 | 1.07 |
| 16 | $7.16 \mathrm{E}-05$ | 3.07 | $1.22 \mathrm{E}-04$ | 3.49 | 3.22E-03 | 1.28 | $4.91 \mathrm{E}-03$ | 0.75 | 4.94E-03 | 0.74 |
| 32 | 8.84E-06 | 3.02 | $1.11 \mathrm{E}-05$ | 3.45 | $4.93 \mathrm{E}-04$ | 2.71 | $3.35 \mathrm{E}-03$ | 0.55 | $3.56 \mathrm{E}-03$ | 0.47 |
| 64 | 1.10E-06 | 3.00 | $1.19 \mathrm{E}-06$ | 3.23 | $3.67 \mathrm{E}-05$ | 3.75 | $1.56 \mathrm{E}-03$ | 1.11 | $2.85 \mathrm{E}-03$ | 0.32 |
| 128 | $1.38 \mathrm{E}-07$ | 3.00 | $1.40 \mathrm{E}-07$ | 3.08 | $2.42 \mathrm{E}-06$ | 3.92 | $1.95 \mathrm{E}-04$ | 3.00 | $2.23 \mathrm{E}-03$ | 0.35 |
| $k=3$ | | | | | | | | | | |
| 4 | 7.04E-04 | | $1.15 \mathrm{E}-03$ | | $6.65 \mathrm{E}-03$ | | $7.34 \mathrm{E}-03$ | | $7.35 \mathrm{E}-03$ | |
| 8 | $4.48 \mathrm{E}-05$ | 3.98 | $6.43 \mathrm{E}-05$ | 4.16 | $5.26 \mathrm{E}-04$ | 3.66 | $9.12 \mathrm{E}-04$ | 3.01 | $9.41 \mathrm{E}-04$ | 2.96 |
| 16 | $2.78 \mathrm{E}-06$ | 4.01 | $3.16 \mathrm{E}-06$ | 4.35 | $5.17 \mathrm{E}-05$ | 3.35 | $1.05 \mathrm{E}-03$ | -0.21 | 1.33E-03 | -0.50 |
| 32 | $1.74 \mathrm{E}-07$ | 4.00 | $1.80 \mathrm{E}-07$ | 4.13 | $1.36 \mathrm{E}-06$ | 5.25 | $8.98 \mathrm{E}-05$ | 3.55 | 8.84E-04 | 0.59 |
| 64 | $1.09 \mathrm{E}-08$ | 4.00 | $1.10 \mathrm{E}-08$ | 4.03 | $3.79 \mathrm{E}-08$ | 5.16 | 2.32E-06 | 5.27 | $1.32 \mathrm{E}-04$ | 2.74 |
| 128 | 6.83E-10 | 4.00 | 6.83E-10 | 4.01 | $1.25 \mathrm{E}-09$ | 4.92 | $6.45 \mathrm{E}-08$ | 5.17 | $3.37 \mathrm{E}-06$ | 5.29 |
| $k=4$ | | | | | | | | | | |
| 4 | 3.64E-05 | | $5.19 \mathrm{E}-05$ | | $9.96 \mathrm{E}-04$ | | 3.08E-03 | | 3.14E-03 | |
| 8 | 1.03E-06 | 5.15 | $1.50 \mathrm{E}-06$ | 5.11 | $1.70 \mathrm{E}-05$ | 5.88 | $9.21 \mathrm{E}-05$ | 5.06 | $9.92 \mathrm{E}-05$ | 4.99 |
| 16 | $3.04 \mathrm{E}-08$ | 5.08 | $3.76 \mathrm{E}-08$ | 5.32 | $1.34 \mathrm{E}-07$ | 6.99 | $1.31 \mathrm{E}-06$ | 6.14 | 8.19E-06 | 3.60 |
| 32 | $9.16 \mathrm{E}-10$ | 5.05 | $1.02 \mathrm{E}-09$ | 5.20 | $2.45 \mathrm{E}-09$ | 5.77 | $9.02 \mathrm{E}-09$ | 7.18 | $5.38 \mathrm{E}-07$ | 3.93 |
| 64 | $2.81 \mathrm{E}-11$ | 5.03 | $2.96 \mathrm{E}-11$ | 5.11 | $5.56 \mathrm{E}-11$ | 5.46 | 4.43E-10 | 4.35 | $6.52 \mathrm{E}-08$ | 3.04 |
| $k=5$ | | | | | | | | | | |
| 2 | 2.62E-04 | | $3.71 \mathrm{E}-04$ | | 4.12E-03 | | 5.22E-03 | | 5.23E-03 | |
| 4 | 3.12E-06 | 6.39 | 4.81E-06 | 6.27 | $9.10 \mathrm{E}-05$ | 5.50 | 3.43E-04 | 3.93 | 3.53E-04 | 3.89 |
| 8 | 7.58E-08 | 5.36 | 8.81E-08 | 5.77 | $5.14 \mathrm{E}-07$ | 7.47 | $1.59 \mathrm{E}-05$ | 4.43 | $9.97 \mathrm{E}-05$ | 1.82 |
| 16 | $1.09 \mathrm{E}-09$ | 6.12 | $1.14 \mathrm{E}-09$ | 6.27 | 5.62E-09 | 6.52 | $9.92 \mathrm{E}-08$ | 7.32 | 2.01E-06 | 5.63 |
| 32 | $1.66 \mathrm{E}-11$ | 6.03 | $1.68 \mathrm{E}-11$ | 6.09 | $3.92 \mathrm{E}-11$ | 7.16 | $4.08 \mathrm{E}-10$ | 7.93 | $1.42 \mathrm{E}-08$ | 7.15 |
| $k=6$ | | | | | | | | | | |
| 1 | $1.50 \mathrm{E}-03$ | | $3.18 \mathrm{E}-03$ | | $2.83 \mathrm{E}-02$ | | $5.24 \mathrm{E}-02$ | | 5.29E-02 | |
| 2 | $1.70 \mathrm{E}-05$ | 6.46 | $3.72 \mathrm{E}-05$ | 6.42 | 7.55E-04 | 5.23 | $1.35 \mathrm{E}-03$ | 5.28 | $1.36 \mathrm{E}-03$ | 5.28 |
| 4 | $3.18 \mathrm{E}-07$ | 5.74 | $5.40 \mathrm{E}-07$ | 6.11 | 5.49E-06 | 7.10 | $1.10 \mathrm{E}-04$ | 3.61 | $1.73 \mathrm{E}-04$ | 2.97 |
| 8 | 1.91E-09 | 7.38 | $2.67 \mathrm{E}-09$ | 7.66 | $2.84 \mathrm{E}-08$ | 7.60 | $5.60 \mathrm{E}-07$ | 7.62 | 9.63E-06 | 4.17 |
| 16 | $1.37 \mathrm{E}-11$ | 7.12 | $1.63 \mathrm{E}-11$ | 7.36 | $7.90 \mathrm{E}-11$ | 8.49 | $2.53 \mathrm{E}-09$ | 7.79 | $1.57 \mathrm{E}-08$ | 9.26 |

We observe:

- High-order Scheme works well for resolving the non-alignment of mesh and anisotropy

We observe:

- High-order Scheme works well for resolving the non-alignment of mesh and anisotropy
- However, with increasing anisotropy, the condition number in corresponding linear system is also increasing

We observe:

- High-order Scheme works well for resolving the non-alignment of mesh and anisotropy
- However, with increasing anisotropy, the condition number in corresponding linear system is also increasing

- We need an effective and efficient fast solver

Illustration of Auxiliary Space Pre-conditioner (ASP)

Figure: (a). Multigrid V-cycle;

Illustration of Auxiliary Space Pre-conditioner (ASP)

(a)
(b)

Figure: (a). Multigrid V-cycle; (b). One-level Auxiliary Space;

- Proposed in [S. Nepomnyaschikh 1992]
- b). Use an auxiliary space as "coarse" space, which is easier to solve

Illustration of Auxiliary Space Pre-conditioner (ASP)

Figure: (a). Multigrid V-cycle; (b). One-level Auxiliary Space; (c). Multi-grid Auxiliary Space.

- Proposed in [S. Nepomnyaschikh 1992]
- b). Use an auxiliary space as "coarse" space, which is easier to solve
- c). Replace the "coarse" solver by existing solvers/preconditioners

Auxiliary Space Pre-conditioner - CG Scheme

Why CG Scheme as the ASP?

- Less DoFs
- Well developed CG - fast solver

Auxiliary Space Pre-conditioner (Efficiency)

Given $\boldsymbol{f} \in V_{\mathrm{DG}}^{\prime}$, find $\boldsymbol{u} \in V_{\mathrm{DG}}$ such that

$$
\boldsymbol{A}_{\mathrm{DG}} \boldsymbol{u}=\boldsymbol{f}
$$

Auxiliary Space Pre-conditioner (Efficiency)

Given $\boldsymbol{f} \in V_{\mathrm{DG}}^{\prime}$, find $\boldsymbol{u} \in V_{\mathrm{DG}}$ such that

$$
\boldsymbol{A}_{\mathrm{DG}} \boldsymbol{u}=\boldsymbol{f}
$$

- As in [Antonietti 2017], choose the product of auxiliary spaces: $\bar{V}_{\mathrm{DG}}=V_{\mathrm{DG}} \times V_{\mathrm{CG}}$

Auxiliary Space Pre-conditioner (Efficiency)

Given $\boldsymbol{f} \in V_{\mathrm{DG}}^{\prime}$, find $\boldsymbol{u} \in V_{\mathrm{DG}}$ such that

$$
\boldsymbol{A}_{\mathrm{DG}} \boldsymbol{u}=\boldsymbol{f}
$$

- As in [Antonietti 2017], choose the product of auxiliary spaces: $\bar{V}_{\mathrm{DG}}=V_{\mathrm{DG}} \times V_{\mathrm{CG}}$
- Since $V_{\mathrm{CG}} \subset V_{\mathrm{DG}}$, we can use subset decomposition $V_{\mathrm{DG}}=V_{\mathrm{DG}}+V_{\mathrm{CG}}$.

Auxiliary Space Pre-conditioner (Efficiency)

Given $\boldsymbol{f} \in V_{\mathrm{DG}}^{\prime}$, find $\boldsymbol{u} \in V_{\mathrm{DG}}$ such that

$$
\boldsymbol{A}_{\mathrm{DG}} \boldsymbol{u}=\boldsymbol{f}
$$

- As in [Antonietti 2017], choose the product of auxiliary spaces: $\bar{V}_{\mathrm{DG}}=V_{\mathrm{DG}} \times V_{\mathrm{CG}}$
- Since $V_{\mathrm{CG}} \subset V_{\mathrm{DG}}$, we can use subset decomposition $V_{\mathrm{DG}}=V_{\mathrm{DG}}+V_{\mathrm{CG}}$.
Introduce the auxiliary space preconditioner, $\boldsymbol{B}_{\mathrm{DG}}: V_{\mathrm{DG}}^{\prime} \mapsto V_{\mathrm{DG}}$

Here $\Pi: V_{\mathrm{CG}} \rightarrow V_{\mathrm{DG}}$ and $\Pi^{\top}: V_{\mathrm{DG}}^{\prime} \rightarrow V_{\mathrm{CG}}^{\prime}$.

Auxiliary Space Pre-conditioner (Efficiency)

Given $\boldsymbol{f} \in V_{\mathrm{DG}}^{\prime}$, find $\boldsymbol{u} \in V_{\mathrm{DG}}$ such that

$$
\boldsymbol{A}_{\mathrm{DG}} \boldsymbol{u}=\boldsymbol{f}
$$

- As in [Antonietti 2017], choose the product of auxiliary spaces: $\bar{V}_{\mathrm{DG}}=V_{\mathrm{DG}} \times V_{\mathrm{CG}}$
- Since $V_{\mathrm{CG}} \subset V_{\mathrm{DG}}$, we can use subset decomposition $V_{\mathrm{DG}}=V_{\mathrm{DG}}+V_{\mathrm{CG}}$.
Introduce the auxiliary space preconditioner, $\boldsymbol{B}_{\mathrm{DG}}: V_{\mathrm{DG}}^{\prime} \mapsto V_{\mathrm{DG}}$

$$
\begin{equation*}
B_{\mathrm{DG}}=\underbrace{S_{\mathrm{DG}}}_{\text {smoother: Gauss-Seidel }}+\underbrace{\Pi}_{\text {inclusion operator }} A_{\mathrm{CG}}^{-1} \underbrace{\Pi^{\top}}_{L^{2} \text { projection }}, \tag{12}
\end{equation*}
$$

Here $\Pi: V_{\mathrm{CG}} \rightarrow V_{\mathrm{DG}}$ and $\Pi^{\top}: V_{\mathrm{DG}}^{\prime} \rightarrow V_{\mathrm{CG}}^{\prime}$.

Remark:

Here we need to invert $\boldsymbol{A}_{\mathrm{CG}}$ exactly. We shall first show the effectiveness of the proposed pre-conditioner.

Efficiency Test 1 - Solve H^{1}-problem exactly

- Set $\boldsymbol{B}_{\mathrm{DG}}=\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}$
- Solve pre-conditioned system by GMRES with tol $=1 \mathrm{E}-6$
- $\mathbf{b}=[0,1]^{\top}$ on unstructured triangular mesh

Efficiency Test 1 - Solve H^{1}-problem exactly

- Set $\boldsymbol{B}_{\mathrm{DG}}=\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}$
- Solve pre-conditioned system by GMRES with tol $=1 \mathrm{E}-6$
- $\mathbf{b}=[0,1]^{\top}$ on unstructured triangular mesh

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
1	11	11	11	11	11	11	11	11
$1 \mathrm{E}+2$	12	10	10	10	10	10	10	11
$1 \mathrm{E}+4$	20	8	8	8	8	8	8	9
$1 \mathrm{E}+6$	20	14	5	5	5	5	6	7
$1 \mathrm{E}+8$	20	4	5	5	5	6	6	5

Table: Iterations for $\boldsymbol{B}_{\mathrm{DG}}$ (solve the H^{1} problem exactly) when $h=1 / 10$ on non-aligned mesh.

Efficiency Test 1 - Solve H^{1}-problem exactly

- Set $\boldsymbol{B}_{\mathrm{DG}}=\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}$
- Solve pre-conditioned system by GMRES with tol $=1 \mathrm{E}-6$
- $\mathbf{b}=[0,1]^{\top}$ on unstructured triangular mesh

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
1	11	11	11	11	11	11	11	11
$1 \mathrm{E}+2$	12	10	10	10	10	10	10	11
$1 \mathrm{E}+4$	20	8	8	8	8	8	8	9
$1 \mathrm{E}+6$	20	14	5	5	5	5	6	7
$1 \mathrm{E}+8$	20	4	5	5	5	6	6	5

Table: Iterations for $\boldsymbol{B}_{\mathrm{DG}}$ (solve the H^{1} problem exactly) when $h=1 / 10$ on non-aligned mesh.

Remark:

- Almost constant iteration number \longrightarrow Effective and Robust

Efficiency Test 1 - Solve H^{1}-problem exactly

- Set $\boldsymbol{B}_{\mathrm{DG}}=\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}$
- Solve pre-conditioned system by GMRES with tol $=1 \mathrm{E}-6$
- $\mathbf{b}=[0,1]^{\top}$ on unstructured triangular mesh

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
1	11	11	11	11	11	11	11	11
$1 \mathrm{E}+2$	12	10	10	10	10	10	10	11
$1 \mathrm{E}+4$	20	8	8	8	8	8	8	9
$1 \mathrm{E}+6$	20	14	5	5	5	5	6	7
$1 \mathrm{E}+8$	20	4	5	5	5	6	6	5

Table: Iterations for $\boldsymbol{B}_{\mathrm{DG}}$ (solve the H^{1} problem exactly) when $h=1 / 10$ on non-aligned mesh.

Remark:

- Almost constant iteration number \longrightarrow Effective and Robust
- However, $\boldsymbol{A}_{\mathrm{CG}}^{-1}$ challenging with large size, high polynomial degree, strong anisotropy.

Efficiency Test 1 - Solve H^{1}-problem exactly

- Set $\boldsymbol{B}_{\mathrm{DG}}=\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}$
- Solve pre-conditioned system by GMRES with tol $=1 \mathrm{E}-6$
- $\mathbf{b}=[0,1]^{\top}$ on unstructured triangular mesh

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
1	11	11	11	11	11	11	11	11
$1 \mathrm{E}+2$	12	10	10	10	10	10	10	11
$1 \mathrm{E}+4$	20	8	8	8	8	8	8	9
$1 \mathrm{E}+6$	20	14	5	5	5	5	6	7
$1 \mathrm{E}+8$	20	4	5	5	5	6	6	5

Table: Iterations for $\boldsymbol{B}_{\mathrm{DG}}$ (solve the H^{1} problem exactly) when $h=1 / 10$ on non-aligned mesh.

Remark:

- Almost constant iteration number \longrightarrow Effective and Robust
- However, $\boldsymbol{A}_{\mathrm{CG}}^{-1}$ challenging with large size, high polynomial degree, strong anisotropy. \rightarrow use preconditioner $B_{\mathrm{CG}} \approx A_{\mathrm{CG}}^{-1}$

Auxiliary Space Pre-conditioner (Efficiency)

$B_{\mathrm{DG}}=S_{\mathrm{DG}}+\Pi \boldsymbol{A}_{\mathrm{CG}}^{-1} \Pi^{\top}$, will be replaced by

Auxiliary Space Pre-conditioner (Efficiency)

$$
\begin{aligned}
\boldsymbol{B}_{\mathrm{DG}} & =\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top} \text {, will be replaced by } \\
\boldsymbol{B}_{\mathrm{DG} \text { inact }} & =\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{B}_{\mathrm{CG}} \boldsymbol{\Pi}^{\top} \text {, here, } \boldsymbol{B}_{\mathrm{CG}}=\boldsymbol{S}_{\mathrm{CG}}+\boldsymbol{B}_{\mathrm{MG}}
\end{aligned}
$$

Auxiliary Space Pre-conditioner (Efficiency)

$$
\begin{aligned}
\boldsymbol{B}_{\mathrm{DG}} & =\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{A}_{\mathrm{CG}}^{-1} \boldsymbol{\Pi}^{\top}, \text { will be replaced by } \\
\boldsymbol{B}_{\mathrm{DG}}^{\text {inexact }} & =\boldsymbol{S}_{\mathrm{DG}}+\boldsymbol{\Pi} \boldsymbol{B}_{\mathrm{CG}} \boldsymbol{\Pi}^{\top}, \text { here, } \boldsymbol{B}_{\mathrm{CG}}=\boldsymbol{S}_{\mathrm{CG}}+\boldsymbol{B}_{\mathrm{MG}}
\end{aligned}
$$

- Here $\boldsymbol{B}_{\mathrm{MG}}$: multi-grid solver for CG-FEM.
- $\boldsymbol{S}_{\mathrm{CG}}$: Schwarz-type block line smoother [Pavarino 1994, Antonietti 2017]

Error plot for $\mathbf{b}=[1,1]^{\top} / \sqrt{2}$ and exact $u=0$

Let $\Omega=[-1,1]^{2}$ and start the iterative solver with a random initial guess.

(a) before smoothing

(b) with perpendicular line smoother

Error plot for circular b and exact $u=0$

(a) before smoothing

(b) with perpendicular line smoother

- high frequency pattern along the direction perpendicular to the anisotropy

Illustration of Line Smoother for $\mathbf{b}=[0,1]^{\top}$

(a) mesh

(b) dropping aligned edges

- Weights: $\omega_{e} \leftarrow \frac{1.0}{|\cos (\theta)|+10^{-6}}, \cos (\theta) \leftarrow \frac{\boldsymbol{t}^{\top} \mathbf{b}_{\text {mid }}}{\|\boldsymbol{t}\|\left\|\mathbf{b}_{\text {mid }}\right\|}$
- For example, we choose threshold $\eta=2.0$

うの

うの

うの

うの

うの

うの

うの

うの

うの

の人@

の人@

っの@

(c) Path Cover

(b) DoFs of one block for P_{2} basis

Fast Solver Test 1: $\mathbf{b}=[0,1]^{\top}$

- $\mathbf{S}_{\text {DG }}$: symmetric block Gauss-Seidel smoother using vertex patches
- \mathbf{S}_{CG} : block line smoother
- B_{MG} : NG-Solve build-in MG method for high-order CG
- $\mathbf{A}_{\mathrm{DG}}^{-1} \approx \mathbf{S}_{\mathrm{DG}}+\Pi \mathbf{B}_{\mathrm{CG}} \Pi^{\top}$ and $\mathbf{B}_{\mathrm{CG}}=\mathbf{S}_{\mathrm{CG}}+\mathbf{B}_{\mathrm{MG}} \approx \mathbf{A}_{\mathrm{CG}}^{-1}$
- tol $_{\mathrm{DG}}=10^{-6}$ and tol $\mathrm{CG}=10^{-4}$

Fast Solver Test 1: $\mathbf{b}=[0,1]^{\top}$

- $\mathbf{S}_{\text {DG }}$: symmetric block Gauss-Seidel smoother using vertex patches
- \mathbf{S}_{CG} : block line smoother
- \mathbf{B}_{MG} : NG-Solve build-in MG method for high-order CG
- $\mathbf{A}_{\mathrm{DG}}^{-1} \approx \mathbf{S}_{\mathrm{DG}}+\Pi \mathbf{B}_{\mathrm{CG}} \Pi^{\top}$ and $\mathbf{B}_{\mathrm{CG}}=\mathbf{S}_{\mathrm{CG}}+\mathbf{B}_{\mathrm{MG}} \approx \mathbf{A}_{\mathrm{CG}}^{-1}$
- tol $_{\mathrm{DG}}=10^{-6}$ and tol $\mathrm{CG}=10^{-4}$

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
number of iterations for $\boldsymbol{B}_{\mathrm{DG}}^{\text {inexact }}$ when $h=1 / 10$								
1	11	11	11	11	11	11	11	11
$1 \mathrm{E}+2$	12	11	10	11	11	11	11	11
$1 \mathrm{E}+4$	17	10	9	9	9	9	9	9
$1 \mathrm{E}+6$	15	13	10	9	8	7	7	7
$1 \mathrm{E}+8$	12	5	6	8	7	7	7	7

Fast Solver Test 2: Circular Test

Figure: Illustration of computational Mesh level 1 (left) and line smoother (right).

Number of Iterations for Exact Solver

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
$h=1 / 6$								
1	11	10	10	10	10	10	9	9
$1 \mathrm{E}+2$	22	15	12	11	11	11	11	11
$1 \mathrm{E}+4$	50	52	33	20	13	11	10	10
$1 \mathrm{E}+6$	49	61	66	41	39	20	9	9
$1 \mathrm{E}+8$	49	66	70	52	39	13	11	11
$h=1 / 12$								
1	12	12	12	12	12	12	12	12
$1 \mathrm{E}+2$	21	13	11	11	11	11	11	11
$1 \mathrm{E}+4$	86	61	27	16	12	10	10	9
$1 \mathrm{E}+6$	94	114	91	56	17	8	7	7
$1 \mathrm{E}+8$	94	122	125	41	13	11	9	9
1	13	12	12	12	12	12	12	12
$1 \mathrm{E}+2$	21	13	11	11	11	11	11	11
$1 \mathrm{E}+4$	111	58	22	14	12	10	10	9
$1 \mathrm{E}+6$	205	191	99	52	17	8	7	7
$1 \mathrm{E}+8$	210	249	178	41	13	11	9	9

Number of Iterations for In-exact Solver

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
$h=1 / 6$								
1	10	9	9	8	8	8	8	8
$1 \mathrm{E}+2$	20	13	10	10	10	10	10	10
$1 \mathrm{E}+4$	51	52	27	17	11	10	9	9
$1 \mathrm{E}+6$	54	65	64	37	24	17	8	16
$1 \mathrm{E}+8$	57	73	70	48	10	14	9	10
$h=1 / 12$								
1	11	10	10	10	10	10	10	10
$1 \mathrm{E}+2$	18	12	10	10	10	10	10	10
$1 \mathrm{E}+4$	79	54	20	13	11	9	9	8
$1 \mathrm{E}+6$	98	116	84	32	19	16	8	9
$1 \mathrm{E}+8$	109	129	85	44	16	12	9	9
1	13	12	12	12	12	12	12	12
$1 \mathrm{E}+2$	21	13	11	11	11	11	11	11
$1 \mathrm{E}+4$	111	58	24	19	16	13	11	10
$1 \mathrm{E}+6$	205	191	122	87	19	16	8	9
$1 \mathrm{E}+8$	210	249	178	44	15	12	9	9

Accuracy Test for Annulus Test with Varying Values in $D_{\|}$

(a). $k=1$

(b). $k=3$

(c). $k=5$

Fast Solver Test 3: WEST tokamak 2D with circular b

A Gaussian source is diffused towards an identical sink

$$
\begin{aligned}
f_{s c} & =D_{\|} \exp \left(-r_{s c}^{2} / 0.05^{2}\right) \\
f_{s k} & =-D_{\|} \exp \left(-r_{s k}^{2} / 0.05^{2}\right)
\end{aligned}
$$

where $r_{s c}=\sqrt{(x-1.5)^{2}+y^{2}}$ and
$r_{s k}=\sqrt{(x+1.5)^{2}+y^{2}}$. The magnetic field direction is chosen as $\mathbf{b}=\left(b_{1}, b_{2}\right)^{\top}$ where

$$
b_{1}=\frac{y}{r}, b_{2}=-\frac{x}{r} .
$$

Figure: Plot of solution with $D_{\|}=1 \mathrm{E} 4$.

Illustration of line smoother

Numerical Performance for Solvers

$D_{\\|}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
number of iterations for $\boldsymbol{B}_{\mathrm{DG}}$ when $h=1 / 10$								

1	8	8	8	8	8	8	7	7
$1 \mathrm{E}+2$	17	14	12	11	11	11	11	11
$1 \mathrm{E}+4$	21	20	18	15	15	14	13	13
$1 \mathrm{E}+6$	21	20	18	17	17	16	17	18
$1 \mathrm{E}+8$	21	20	18	17	17	16	15	18

number of iterations for $\boldsymbol{B}_{\mathrm{DG}}^{\text {inexact }}$ when $h=1 / 10$

1	8	8	8	8	8	8	7	7
$1 \mathrm{E}+2$	17	13	11	11	10	10	10	10
$1 \mathrm{E}+4$	27	26	20	18	15	13	12	12
$1 \mathrm{E}+6$	28	30	26	24	23	22	21	20
$1 \mathrm{E}+8$	28	30	29	28	26	26	25	25

Conclusions and Future Work

Conclusion

- High order scheme can resolve the numerical pollution on the non-aligned mesh
- Auxiliary Space Preconditioner (ASP) is efficient and effective in solving the linear system with large anisotropy

Future Work

- Numerical analysis
- Incorporate with M. Stowell and D. Copeland in MFEM implementation
- More applications with complicated magnetic fields

T円ank vou!

Reference

- D. Green, X. Hu, J. Lore, L. Mu, and M. Stowell, An Efficient High-order Numerical Solver for Diffusion Equations with Strong Anisotropy, CPC, 276, 2022.
- D. Green, X. Hu, J. Lore, L. Mu, and M. Stowell, An Efficient High-order Solver for Diffusion Equations with Strong Anisotropy on Non-anisotropy-aligned Meshes, Submitted.

