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z| History, circa 2021: Design of electromagnetic systems

Optimal design

GOAL Electromagnetic devices with nanoscale structures.

EXAMPLE A micron-thin lens with millions of meta-atoms.

PURPOSE Weight and space savings.

APPLICATION Next-generation night vision systems, etc.

Mirage Project, PI: lhab El-Kady (Sandia Labs).

Objective lens stack Eyepiece lens stack

' Metasurface
1

i ‘ _

|

|

For every meta-atom, find
optimal “diameter” D of its
cross-section, to maximize
focusing efficiency of full lens.

1. Posit spatially dependent
material design problem;

cross-section 2 Homogenizg ma'gerial

to cross section diameter.




sl The memory challenge

= Modern computing technology has embraced heterogeneous architectures with complex
processing units that enable massive concurrency for scientific applications.

= Frontier at Oak Ridge National Lab and Aurora at Argonne National Lab are demonstrating
exascale calculations!™,

= Many scientific applications involving the numerical solution PDEs using FEM are limited in
their prediction fidelity by system memory rather than processing power ...

= ...due to significant reductions in the amount of system memory per compute thread.

= Efforts to compress data output through dimension reduction and machine learning do not
reduce the amount of system memory required to run the simulations.

= New approaches are required to enable higher-fidelity simulations for predictive science.

[11 Top500.0rg (2024). https://www.top500.org/lists/top500/1ist/2024/06. (Visited on 06/30/2024).


https://www.top500.org/lists/top500/list/2024/06

sl Opportunities

= Library-based and modular HPC applications, through FEM software libraries like
MFEM™!, deal.ii®® and Intrepid™.

A far-reaching opportunity for the community to tackle the memory challenge at its
source, namely, the data structures used for finite element computations.

= Few if any changes to the implementations of the PDEs that underlie HPC applications.

= If we are successful, mesh databases will join.

[2] R. Anderson et al. (2021). “"MFEM: A modular finite element methods library”. In: Computers & Mathematics with Appli-
cations 81, pp. 42-74. DOI: 10.1016/ j . camwa.2020.06.009.

[3] W. Bangerth, R. Hartmann, and G. Kanschat (2007). “deal.ll-a general-purpose object-oriented finite element library”.
In: ACM Transactions on Mathematical Software (TOMS) 33.4, 24-es. DOI: 10.1145/1268776.1268779.

[4]1 P. Bochev et al. (2012). “Solving PDEs with Intrepid”. In: Scientific Programming 20.2, pp. 151-180. DOI: 10.3233/SPR~
2012-0340.



https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.3233/SPR-2012-0340
https://doi.org/10.3233/SPR-2012-0340

s Related work

= Matrix-free approaches, such as Jacobian-free Newton Krylov methods™ and MFEM's
partial assembly, seek to avoid storage of Jacobians of PDE residuals and utilize
matrix-vector products for linear algebra operations.

= Constructing effective matrix-free preconditioners is challenging and remains an active
area of research®l7],

[51 D. A. Knoll and D. E. Keyes (2004). “Jacobian-free Newton-Krylov methods: a survey of approaches and applications”.
In: Journal of Computational Physics 193.2, pp. 357-397. DOI: 10.1016/j . jcp.2003.08.010.

[6] D. A. May, J. Brown, and L. Le Pourhiet (2015). “A scalable, matrix-free multigrid preconditioner for finite element
discretizations of heterogeneous Stokes flow". In: Computer methods in applied mechanics and engineering 290, pp. 496~
523.DOI: 10.1016/j.cma.2015.03.014.

[71T. C. Clevenger and T. Heister (2021). “Comparison between algebraic and matrix-free geometric multigrid for a Stokes

problem on adaptive meshes with variable viscosity”. In: Numerical Linear Algebra with Applications 28.5, e2375. DOI:
10.1002/nla.2375.



https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.1002/nla.2375

¢l Related work

= Other data reduction techniques such as sum factorizations®'% seek to exploit
structure to reduce the cost in storing or computing finite element basis functions.

= Most beneficial to three-dimensional problems with high-order function approximations.

= Elsewhere, data reduction techniques have been used with evolutionary PDEs to enable
adjoint-based PDE-constrained optimization through checkpointing!'".

[8] M. Ainsworth, G. Andriamaro, and O. Davydov (2011). “Bernstein-Bézier finite elements of arbitrary order and optimal
assembly procedures”. In: SIAM Journal on Scientific Computing 33.6, pp. 3087-3109. DOI: 10.1137/11082539X.

[9]1 A. Bressan and S. Takacs (2019). “Sum factorization techniques in isogeometric analysis”. In: Computer Methods in
Applied Mechanics and Engineering 352, pp. 437-460. DOI: 10.1016/j .cma.2019.04.031.

[10] J. Mora and L. Demkowicz (2019). “Fast integration of DPG matrices based on sum factorization for all the energy
spaces”. In: Computational Methods in Applied Mathematics 19.3, pp. 523-555. DOI: 10.1515/cmam-2018-0205.

[111 A. Griewank (1992). “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differen-
tiation”. In: Optimization Methods and Software 1.1, pp. 35-54. DOI: 10.1080/10556789208805505.



https://doi.org/10.1137/11082539X
https://doi.org/10.1016/j.cma.2019.04.031
https://doi.org/10.1515/cmam-2018-0205
https://doi.org/10.1080/10556789208805505

Our complementary contributions

= We detect and exploit redundancies in the computational mesh, based on cell shapes.

= Additionally, we enhance mesh redundancies, by moving mesh nodes without changes to
the mesh topology, i.e., through r-adaptivity.

= A goal is to enable clustering of mesh cells into a relatively small number of classes based
on shape identity or, more broadly, shape similarity"?0'3]

Ty= 4C,m,F . . .
T=4B,, F] : ...important related ideas in
T“:HB””’A] ATzs [4C,....A] mesh generation and refinement:
T4, ... A‘“QTN—HD,,,,,A] Finite number. of similarity
classes, < 37, in longest edge

Tu=[4E,,,,,F]y 3” Gl bisection of tetrahedra.

= Our challenge is different: maintain the topology and quality of a given mesh.

[12] ). P. Suarez, A. Truijillo, and T. Moreno (2021). “Computing the exact number of similarity classes in the longest edge
bisection of tetrahedra”. In: Mathematics 9.12, p. 1447. DOI: 10.3390/math9121447,

[13] A. Trujillo-Pino, J. P. Suarez, and M. A. Padron (2024). “Finite number of similarity classes in Longest Edge Bisection
of nearly equilateral tetrahedra”. In: Applied Mathematics and Computation 472, p. 128631. DOI: 10.1016/j . amc . 2024 .
128631.



https://doi.org/10.3390/math9121447
https://doi.org/10.1016/j.amc.2024.128631
https://doi.org/10.1016/j.amc.2024.128631

sl Contribution No. 1: Detect and exploit mesh redundancy

= Cost of storing finite element quantities, such as cell Jacobians, scales linearly with the
number of mesh elements, V.

= We aim to reduce the O(N) storage cost to O(m), where m < N.

= We develop a dictionary-based data compression scheme for problems where a given
mesh contains this redundant structure.

= The scheme compresses the evaluations of finite element basis functions at quadrature
points, which are linked directly to cell geometries.

= The dictionary achieves reductions in storage of more than 99% for meshes with redundant
structure, enabling billion-element simulations in under 100 gigabytes of memory.



ol FEM background

= An important computational kernel in FEM:

/T k(x)D“ @i(x) D2 ¢j(x) dx,

where T is a domain that corresponds to a mesh cell in a mesh 7, of the domain Q, k(x) is
some problem coefficient matrix, oy and a are alpha-indices for the derivative operator D,
and ¢;(x) and ¢;(x) are finite element basis functions.

= Integrals are evaluated using quadrature and basis functions on a reference domain 7.
y y

(%)

Jr(%) = Vor(%)

~>

= Tisrelatedto T by the reference to physical map ¢ : T — T, where x refers to
physical coordinates on T and x refers to reference coordinates on T.



10l FEM background

= Forafunction f : T — R, weuse 7 : T — R to define the pullback 7 (&) := f(d7(X)).
= Conversely, one defines f as the pushforward of f by f(x) = f(®71(x)).

= Example: Evaluation of V£ (x) involves transforming a vector field to the reference domain,
which requires the application of the covariant transformationt’

Vf(x) = J7 T (R)VF(R).
= In R3, the de Rham complex with the associated spaces and transforms is
v v

HY(Q) L HrkQ) 5% Hdiv,Q) 5 12(Q)
1(%) JT(%) det(J(%))"1J(X) det(J(%))~!

= Example:

/T Voi(x) - Vi(x) dx = /T (J;T(ﬁ)ws,-(f()) : (J;T(x)véj(f()) detJ7(R) dx.

[14] D. Boffi, F. Brezzi, M. Fortin, et al. (2013). Mixed finite element methods and applications. Vol. 44. Springer. DOI:
10.1007/978-3-642-36519-5, c.f. 82.1.3,2.1.4.


https://doi.org/10.1007/978-3-642-36519-5

11 FEM background

= We can trade computation for storage of basis functions and their derivatives.

T T T
——Partial basis storage
X Basis compression |

8000 T

100%

7000 -

2 6000

=

80%

S
=}
(=3
S

20 30 40 50 60 70 80 90 100
Runtime (sec)
Figure: Tradeoffs between storing and recomputing basis data for a heat transfer simulation, where we

show the percentage of basis data retained across the mesh. For the given mesh, containing significant
redundancy, the cost of our proposed basis compression scheme is denoted by the x mark.



121 FEM background

= Two mesh cells T; and T, with equal Jacobians Jr, = J7, must have mappings 7, and
® 7, which differ by only a constant.

= le, Ty is atranslation of T, ifand only if J;, = J7,,i.e., T; and T, have identical shapes.

Lemma

Let € S, with S € {H (T), H(curl; T), H(div; T), L2(T)}, be a finite element basis function on
the reference domain. Let D € {1, grad, curl, div} be an operator so that D¢ € L2(T). Then if two
mesh cells Ty and T, have the same shape, the physical values D¢ are equal and have equal
integrals,

/rl D¢(x) dx = / D¢(x) dx.

T2




131 Mesh examples with redundancy

T

T

T T

T
o

Figure: Three examples of mesh classes with redundancy: (left) structured/graded, (middle) geometrically
patterned, and (right) extruded. The latter two meshes comprise large clusters of identical cell shapes. The I
cells in the graded mesh have shapes that are identical up to a dimensional scaling.



12l Compression algorithm to detect and exploit redundancy

= Alist of “unique” cells is constructed by looping over mesh cells T; and comparing them to
cell T; in the list of unique cells.

= Adistance d(Tj, T;) is computed using the cell Jacobians,

Vi Wl () = I (&I
d(Ti7 TJ) - q N
Vs wll (e)

where X, denote the quadrature points on the reference domain, with weights wy,
k=1,2,...,q,and || - | is the Frobenius norm.

w Ifd(T;, TJ) < g, then a match is found, and basis evaluations on T; are replaced by the
basis evaluations on T;.

= Let gg be the largest acceptable compression tolerance for a given application without a
significant impact on accuracy, cf. Cea’s Lemma, Strang's Lemma. We say that the
compression is lossless when € < ¢, and if € > ¢ we refer to the compression as lossy.



151 Compression algorithm to detect and exploit redundancy

Algorithm 1. Construction of the mesh dictionary.
1: Input: Mesh 7, = {T1,T»,...,Tn}, tolerance e.
2 B. + {}, . < 0NV
3: fori=1,2,...,N do

4 match<«false

5 for T; € B do

6 if d(T;,T}) < € then

7: match«true; (i) + j; break
8 end if

9 end for

10: if match=false then

11: append T; to Be; 1. (i) < | B

12: end if

13: end for

14: Output: Dictionary of cells, B., with lookup indices 1), € NV.




16l Compression ratio
= The compression ratio of a mesh is the ratio of the number of saved Jacobian evaluations
and the total number of mesh cells,

o(Th;e) =

N — |Bs|
—N .

Figure: lllustration of (left) a structured square mesh with one unique shape and a lossless compression
ratio (¢ = &o) of 98.4% (middle) a trapezoidal mesh with only four unique shapes and a lossless
compression ratio of 93.75%, and (right) a circle mesh with a lossless compression ratio of 15%. Cells with
the same shape within a single mesh are highlighted with the same color.




171 Compression curve

= We plot the compression ratio o(7; ), as a function of e.

1

o
»

o
=

o
~

Compression Ratio

0.2

107 1072 107! 10 10

Tolerance

Figure: Compression curve for a circle mesh; no compression is observed for e < 1072,



18l Memory savings for a heat transfer example

= Memory profiles and timing data for a heat transfer simulation in MrHyDE!"> are shown.

= Uniform 32,000 x 32,000 mesh of square cells and a compression tolerance of ¢ = 1071,

= Basis compression reduces the memory cost of a billion sets of basis function data to one.

1000 T : T . T

——no compression

— basis compression
basis+ip compression

800

Memory Use (GB)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

[15] MrHyDE library (n.d.). Accessed: 09/25/2024. URL: https://github.com/sandialabs/MrHyDE.


https://github.com/sandialabs/MrHyDE

191 Contribution No. 2: Enhance mesh redundancy

We develop a new r-adaptive mesh optimization scheme to enhance the redundancy.

= Our scheme combines a novel adaptation of k-medoids clustering!'® with a
sparsity-promoting optimization formulation.

The latter is inspired by the constrained optimization alternative!’” to r-adaptive
schemes based on solving the Monge-Ampére equation!'8'%),

Inequality constraints on the cell volumes, to prevent tangling and ensure minor deviations
from the original mesh, are handled using a scalable augmented Lagrangian method?%,

[16] H.-S. Park and C.-H. Jun (2009). “A simple and fast algorithm for K-medoids clustering”. In: Expert systems with applica-
tions 36.2, pp. 3336-3341. DOI: 10.1016/j .eswa.2008.01.039.

[17]1 M. D'’Elia et al. (2016). “Optimization-based mesh correction with volume and convexity constraints”. [n: Journal of
Computational Physics 313, pp. 455-477. DOI: 10.1016/j.jcp.2016.02.050.

[18]).-F. Cossette, P. K. Smolarkiewicz, and P. Charbonneau (2014). “The Monge-Ampeére trajectory correction for semi-
Lagrangian schemes". In: Journal of Computational Physics 274, pp. 208-229. DOI: 10.1016/j . jcp.2014.05.016.

[19]1 P. A. Browne et al. (2014). “Fast three dimensional r-adaptive mesh redistribution”. In: Journal of Computational Physics
275, pp. 174-196. DOI: 10.1016/j . jcp.2014.06.009.

[20] H. Antil, D. P. Kouri, and D. Ridzal (2023). “ALESQP: An augmented Lagrangian equality-constrained SQP method for
optimization with general constraints”. In: SIAM Journal on Optimization 33.1, pp. 237-266. DOIl: 10.1137/20M1378399.



https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.jcp.2016.02.050
https://doi.org/10.1016/j.jcp.2014.05.016
https://doi.org/10.1016/j.jcp.2014.06.009
https://doi.org/10.1137/20M1378399

201 Problem formulation: Quantities of interest

= We focus on the quadrilateral case with straight line geometry.

Mesh T, = {T1, T, ..., Ty} of a domain Q C R?, with n,, vertices p = {p1, p2, ..., Pn, }-

Dictionary ., obtained by applying Algorithm 1 to 75, for a tolerance ¢.

Goal: Produce a mesh 7y , such that the resulting B. , is smaller than B..
= Requirement: Maintain topology, with relatively small mesh motion.

= Optimization variables: Vertices p = {p1, p2, ..., pn, }, Where p; = (x;,y;), i = 1,2,...,np.

= Let the double-indexing p; j = (xi j, i j) denote vertex j of meshcell i, i = 1,2,..., N,
j=1,2,..., ng, with n., denoting the number of vertices in each cell.



211 Problem formulation: Quantities of interest

(x4, ya) (x3,¥3) = Split the quadrilateral into two triangles using the
vertex index triples (1,2, 4) and (3, 4, 2).
= Onageneralmeshcell T;, 1 < i < N, we define

Cix2 = Xi2 — Xi1, dixa = Xi.a — Xi 3,

Cixa = Xij4 — Xi1, dixe = Xi2 — Xi,3,

Ciy2 = Yi2 — Yia, diya = Yia — Yi3,
(x1, 1) (x2,y2)

Ciya = Yia — Yi1, diy> = Yi2 — Yi3-

= The two triangle Jacobians composed of these scalars define a computationally efficient
proxy for the Jacobian of the quadrilateral.

Row vector K;(p), i = 1,2,..., N, consisting of the Jacobian entries,

Ki(p) = [Cix2, Ci xa, di xa, di x2, Ci y2, Ci ya, dj ya, dj o).

= For each cell T; in the mesh, we also associate a “target” shape u;, i = 1,2,..., N, which is
a row vector of eight entries as well, analogous to K;(p).

= Our goal is to reduce the misfit between K(p) and pi, where K(p), 1 € RV*8,



221 Problem formulation: Objective function

We focus on lossless finite element basis compression.

Ideally, this is a sparse matching problem between the rows of K(p) and y, which would
maximize the number of zero rows in K(p) — p.

Approaches enforcing the so-called group sparsity, such as those using the mixed ¢ /¢,
norm, g > 1, have been suggested®", with non-smooth quantities of interest of the form

N
S IK(P) — il

i=1
The non-smoothness, induced by the norm, is difficult to handle algorithmically.

In contrast, the functional Zf\lzl | Ki(p) — wil|3, is smooth and relatively easy to minimize
using derivative-based optimization methods, but any notion of group sparsity may be lost.

Minimizing it typically produces no zero-misfit terms whatsoever, i.e., no lossless
compression, unless K;(p) — p; = 0 is achievable at the optimum forall i =1,2,..., N.

[21] F. Bach et al. (2012). “Structured sparsity through convex optimization”. In: Statistical Science 27.4, pp. 450-468. DOI:
10.1214/12-STS394.



https://doi.org/10.1214/12-STS394

23l Problem formulation: Objective function
= This challenge also motivates a key idea:

identify a subset of cell indices, Z C {1,2,..., N},
such that Ki(p) — p; = 0 is achievable forall i € Z.

= Given a set Z, the functional to minimize is

> lIKi(p) — mill3,

i€z

leading to our primary “lossless” objective functional

N
L(p) = aillKi(p) — mil3, i €{0,1}, fori=1,2,...,N,
i=1

where a; = 1if i € Z and «; = 0 otherwise.

= To identify the set Z we will also consider a relaxed version, namely

N
L) = > aillKi(p) — pill3, s € RS, fori=1,2,...,N.
i=1



22|l Problem formulation: Constraints

= We require that the mesh modifications, due to minimizing our primary objective function
L(p), maintain the quality of the finite element approximation given by the original mesh.

= Among other requirements, mesh cells should not become tangled or inverted.
= We restrict the volume change for each mesh cell. Optionally: maintain cell convexity.

= We eliminate nodes defining important geometric features (e.g., boundaries).

Let v;(p) be the volume of cell /, i = 1,2, ... N, given by the shoelace formula

1 Nev )
V,'(p) = szi,j}/i,j—}—l —X,'7j+1y,'7j, I = 1,2,...,N,
Jj=1

where n., = 4 for quadrilaterals, and index n., + 1 = 5 is associated with 5 (mod nc,).



25| Problem formulation: Constraints
= Let Vinin = Minjcq12. vy Vi(P) and Vimax = maxieq12,...ny Vi(P)-

= We define the lower and upper volume bounds, v,!o and vfp, i=1,2,...,N,respectively, in
two ways: using global quantities, where for 0 < v < 1,

V!OZ(]-*’Y)Vmin and V;Jp:(1+7)vma><v i=12,...N,

or using local quantities, where ‘
v = (1—9)vi(p) and vi? =1 +7)vi(p), i=12,...N.
= We seek p € R"» that solves ‘
(1a)

minimize L(p)
p

subjectto v° < v(p) < v (1b)

|
The feasible set defined in (1b) is nonempty for both definitions of the bounds, global and local. I I




261 Algorithms

m|n|m|ze L(p Za,HK — ill3

subjectto v'° < v(p) < v and
a;€40,1}, i=1,2,...,N.

= Optimization algorithm to move the mesh nodes p.
= Clustering algorithm to define the cell targets .

= Bracketing algorithm to define the weights a.




Optimization algorithm: ALESQP

ALESQP uses an augmented Lagrangian penalty to handle inequality constraints.

General inequality constraints are transformed to equality constraints and bounds using
slack variables, s € RV, s; = vi(p), i = 1,2,..., N:

minimize L(p)
p,s
subject to v( )—s=0
°<s<v

The subproblems in ALESQP penalize inequality constraints, and maintain equalities:

2
minpi)rpize L(p) o |7 ()r\ +s5— max(min(% +5,v"), Vup>> ) (2a)
subjectto v(p) —s =0, (2b)

where r > 0is a scalar computed by ALESQP, A € RV is a Lagrange multiplier
corresponding to the slack variables s, and min and max are applied elementwise.

Objective function in (2a) is differentiable, despite the non-smooth min and max functions.




22l Subproblem solver: Composite-step trust-region SQP!?%

,(Xj)S +c(x) =0

= Trust-region step: s; = n; + t;

= Quasi-normal step n;:

reduces linear infeasibility
f (. 12
min - llg"(g)n+ g0l
st. Il < ¢a;

Tangential step t;:

improves optimality while staying in the null
space of the linearized constraints

1
min E(Vxxf(xj,é]‘)(f + ), t+ ) + (V2 (x5, ), t + np) + ZL(x,6)

st gg)t=0, |t+nl<a

[22] M. Heinkenschloss and D. Ridzal (2014). “A matrix-free trust-region SQP method for equality-constrained optimiza-
tion”. In: SIAM Journal on Optimization 24.3, pp. 1507-1541. DOI: 10.1137/130921738.


https://doi.org/10.1137/130921738

291 The key computational kernel: Augmented system ‘

. Compute quasi-normal step n; using Augmented System |
Powell dogleg, where for the Newton ste
gleg, A p / g/(X')T yl bl il
we solve an augmented system inexactly. , J s | = 5 |+ 5
- g'lg) 0 y b e
. Solve tangential subproblem for t; via
projected Steihaug-Toint CG, where the = The size of (¢! €?) is governed by the progress of the
projections are computed by solving optimization algorithm:
augmented systems inexactly.
1 2 1 2 1
. Restore linearized feasibilty, for el + el < 7 (1M1 167 Dyl )
tangential step t;, via another
inexact projection. = In this application, with variables (p, s), augmented
systems are:
. Update Lagrange multipliers ¢;1 by . I
solving an augmented system inexactly. / g,T / g
( g 0 ) 7 &
. Evaluate progress. g g o



30l The key computational kernel: Augmented system

= Here g, corresponds to the Jacobian v, (p) and g; is —/.

= As v(p) is defined by the shoelace formula, the entries of g, take the form

Yik+1 = Yik—1 and Xj k—1 — Xi k+1-

The structure of g;, appears similar to a discrete divergence on the mesh.

Similarly, g';T resembles a discrete gradient.

= So, the Schur complement of the augmented system matrix is

S= g';gF',T +1,

where the g';gr’,T matrix resembles a discrete Laplacian.
= The augmented system is easily solved using MINRES or GMRES, with no preconditioning.

= For problems with large domain lengthscales, where the term gF’,gF’,T may dominate,
multigrid methods are very effective in approximating the application of S—1.



Clustering algorithm: k-medoids to compute cell targets

k-medoids algorithm is used to obtain
lossless compression.

Recall: medoids are representatives of a
data cluster, which minimize the distance
to all other data points in the cluster.

We initialize our algorithm by drawing k
samples randomly from N data points,
without replacement, the indices of which

are denoted by the permutation cr,’)’.

After performing clustering on K(p) and
obtaining the cluster assignments ¥ and
indices of cluster medoids C, the shape
targets are defined by the corresponding
medoid for each data point, u; = Kc,d)’_(p),
i=1,2,...,N.

Algorithm 2. Shape clustering.

1: Input: Jacobians J € | RV*8 number of clusters k.
2: Initialization: ¢ « 0 € NV, conv + false, draw permutation C' (7']\ e Nk,
3: while not conv do

4: fori=1,2,...,1] N do // Assign 1; to closest cluster index based on || - Hfz
5: d« 0eR"

6: for j=1,2,..., .k do

7 d, < 0.9 — I3,

8: end for

9: i = 5 : dy = min(d)

10: end for

.k do // Assign C; to global index for cluster medoid.
13: } m = |Z|
14: 1—UEN’" l—l
15: fori=1,2,....1 N do // Construct cluster-to-data lookup @.
16: if ;=7 then
17: v iy L1411
18: end if
19: end for
20: Jimed  median(.J(v,:)) // Column-wise median over m cluster members.
21: d+0eR™
22: forl=1,2,..., m do
23: di [T (0,2) = Jmeall7,
24: end for
25: Cj < v, : dg = min(d) // Cluster medoid is closest member to Jied-
26: end for

27: if Colq = C then // Converged if assignments are unchanged.

28: conv ¢— true

29: end if

30: end while

31: Output: Indices of cluster medoids, C' € N¥, and cluster assignments, 1) € NV,




21 Bracketing algorithm: Computing binary weights

= Two phases: a “ranking” phase to determine the best candidate cells for lossless
compression, and a “bracketing” phase to determine losslessly compressible cells.

= In the ranking phase, where we use the relaxed objective function L,, we compute cell-wise
weights o € RN based on the normalized squares of cluster sizes. This weighting scheme
prioritizes large clusters while sacrificing smaller clusters.

= In the bracketing phase, we employ a bisection-like procedure based on the percentage
of the cells for which we conjecture near-zero misfit.

= We compute the weights a € {0, 1}V by sorting the cell misfits || K;(p) — /3,

i=1,2,...N,inascending order.

= We begin with a guess of 50%, and if the obtained objective function is small, after several
rounds of clustering, we increase the percentage to 75%; if it is large, we decrease it to 25%.

= The process is then repeated.

= We zoom in, within 1% accuracy, on the number of losslessly compressible cells in only a
handful of iterations, due to the scheme’s logarithmic complexity.
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Algorithm 3. r-adaptive optimization with bracketing.

W e

Input: Mesh 7, with points p; compression tolerance £; ALESQP tolerance tol.
Initialization: Set ALESQP parameters as in [6, p. 258] and set ALESQP stop-
ping tolerance to tol. Set bracket (bpot, bmid; brop) = (0,50, 100). Set bpick <= bmid-
Choose numbers of clusters, k, ranking iterations, nyank, bracketing iterations,
Npracket, and clustering iterations, neiust. Set p <= P, Lyrey = 00 and 7 1075,
for i =1,2,... ,nrank do // Ranking phase to find candidates.
Compute targets € RV*® using Algorithm 5.1.
Compute weights o € RY using formula (5.4).
Solve problem (5.1) with the relaxed objective function L, using ALESQP.
if L,(p) < max(r,2%/N) then // Objective tolerance met.
break
end if
if |L,(P) — Lprev|/|Lprev| < 107 then // Stagnation detected.
break
end if
Set Lprev < Lr(P)-

: end for

if L,(p) < max(r,e%/N) then // Ranking phase sufficient.
Set bpick 99 and skip bracketing phase.

end if

Set Pinit = Py Lrank = Ly (P)-

19: for i = 1,2,..., Npracket do // Bracketing phase.

20: Set p ¢ Pinits Lprev = Lrank-

21: for i =1,2,...,neust do // Clustering.

22: Compute targets p € RV*® using Algorithm 5.1.

23: Compute weights a € {0,1}" using formula (5.5) with 7 = |buia/100- N|.
24: Solve problem (5.1) using ALESQP.

25: if L(p) < max(r,e?/N) then // Objective tolerance met.
26: break

27: end if

28: if |L(P) — Lprev|/|Lprev| < 1073 then // Stagnation detected.
29: break

30: end if

31: Set Lyrev < L(p).

32: end for

33: if L(p) < max(r,e?/N) then // Bracketing procedure.

34: if binia > bpick then bpick = biia

35 end if

36: Set Dot < bmid and bmia < [ (bmid + brop) /2]

37: else

38: Set brop < bmid and bmia < [ (bmia + bbot) /2]

39: end if

40: end for

41: Repeat clustering with 7 < |bpick/100 - N and 7 < £2/N. // Refine result.
42: Output: Mesh 7}, , with points p.
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Example 1: Structured mesh recovery.

T} is a uniform mesh of square cells on the
domain [—0.5, 0.5]2 with a random
perturbation of strength 0.4v/N applied to
each non-boundary vertex.

The volume constraints are formulated
using the global bounds, with v = 0.4.

We set the number of clusters to k = 2.

Algorithm parameters are ¢ = 10719,
tol = 10_12, Nrank = 0, Npracket = 8, and
Newst = 200. The ALESQP parameters,
other than tol, come directly from Antil,
Kouri, and Ridzal 2023, p. 258.
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(d) First cluster assignment.

(b) Mesh after.

(e) Last cluster assignment.

— before optimization

— after optimization

Tolerance

(c) Mesh compression.

(f) logq misfit with respect to the

cluster medoids.
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361 Numerical results: Scalability of structured mesh recovery

Mesh CLS AL SQP CG  Avg. GMRES

20 x 20 7 11 12 223 4.51
40 x 40 38 71 52 944 3.91
80 x 80 29 52 39 726 3.03
160 x 160 28 49 38 851 2.87
320x320 30 54 43 1522 2.91

Iteration counts for the randomly perturbed square mesh with increasing grid sizes.
= CLS denotes the total number of clustering stages,
= AL denotes the total number of (outer) augmented Lagrangian iterations in ALESQP,
= SQP denotes the total number of (inner) SQP iterations,

= CG denotes the total number of projected CG iterations in the tangential-step QP
subproblem, and

= Avg. GMRES denotes the average number of GMRES iterations per call to GMRES.

With the exception of the 20 x 20 mesh, all iteration numbers remain in narrow ranges with
increasing mesh size. Note the low average numbers of GMRES iterations, around three.
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Example 2: Square mesh with poor topology.

= 10 x 10 boundary division and 99
quadrilaterals in the interior.

= This mesh is taken as a two-dimensional
slice from the front corner of the
three-dimensional extruded mesh,
previously shown.

= We use two clusters, k = 2.

= We formulate the constraints using the
local bounds, with v = 0.4.
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Tolerance
(a) Mesh before. (b) Mesh after. (c) Mesh compression.
(d) First cluster assignment. (e) Last cluster assignment. (f) logq misfit with respect to the

cluster medoids.
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Example 3: Circle mesh.

|

= The mesh contains 896 cells and 933
vertices, of which 861 nodes are free.

H

= Here we use four clusters, k = 4.

= We formulate the constraints using the
local bounds, with v = 0.4.




— before optimization
after optimization
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100

Tolerance

(c) Mesh compression.

(b) Mesh after.

(a) Mesh before.

(f) logq misfit with respect to the

cluster medoids.

(e) Last cluster assignment.

(d) First cluster assignment.



41l Conclusions

= Demonstrated two complementary approaches to reducing the memory burden of
large-scale finite element simulations.

= First contribution is a dictionary-based compression scheme, with massive reductions in
memory use in the MrHyDE finite element simulator.

= Second contribution is an r-adaptive mesh optimization algorithm that combines the
recently developed ALESQP method, k-medoids clustering, and bracketing, to enhance
redundancy in meshes that do not naturally possess it.

= Demonstrated significant lossless compression for a variety of challenging meshes, while
maintaining cell shape quality through volume inequality constraints.

= Future research directions include extensions to other types of constraints, such as
convexity constraints, and algorithmic improvements.

= In the large-scale setting, with meshes containing millions or billions of finite elements, the
developed algorithms are meant to be applied to subdomains resulting from typical spatial
decomposition, rather than the full mesh.
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