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2 History, circa 2021: Design of electromagnetic systemsMotivation: Metasurfaces for enhanced optical systems 

Optimal design
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GOAL Electromagnetic devices with nanoscale structures.

EXAMPLE A micron-thin lens with millions of meta-atoms.
PURPOSE Weight and space savings.
APPLICATION Next-generation night vision systems, etc.

Objective lens stack Eyepiece lens stack

Metasurface

D

meta-
atom cross-section

For every meta-atom, find
optimal “diameter” D of its
cross-section, to maximize
focusing efficiency of full lens.

1. Posit spatially dependent
    material design problem;
2. Homogenize material
    to cross section diameter.
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3 The memory challenge

Modern computing technology has embraced heterogeneous architectures with complexprocessing units that enable massive concurrency for scientific applications.
Frontier at Oak Ridge National Lab and Aurora at Argonne National Lab are demonstrating
exascale calculations[1].
Many scientific applications involving the numerical solution PDEs using FEM are limited intheir prediction fidelity by system memory rather than processing power . . .
. . . due to significant reductions in the amount of system memory per compute thread.
Efforts to compress data output through dimension reduction and machine learning do notreduce the amount of system memory required to run the simulations.
New approaches are required to enable higher-fidelity simulations for predictive science.

[1] Top500.org (2024). https://www.top500.org/lists/top500/list/2024/06. (Visited on 06/30/2024).

https://www.top500.org/lists/top500/list/2024/06


4 Opportunities

Library-based and modular HPC applications, through FEM software libraries like
MFEM[2], deal.ii[3] and Intrepid[4].
A far-reaching opportunity for the community to tackle the memory challenge at itssource, namely, the data structures used for finite element computations.
Few if any changes to the implementations of the PDEs that underlie HPC applications.
If we are successful, mesh databases will join.

[2] R. Anderson et al. (2021). “MFEM: A modular finite element methods library”. In: Computers & Mathematics with Appli-
cations 81, pp. 42–74. DOI: 10.1016/j.camwa.2020.06.009.[3] W. Bangerth, R. Hartmann, and G. Kanschat (2007). “deal.II–a general-purpose object-oriented finite element library”.In: ACM Transactions on Mathematical Software (TOMS) 33.4, 24–es. DOI: 10.1145/1268776.1268779.[4] P. Bochev et al. (2012). “Solving PDEs with Intrepid”. In: Scientific Programming 20.2, pp. 151–180. DOI: 10.3233/SPR-
2012-0340.

https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.3233/SPR-2012-0340
https://doi.org/10.3233/SPR-2012-0340


5 Related work

Matrix-free approaches, such as Jacobian-free Newton Krylov methods[5] and MFEM’s
partial assembly, seek to avoid storage of Jacobians of PDE residuals and utilizematrix-vector products for linear algebra operations.
Constructing effective matrix-free preconditioners is challenging and remains an activearea of research[6][7].

[5] D. A. Knoll and D. E. Keyes (2004). “Jacobian-free Newton–Krylov methods: a survey of approaches and applications”.In: Journal of Computational Physics 193.2, pp. 357–397. DOI: 10.1016/j.jcp.2003.08.010.[6] D. A. May, J. Brown, and L. Le Pourhiet (2015). “A scalable, matrix-free multigrid preconditioner for finite elementdiscretizations of heterogeneous Stokes flow”. In: Computer methods in applied mechanics and engineering 290, pp. 496–523. DOI: 10.1016/j.cma.2015.03.014.[7] T. C. Clevenger and T. Heister (2021). “Comparison between algebraic and matrix-free geometric multigrid for a Stokesproblem on adaptive meshes with variable viscosity”. In: Numerical Linear Algebra with Applications 28.5, e2375. DOI:
10.1002/nla.2375.

https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.1002/nla.2375


6 Related work

Other data reduction techniques such as sum factorizations[8][9][10] seek to exploitstructure to reduce the cost in storing or computing finite element basis functions.
Most beneficial to three-dimensional problems with high-order function approximations.
Elsewhere, data reduction techniques have been used with evolutionary PDEs to enableadjoint-based PDE-constrained optimization through checkpointing[11].

[8] M. Ainsworth, G. Andriamaro, and O. Davydov (2011). “Bernstein–Bézier finite elements of arbitrary order and optimalassembly procedures”. In: SIAM Journal on Scientific Computing 33.6, pp. 3087–3109. DOI: 10.1137/11082539X.[9] A. Bressan and S. Takacs (2019). “Sum factorization techniques in isogeometric analysis”. In: Computer Methods in
Applied Mechanics and Engineering 352, pp. 437–460. DOI: 10.1016/j.cma.2019.04.031.[10] J. Mora and L. Demkowicz (2019). “Fast integration of DPG matrices based on sum factorization for all the energyspaces”. In: Computational Methods in Applied Mathematics 19.3, pp. 523–555. DOI: 10.1515/cmam-2018-0205.[11] A. Griewank (1992). “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differen-tiation”. In: Optimization Methods and Software 1.1, pp. 35–54. DOI: 10.1080/10556789208805505.

https://doi.org/10.1137/11082539X
https://doi.org/10.1016/j.cma.2019.04.031
https://doi.org/10.1515/cmam-2018-0205
https://doi.org/10.1080/10556789208805505


7 Our complementary contributions

We detect and exploit redundancies in the computational mesh, based on cell shapes.
Additionally, we enhance mesh redundancies, by moving mesh nodes without changes tothe mesh topology, i.e., through r-adaptivity.
A goal is to enable clustering of mesh cells into a relatively small number of classes basedon shape identity or, more broadly, shape similarity[12][13] . . .

. . . important related ideas inmesh generation and refinement:
Finite number of similarity
classes, ≤ 37, in longest edge
bisection of tetrahedra.

Our challenge is different: maintain the topology and quality of a given mesh.
[12] J. P. Suárez, A. Trujillo, and T. Moreno (2021). “Computing the exact number of similarity classes in the longest edgebisection of tetrahedra”. In: Mathematics 9.12, p. 1447. DOI: 10.3390/math9121447.[13] A. Trujillo-Pino, J. P. Suárez, and M. A. Padrón (2024). “Finite number of similarity classes in Longest Edge Bisectionof nearly equilateral tetrahedra”. In: Applied Mathematics and Computation 472, p. 128631. DOI: 10.1016/j.amc.2024.
128631.

https://doi.org/10.3390/math9121447
https://doi.org/10.1016/j.amc.2024.128631
https://doi.org/10.1016/j.amc.2024.128631


8 Contribution No. 1: Detect and exploit mesh redundancy

Cost of storing finite element quantities, such as cell Jacobians, scales linearly with thenumber of mesh elements, N .
We aim to reduce the O(N) storage cost to O(m), where m ≪ N .
We develop a dictionary-based data compression scheme for problems where a givenmesh contains this redundant structure.
The scheme compresses the evaluations of finite element basis functions at quadraturepoints, which are linked directly to cell geometries.
The dictionary achieves reductions in storage of more than 99% for meshes with redundantstructure, enabling billion-element simulations in under 100 gigabytes of memory.



9 FEM background
An important computational kernel in FEM:

∫

T

k(x)Dα1ϕi (x)D
α2ϕj(x) dx,

where T is a domain that corresponds to a mesh cell in a mesh Th of the domain Ω, k(x) issome problem coefficient matrix, α1 and α2 are alpha-indices for the derivative operator D ,and ϕi (x) and ϕj(x) are finite element basis functions.
Integrals are evaluated using quadrature and basis functions on a reference domain T̂ .

x̂

ŷ

T̂

x

y

T

ΦT (x̂)

JT (x̂) := ∇ΦT (x̂)

T̂ is related to T by the reference to physical map ΦT : T̂ → T , where x refers tophysical coordinates on T and x̂ refers to reference coordinates on T̂ .



10 FEM background
For a function f : T → R, we use f̂ : T̂ → R to define the pullback f̂ (x̂) := f (ΦT (x̂)).
Conversely, one defines f as the pushforward of f̂ by f (x) = f̂ (Φ−1

T (x)).
Example: Evaluation of ∇f (x) involves transforming a vector field to the reference domain,which requires the application of the covariant transformation[14]

∇f (x) = J−T
T (x̂)∇f̂ (x̂).

In R3, the de Rham complex with the associated spaces and transforms is
H1(Ω)

∇−→ H(curl; Ω) ∇×−−→ H(div; Ω) ∇·−→ L2(Ω)
I (x̂) J−T(x̂) det(J(x̂))−1J(x̂) det(J(x̂))−1

Example:
∫

T

∇ϕi (x) · ∇ϕj(x) dx =

∫

T̂

(
J−T
T (x̂)∇ϕ̂i (x̂)

)
·
(
J−T
T (x̂)∇ϕ̂j(x̂)

) detJT (x̂) d x̂.
[14] D. Boffi, F. Brezzi, M. Fortin, et al. (2013). Mixed finite element methods and applications. Vol. 44. Springer. DOI:
10.1007/978-3-642-36519-5, c.f. §2.1.3, 2.1.4.

https://doi.org/10.1007/978-3-642-36519-5


11 FEM background
We can trade computation for storage of basis functions and their derivatives.
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Figure: Tradeoffs between storing and recomputing basis data for a heat transfer simulation, where we
show the percentage of basis data retained across the mesh. For the given mesh, containing significant
redundancy, the cost of our proposed basis compression scheme is denoted by the x mark.



12 FEM background

Two mesh cells T1 and T2 with equal Jacobians JT1 = JT2 must have mappings ΦT1 and
ΦT2 which differ by only a constant.
I.e., T1 is a translation of T2 if and only if JT1 = JT2 , i.e., T1 and T2 have identical shapes.

Lemma

Let ϕ̂ ∈ S , with S ∈ {H1(T̂ ),H(curl; T̂ ),H(div; T̂ ), L2(T̂ )}, be a finite element basis function on
the reference domain. Let D ∈ {1, grad, curl, div} be an operator so that Dϕ̂ ∈ L2(T̂ ). Then if two
mesh cells T1 and T2 have the same shape, the physical values Dϕ are equal and have equal
integrals, ∫

T1

Dϕ(x) dx =

∫

T2

Dϕ(x) dx.



13 Mesh examples with redundancy

Figure: Three examples of mesh classes with redundancy: (left) structured/graded, (middle) geometrically
patterned, and (right) extruded. The latter two meshes comprise large clusters of identical cell shapes. The
cells in the graded mesh have shapes that are identical up to a dimensional scaling.



14 Compression algorithm to detect and exploit redundancy

A list of “unique” cells is constructed by looping over mesh cells Ti and comparing them tocell Tj in the list of unique cells.
A distance d(Ti ,Tj) is computed using the cell Jacobians,

d(Ti ,Tj) =

√∑q
k=1 wk∥JTi (x̂k)− JTj (x̂k)∥2F√∑q

k=1 wk∥JTj (x̂k)∥2F
,

where x̂k denote the quadrature points on the reference domain, with weights wk ,
k = 1, 2, . . . , q, and ∥ · ∥F is the Frobenius norm.
If d(Ti ,Tj) < ε, then a match is found, and basis evaluations on Ti are replaced by thebasis evaluations on Tj .
Let ε0 be the largest acceptable compression tolerance for a given application without asignificant impact on accuracy, cf. Cea’s Lemma, Strang’s Lemma. We say that thecompression is lossless when ε ≤ ε0, and if ε > ε0 we refer to the compression as lossy.



15 Compression algorithm to detect and exploit redundancy

Algorithm 1. Construction of the mesh dictionary.

using the cell Jacobians,

d(Ti, Tj) =

qPq
k=1 wkkJTi(x̂k)� JTj (x̂k)k2FqPq

k=1 wkkJTj (x̂k)k2F
,

where x̂k denote the quadrature points on the reference domain, with weights wk,
k = 1, 2, . . . , q, and k · kF is the Frobenius norm. If d(Ti, Tj) < ", then a match
is found, and basis evaluations on Ti are replaced by the basis evaluations on Tj .
Later, we will discuss di↵erent types of compression, based on ". Let "0 be the largest
acceptable compression tolerance for a given application without a significant impact
on accuracy. We say that the compression is lossless when "  "0, and if " > "0 we
refer to the compression as lossy. Algorithm 3.1 summarizes our proposed scheme.

Algorithm 3.1 Construction of the mesh dictionary

1: Input: Mesh Th = {T1, T2, . . . , TN}, tolerance ".
2: B"  {},  "  ~0 2 NN

3: for i = 1, 2, . . . , N do
4: match false

5: for Tj 2 B" do
6: if d(Ti, Tj) < " then
7: match true;  "(i) j; break
8: end if
9: end for

10: if match=false then
11: append Ti to B";  "(i) |B"|
12: end if
13: end for
14: Output: Dictionary of cells, B", with lookup indices  " 2 NN .

This algorithm is a greedy approach as it loops over cells sequentially while search-
ing for matches. While it is not guaranteed to find the best match for a cell, it finds
the first match for a cell within the specified tolerance. Many performance-related
optimizations are possible, however they are beyond the scope of this paper. Because
the output of Algorithm 3.1 depends on the tolerance ", the compression ratio, given

by N�|B"|
N , is a function of ". We will refer to the curve relating the compression ratio

to " as the compression curve. Figure 3.3 demonstrates the curve for a circle mesh.
The algorithm is implemented in the FEM software library MrHyDE [1].

After the compression algorithm is applied, the physical basis values for each
basis function at each quadrature point are only calculated for the shapes in B".
This means the compression ratio for a mesh is directly related to the amount of
compression obtained on the physical finite element basis values. For near-zero values
of ", this compression algorithm introduces near-zero errors in the discretization, as
the reused basis values are nearly equal. While it is possible to use larger values
of ", this introduces error in the discretization, which we will analyze in the future.
Memory profiles and timing data for a heat transfer simulation in MrHyDE are shown
in Figure 3.4. We use a uniform 32, 000⇥32, 000 mesh of square cells and a compression
tolerance of " = 10�10. The simulations are run on a single compute node, in serial, for
four time steps, where each brief memory decrease in the final flat region of the profile

8



16 Compression ratio
The compression ratio of a mesh is the ratio of the number of saved Jacobian evaluationsand the total number of mesh cells,

ϱ(Th; ε) :=
N − |Bε|

N
.

Figure: Illustration of (left) a structured square mesh with one unique shape and a lossless compression
ratio (ε = ε0) of 98.4% (middle) a trapezoidal mesh with only four unique shapes and a lossless
compression ratio of 93.75%, and (right) a circle mesh with a lossless compression ratio of 15%. Cells with
the same shape within a single mesh are highlighted with the same color.



17 Compression curve

We plot the compression ratio ϱ(Th; ε), as a function of ε.
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18 Memory savings for a heat transfer example
Memory profiles and timing data for a heat transfer simulation in MrHyDE[15] are shown.
Uniform 32, 000× 32, 000 mesh of square cells and a compression tolerance of ε = 10−10.
Basis compression reduces the memory cost of a billion sets of basis function data to one.
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[15] MrHyDE library (n.d.). Accessed: 09/25/2024. URL: https://github.com/sandialabs/MrHyDE.

https://github.com/sandialabs/MrHyDE


19 Contribution No. 2: Enhance mesh redundancy

We develop a new r-adaptive mesh optimization scheme to enhance the redundancy.
Our scheme combines a novel adaptation of k-medoids clustering[16] with asparsity-promoting optimization formulation.
The latter is inspired by the constrained optimization alternative[17] to r-adaptiveschemes based on solving the Monge-Ampère equation[18][19].
Inequality constraints on the cell volumes, to prevent tangling and ensure minor deviationsfrom the original mesh, are handled using a scalable augmented Lagrangian method[20].

[16] H.-S. Park and C.-H. Jun (2009). “A simple and fast algorithm for K-medoids clustering”. In: Expert systems with applica-
tions 36.2, pp. 3336–3341. DOI: 10.1016/j.eswa.2008.01.039.[17] M. D’Elia et al. (2016). “Optimization-based mesh correction with volume and convexity constraints”. In: Journal of
Computational Physics 313, pp. 455–477. DOI: 10.1016/j.jcp.2016.02.050.[18] J.-F. Cossette, P. K. Smolarkiewicz, and P. Charbonneau (2014). “The Monge–Ampère trajectory correction for semi-Lagrangian schemes”. In: Journal of Computational Physics 274, pp. 208–229. DOI: 10.1016/j.jcp.2014.05.016.[19] P. A. Browne et al. (2014). “Fast three dimensional r-adaptive mesh redistribution”. In: Journal of Computational Physics275, pp. 174–196. DOI: 10.1016/j.jcp.2014.06.009.[20] H. Antil, D. P. Kouri, and D. Ridzal (2023). “ALESQP: An augmented Lagrangian equality-constrained SQP method foroptimization with general constraints”. In: SIAM Journal on Optimization 33.1, pp. 237–266. DOI: 10.1137/20M1378399.

https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.jcp.2016.02.050
https://doi.org/10.1016/j.jcp.2014.05.016
https://doi.org/10.1016/j.jcp.2014.06.009
https://doi.org/10.1137/20M1378399


20 Problem formulation: Quantities of interest

We focus on the quadrilateral case with straight line geometry.
Mesh Th = {T1,T2, . . . ,TN} of a domain Ω ⊂ R2, with np vertices p̂ = {p̂1, p̂2, . . . , p̂np}.
Dictionary Bε, obtained by applying Algorithm 1 to Th for a tolerance ε.
Goal: Produce a mesh Th,r such that the resulting Bε,r is smaller than Bε.
Requirement: Maintain topology, with relatively small mesh motion.
Optimization variables: Vertices p = {p1, p2, . . . , pnp}, where pi = (xi , yi ), i = 1, 2, . . . , np .
Let the double-indexing pi,j = (xi,j , yi,j) denote vertex j of mesh cell i , i = 1, 2, . . . ,N ,
j = 1, 2, . . . , ncv , with ncv denoting the number of vertices in each cell.



21 Problem formulation: Quantities of interest

(x1, y1) (x2, y2)

(x3, y3)(x4, y4) Split the quadrilateral into two triangles using thevertex index triples (1, 2, 4) and (3, 4, 2).
On a general mesh cell Ti , 1 ≤ i ≤ N , we define

ci,x2 = xi,2 − xi,1, di,x4 = xi,4 − xi,3,

ci,x4 = xi,4 − xi,1, di,x2 = xi,2 − xi,3,

ci,y2 = yi,2 − yi,1, di,y4 = yi,4 − yi,3,

ci,y4 = yi,4 − yi,1, di,y2 = yi,2 − yi,3.

The two triangle Jacobians composed of these scalars define a computationally efficientproxy for the Jacobian of the quadrilateral.
Row vector Ki (p), i = 1, 2, . . . ,N , consisting of the Jacobian entries,

Ki (p) = [ci,x2, ci,x4, di,x4, di,x2, ci,y2, ci,y4, di,y4, di,y2].

For each cell Ti in the mesh, we also associate a “target” shape µi , i = 1, 2, . . . ,N , which isa row vector of eight entries as well, analogous to Ki (p).
Our goal is to reduce the misfit between K (p) and µ, where K (p), µ ∈ RN×8.



22 Problem formulation: Objective function
We focus on lossless finite element basis compression.
Ideally, this is a sparse matching problem between the rows of K (p) and µ, which would
maximize the number of zero rows in K (p)− µ.
Approaches enforcing the so-called group sparsity, such as those using the mixed ℓ1/ℓqnorm, q > 1, have been suggested[21], with non-smooth quantities of interest of the form

N∑

i=1

∥Ki (p)− µi∥q.

The non-smoothness, induced by the norm, is difficult to handle algorithmically.
In contrast, the functional ∑N

i=1 ∥Ki (p)− µi∥22, is smooth and relatively easy to minimizeusing derivative-based optimization methods, but any notion of group sparsity may be lost.
Minimizing it typically produces no zero-misfit terms whatsoever, i.e., no losslesscompression, unless Ki (p)− µi = 0 is achievable at the optimum for all i = 1, 2, . . . ,N .

[21] F. Bach et al. (2012). “Structured sparsity through convex optimization”. In: Statistical Science 27.4, pp. 450–468. DOI:
10.1214/12-STS394.

https://doi.org/10.1214/12-STS394


23 Problem formulation: Objective function
This challenge also motivates a key idea:

identify a subset of cell indices, Z ⊆ {1, 2, . . . ,N},
such that Ki (p)− µi = 0 is achievable for all i ∈ Z.

Given a set Z , the functional to minimize is
∑

i∈Z
∥Ki (p)− µi∥22,

leading to our primary “lossless” objective functional
L(p) =

N∑

i=1

αi∥Ki (p)− µi∥22, αi ∈ {0, 1}, for i = 1, 2, . . . ,N,

where αi = 1 if i ∈ Z and αi = 0 otherwise.
To identify the set Z we will also consider a relaxed version, namely

Lr (p) =
N∑

i=1

αi∥Ki (p)− µi∥22, αi ∈ R+
0 , for i = 1, 2, . . . ,N.



24 Problem formulation: Constraints

We require that the mesh modifications, due to minimizing our primary objective function
L(p), maintain the quality of the finite element approximation given by the original mesh.
Among other requirements, mesh cells should not become tangled or inverted.
We restrict the volume change for each mesh cell. Optionally: maintain cell convexity.
We eliminate nodes defining important geometric features (e.g., boundaries).
Let vi (p) be the volume of cell i , i = 1, 2, . . .N , given by the shoelace formula

vi (p) =
1

2

ncv∑

j=1

xi,jyi,j+1 − xi,j+1yi,j , i = 1, 2, . . . ,N,

where ncv = 4 for quadrilaterals, and index ncv + 1 = 5 is associated with 5 (mod ncv ).



25 Problem formulation: Constraints
Let vmin = mini∈{1,2,...N} vi (p̂) and vmax = maxi∈{1,2,...N} vi (p̂).
We define the lower and upper volume bounds, v lo

i and vup
i , i = 1, 2, . . . ,N , respectively, intwo ways: using global quantities, where for 0 < γ < 1,

v lo
i = (1− γ)vmin and vup

i = (1 + γ)vmax, i = 1, 2, . . .N,

or using local quantities, where
v lo
i = (1− γ)vi (p̂) and vup

i = (1 + γ)vi (p̂), i = 1, 2, . . .N.

We seek p ∈ Rnp that solves
minimize

p
L(p) (1a)

subject to v lo ≤ v(p) ≤ vup. (1b)
Lemma
The feasible set defined in (1b) is nonempty for both definitions of the bounds, global and local.



26 Algorithms

minimize
p

L(p) =
N∑

i=1

αi∥Ki (p)− µi∥22

subject to v lo ≤ v(p) ≤ vup, and
αi ∈ {0, 1}, i = 1, 2, . . . ,N.

Optimization algorithm to move the mesh nodes p.
Clustering algorithm to define the cell targets µ.
Bracketing algorithm to define the weights α.



27 Optimization algorithm: ALESQP
ALESQP uses an augmented Lagrangian penalty to handle inequality constraints.
General inequality constraints are transformed to equality constraints and bounds using
slack variables, s ∈ RN , si = vi (p), i = 1, 2, . . . ,N :

minimize
p,s

L(p)

subject to v(p)− s = 0,

v lo ≤ s ≤ vup.
The subproblems in ALESQP penalize inequality constraints, and maintain equalities:

minimize
p,s

L(p) +
1

2r

∥∥∥∥r
(
λ

r
+ s −max

(
min

(λ
r
+ s, v lo), vup)

)∥∥∥∥
2

2

(2a)
subject to v(p)− s = 0, (2b)

where r > 0 is a scalar computed by ALESQP, λ ∈ RN is a Lagrange multipliercorresponding to the slack variables s , and min and max are applied elementwise.
Objective function in (2a) is differentiable, despite the non-smooth min and max functions.



28 Subproblem solver: Composite-step trust-region SQP[22]

Trust-region step: sj = nj + tj

Quasi-normal step nj :
reduces linear infeasibility

min
n∈X

∥g ′(xj )n + g(xj )∥2

s.t. ∥n∥ ≤ ζ∆j

Tangential step tj :
improves optimality while staying in the null
space of the linearized constraints

min
t∈X

1

2
⟨∇xxL (xj , ζj )(t + nj ), t + nj ⟩+ ⟨∇xL (xj , ζj ), t + nj ⟩+ L (xj , ζj )

s.t. g ′(xj )t = 0 , ∥t + nj∥ ≤ ∆j

nj

ζ∆j ∆j

tj

g′(xj )t = 0

g′(xj )s + c(xj ) = 0

[22] M. Heinkenschloss and D. Ridzal (2014). “A matrix-free trust-region SQP method for equality-constrained optimiza-tion”. In: SIAM Journal on Optimization 24.3, pp. 1507–1541. DOI: 10.1137/130921738.

https://doi.org/10.1137/130921738


29 The key computational kernel: Augmented system

1. Compute quasi-normal step nj using
Powell dogleg, where for the Newton step
we solve an augmented system inexactly.

2. Solve tangential subproblem for t̃j via
projected Steihaug-Toint CG, where the
projections are computed by solving
augmented systems inexactly.

3. Restore linearized feasibility, for
tangential step tj , via another
inexact projection.

4. Update Lagrange multipliers ζj+1 by
solving an augmented system inexactly.

5. Evaluate progress.

Augmented System
(

I g ′(xj)T

g ′(xj) 0

)(
y1

y2

)
=

(
b1

b2

)
+

(
e1

e2

)

The size of (e1 e2) is governed by the progress of the
optimization algorithm:

∥e1∥+ ∥e2∥ ≤ T
(
∥b1∥, ∥b2∥, ∥y 1∥,∆j

)
In this application, with variables (p, s), augmented
systems are:

(
I g ′T

g ′ 0

)
→

 I g ′
p
T

I g ′
s
T

g ′
p g ′

s 0

 .



30 The key computational kernel: Augmented system
Here g ′

p corresponds to the Jacobian v ′
p(p) and g ′

s is −I .
As v(p) is defined by the shoelace formula, the entries of g ′

p take the form
yi,k+1 − yi,k−1 and xi,k−1 − xi,k+1.

The structure of g ′
p appears similar to a discrete divergence on the mesh.

Similarly, g ′
p
T resembles a discrete gradient.

So, the Schur complement of the augmented system matrix is
S = g ′

pg
′
p
T
+ I ,

where the g ′
pg

′
p
T matrix resembles a discrete Laplacian.

The augmented system is easily solved using MINRES or GMRES, with no preconditioning.
For problems with large domain lengthscales, where the term g ′

pg
′
p
T may dominate,

multigrid methods are very effective in approximating the application of S−1.



31 Clustering algorithm: k-medoids to compute cell targets

k-medoids algorithm is used to obtainlossless compression.
Recall: medoids are representatives of adata cluster, which minimize the distanceto all other data points in the cluster.
We initialize our algorithm by drawing ksamples randomly from N data points,without replacement, the indices of whichare denoted by the permutation σN

k .
After performing clustering on K (p) andobtaining the cluster assignments ψ andindices of cluster medoids C , the shapetargets are defined by the correspondingmedoid for each data point, µi = KCψi

(p),
i = 1, 2, . . . ,N .

Algorithm 2. Shape clustering.Algorithm 5.1 Computation of shape clusters

1: Input: Jacobians J 2 RN⇥8, number of clusters k.
2: Initialization:   ~0 2 NN , conv false, draw permutation C  �N

k 2 Nk.
3: while not conv do
4: for i = 1, 2, . . . , N do // Assign  i to closest cluster index based on k · k2`2 .
5: d ~0 2 Rk

6: for j = 1, 2, . . . , k do
7: dj  kJ(i, :)� J(Cj , :)k2`2
8: end for
9:  i  s : ds = min(d)

10: end for
11: Cold  C
12: for j = 1, 2, . . . , k do // Assign Cj to global index for cluster medoid.
13: I = {l :  l = j}; m = |I|
14: v = ~0 2 Nm; l = 1
15: for i = 1, 2, . . . , N do // Construct cluster-to-data lookup ~v.
16: if  i = j then
17: vl  i; l l + 1
18: end if
19: end for
20: Jmed  median(J(v, :)) // Column-wise median over m cluster members.
21: d ~0 2 Rm

22: for l = 1, 2, . . . , m do
23: dl  kJ(vl, :)� Jmedk2`2
24: end for
25: Cj  vs : ds = min(d) // Cluster medoid is closest member to Jmed.
26: end for
27: if Cold = C then // Converged if assignments are unchanged.
28: conv true

29: end if
30: end while
31: Output: Indices of cluster medoids, C 2 Nk, and cluster assignments,  2 NN .

of 50%, and if the obtained objective function is small, after several rounds of clus-
tering, we increase the percentage to 75%; if it is large, we decrease it to 25%. The
process is then repeated. This approach allows us to zoom in, within 1% accuracy,
on the number of losslessly compressible cells in only a handful of iterations, due to
its logarithmic complexity. Given a guess ⌘ 2 {1, 2, . . . N} of the number of loss-
lessly compressible cells, we compute the weights ↵ 2 {0, 1}N by sorting the cell
misfits kKi(p)� µik22, i = 1, 2, . . . N , in ascending order, and computing a cell index
permutation, E , corresponding to the sorted order. Then, for i = 1, 2, . . . N ,

↵i =

(
1 if E(i)  ⌘,
0 otherwise.

(5.5)

The complete r-adaptive mesh compression algorithm is given in Algorithm 5.2.

6. Numerical results. We now present numerical examples demonstrating the
e↵ectiveness of Algorithm 5.2. Each example features “before” and “after” mesh
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32 Bracketing algorithm: Computing binary weights

Two phases: a “ranking” phase to determine the best candidate cells for losslesscompression, and a “bracketing” phase to determine losslessly compressible cells.
In the ranking phase, where we use the relaxed objective function Lr , we compute cell-wiseweights α ∈ RN based on the normalized squares of cluster sizes. This weighting schemeprioritizes large clusters while sacrificing smaller clusters.
In the bracketing phase, we employ a bisection-like procedure based on the percentageof the cells for which we conjecture near-zero misfit.
We compute the weights α ∈ {0, 1}N by sorting the cell misfits ∥Ki (p)− µi∥22,
i = 1, 2, . . .N , in ascending order.
We begin with a guess of 50%, and if the obtained objective function is small, after severalrounds of clustering, we increase the percentage to 75%; if it is large, we decrease it to 25%.
The process is then repeated.
We zoom in, within 1% accuracy, on the number of losslessly compressible cells in only ahandful of iterations, due to the scheme’s logarithmic complexity.



33 Bracketing algorithm: Computing binary weights

Algorithm 3. r-adaptive optimization with bracketing.Algorithm 5.2 r-adaptive mesh compression

1: Input: Mesh Th with points p̂; compression tolerance "; ALESQP tolerance tol.
2: Initialization: Set ALESQP parameters as in [6, p. 258] and set ALESQP stop-

ping tolerance to tol. Set bracket (bbot, bmid, btop) (0, 50, 100). Set bpick  bmid.
Choose numbers of clusters, k, ranking iterations, nrank, bracketing iterations,
nbracket, and clustering iterations, nclust. Set p p̂, Lprev  1 and ⌧  10�8.

3: for i = 1, 2, . . . , nrank do // Ranking phase to find candidates.
4: Compute targets µ 2 RN⇥8 using Algorithm 5.1.
5: Compute weights ↵ 2 RN using formula (5.4).
6: Solve problem (5.1) with the relaxed objective function Lr using ALESQP.
7: if Lr(p)  max(⌧, "2/N) then // Objective tolerance met.
8: break
9: end if

10: if |Lr(p)� Lprev|/|Lprev|  10�3 then // Stagnation detected.
11: break
12: end if
13: Set Lprev  Lr(p).
14: end for
15: if Lr(p)  max(⌧, "2/N) then // Ranking phase su�cient.
16: Set bpick  99 and skip bracketing phase.
17: end if
18: Set pinit = p, Lrank = Lr(p).
19: for i = 1, 2, . . . , nbracket do // Bracketing phase.
20: Set p pinit, Lprev = Lrank.
21: for i = 1, 2, . . . , nclust do // Clustering.
22: Compute targets µ 2 RN⇥8 using Algorithm 5.1.
23: Compute weights ↵ 2 {0, 1}N using formula (5.5) with ⌘ = bbmid/100 ·Nc.
24: Solve problem (5.1) using ALESQP.
25: if L(p)  max(⌧, "2/N) then // Objective tolerance met.
26: break
27: end if
28: if |L(p)� Lprev|/|Lprev|  10�3 then // Stagnation detected.
29: break
30: end if
31: Set Lprev  L(p).
32: end for
33: if L(p)  max(⌧, "2/N) then // Bracketing procedure.
34: if bmid > bpick then bpick  bmid

35: end if
36: Set bbot  bmid and bmid  b(bmid + btop)/2c.
37: else
38: Set btop  bmid and bmid  b(bmid + bbot)/2c.
39: end if
40: end for
41: Repeat clustering with ⌘  bbpick/100 · Nc and ⌧  "2/N . // Refine result.
42: Output: Mesh Th,r with points p.
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34 Numerical results: Structured mesh recovery

Example 1: Structured mesh recovery.
Th is a uniform mesh of square cells on thedomain [−0.5, 0.5]2 with a randomperturbation of strength 0.4

√
N applied toeach non-boundary vertex.

The volume constraints are formulatedusing the global bounds, with γ = 0.4.
We set the number of clusters to k = 2.
Algorithm parameters are ε = 10−10,tol = 10−12, nrank = 6, nbracket = 8, and
nclust = 200. The ALESQP parameters,other than tol, come directly from Antil,Kouri, and Ridzal 2023, p. 258.
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36 Numerical results: Scalability of structured mesh recovery

Mesh CLS AL SQP CG Avg. GMRES
20× 20 7 11 12 223 4.51
40× 40 38 71 52 944 3.91
80× 80 29 52 39 726 3.03
160× 160 28 49 38 851 2.87
320× 320 30 54 43 1522 2.91

Iteration counts for the randomly perturbed square mesh with increasing grid sizes.
CLS denotes the total number of clustering stages,
AL denotes the total number of (outer) augmented Lagrangian iterations in ALESQP,
SQP denotes the total number of (inner) SQP iterations,
CG denotes the total number of projected CG iterations in the tangential-step QPsubproblem, and
Avg. GMRES denotes the average number of GMRES iterations per call to GMRES.

With the exception of the 20× 20 mesh, all iteration numbers remain in narrow ranges withincreasing mesh size. Note the low average numbers of GMRES iterations, around three.



37 Numerical results: Square mesh with poor topology

Example 2: Square mesh with poor topology.
10× 10 boundary division and 99quadrilaterals in the interior.
This mesh is taken as a two-dimensionalslice from the front corner of thethree-dimensional extruded mesh,previously shown.
We use two clusters, k = 2.
We formulate the constraints using thelocal bounds, with γ = 0.4.
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39 Numerical results: Circle mesh

Example 3: Circle mesh.
The mesh contains 896 cells and 933vertices, of which 861 nodes are free.
Here we use four clusters, k = 4.
We formulate the constraints using thelocal bounds, with γ = 0.4.
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41 Conclusions

Demonstrated two complementary approaches to reducing the memory burden oflarge-scale finite element simulations.
First contribution is a dictionary-based compression scheme, with massive reductions inmemory use in the MrHyDE finite element simulator.
Second contribution is an r-adaptive mesh optimization algorithm that combines therecently developed ALESQP method, k-medoids clustering, and bracketing, to enhanceredundancy in meshes that do not naturally possess it.
Demonstrated significant lossless compression for a variety of challenging meshes, whilemaintaining cell shape quality through volume inequality constraints.
Future research directions include extensions to other types of constraints, such asconvexity constraints, and algorithmic improvements.
In the large-scale setting, with meshes containing millions or billions of finite elements, thedeveloped algorithms are meant to be applied to subdomains resulting from typical spatialdecomposition, rather than the full mesh.
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