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INFORMATION GEOMETRIC 

  REGULARIZATION

Part I: New Methodology

2

Ruijia Cao

Cao, S, 2023 https://arxiv.org/abs/2308.14127



Shocks in Gas Dynamics
Aerospace
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https://en.wikipedia.org/wiki/Atmospheric_entry#/media/Fi le:Blunt_body_reentry_shapes.pnghttps://www.nasa.gov/image-feature/veil-nebula-supernova-remnant

Astrophysics

Shocks: jumps in pressure, density, velocity

Takayama, 2019 Koreeda et al., 2019

Microscopically thin,

can not resolve in 

simulation!
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Compressible Euler Equations

Model frictionless barotropic gas dynamics
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Velocity

Momentum

Density 

External force 

Pressure (increasing function)

Conservation 

of mass and 

momentum 



Compressible Euler Equations

In one dimension: 
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Compressible Euler Equations

In one dimension: 
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Compressible Euler Equations

In one dimension: 
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Vanishing Viscosity Solution

Solution from vanishing viscosity limit 𝜈 → 0
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Numerical solution

Choose small 𝜈, use standard methods?
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(Near-)discontinuities cause numerics to 

blow up (Gibbs-Runge Phenomenon)

Larger 𝜈 smears out solution over time



Nonlinear Diffusion
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Von Neumann & Richtmeyer (1950), Dolejvsi et al.(2003), Puppo (2004), Cook & 
Cabot(2005), Fiorina & Lele (2007), Mane et al. (2009), Barter & Darmofal (2010), 
Guermond et al. (2011), Bruno et al. (2022)

Idea: Choose viscosity adaptively, at shock

Shock Sensor     needs to detect 

shocks based on local information.

Try to avoid breakdown and oversmoothing 



Localized Artificial Diffusivity
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Here: Use local artificial diffusivity following Mani et al. Numerous alternatives exist



Localized Artificial Diffusivity
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Here: Use local artificial diffusivity following Mani et al. Numerous alternatives exist



Liu et al., “Discontinuity Computing Using Physics-Informed Neural Networks”, 2024

Alternative: Nonlinear Numerics

Alternative: Limiters (MUSCL, (W)ENO), 

Riemann Solvers, Shock tracking.

Can be more effective, but 

 Numerical artefacts

 Spurious sensitivities 
 

 Restricts discretization,

 causes technical debt
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Bodony & Fikl, “Adjoint-based 

sensitivity of shock-laden flows”, 2022

Godunov (1959), Van Leer (1979), Liu et al. 
(1994), Harten et al. (1997), Shu (1998) 

MacCormack, “The carbuncle 

CFD problem”, 2022



Bhat & Fetecau, “On a regularization of the compressible Euler equations for an isothermal gas”, 2009

Inviscid PDE regularization?
1. Attempt “Leray Regularization”
Bhat, Fetecau, also Marsden, Mohseni, West, 2003-2009

Wrong shock speed ⇒ not practical
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2. Attempt “Saint-Venant Regularization”
Guelmame, Clamond, and Junca, 2020 

Only 1-d, dissipation only in singularities



Information Geometric Reg. (IGR)

15Cao, S, 2024



Information Geometric Reg. (IGR)
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Solution by Particle Tracking

To simplify: set 𝑃 ≡ 0, 1-d
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Define family of paths

Obtain solution



Solution by Particle Tracking

To simplify: set 𝑃 ≡ 0, 1-d

19
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Obtain solution



Solution by Particle Tracking

To simplify: set 𝑃 ≡ 0, 1-d
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Define family of paths

Obtain solution



Perspectives on Shocks

I: Particle Collision 

Shocks form when 

trajectories cross.
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Perspectives on Shocks

II: Boundary
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Shocks form when  

hits boundary of diff-

eomorphism manifold

I: Particle Collision 

Shocks form when 

trajectories cross.



Perspectives on Shocks

Shocks form when 

pushforward 

becomes singular

IV: Optimization 

23

Shocks form when 

constraint activates.

III: Mass collapse



After shock

Vanishing viscosity solutions  
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merge 

trajectories

stick to 

boundary

propagate 

Diracs

solve ineq. 

constrained 

problem



Interior Point Methods for PDEs
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Regularize to enforce strict feasibility



Interior Point Methods for PDEs
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Regularize to enforce strict feasibility

Nominal problem: Regularized problem:



Interior Point Methods for PDEs

Particles converge, but don’t collide!
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How to extend beyond variational case?

Use 𝛼 to modulate regularization.



Geometry of Barrier Functions

In differential geometry: Distinguish points 

on manifold and directions in tangent space

Exp𝑝 𝑣 ≔ from 𝑝, walk in direction 𝑣 for  

      unit time, return new position
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Geometry of Barrier Functions

In differential geometry: Distinguish points 

on manifold and directions in tangent space

Exp𝑝 𝑣 ≔ from 𝑝, walk in direction 𝑣 for  

      unit time, return new position

Euclidean: Exp𝑝 𝑣 = 𝑝 + 𝑣
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Geometry of Barrier Functions

Barrier function defines dual Exp. map 

Exp𝑝
𝜓

𝑣 ≔ ∇𝜓−1 ∇𝜓 𝑝 + D2𝜓 𝑝 𝑣 

30

Amari & Nagaoka (2000)
Nemirovsky & Yudin (1983)
Amari & Cichocki (2010)
Raskutti & Mukherjee (2013)
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Geometry of Barrier Functions

Barrier function defines dual Exp. map 
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𝜓
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Geometry of Barrier Functions

Barrier function defines dual Exp. map 

Exp𝑝
𝜓

𝑣 ≔ ∇𝜓−1 ∇𝜓 𝑝 + D2𝜓 𝑝 𝑣 

Dual straight lines (a.k.a. geodesics) are 

Euclidean straight lines in ∇𝜓-space
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Amari & Nagaoka (2000)
Nemirovsky & Yudin (1983)
Amari & Cichocki (2010)
Raskutti & Mukherjee (2013)



Geometry of Barrier Functions

Solution Paths of IPMs are dual geodesics

[Amari 2016], also [Nesterov & Todd, 2002]

Replace characteristics with dual geodesics
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The dual equation of motion

Straight lines have the form
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yielding

and the dual equation of motion



Time to Compute
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Time to Compute

Plug into dual equation of motion
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Defining



Time to Compute

Plug into dual equation of motion
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Add external forces & pressure

Defining



Extension to Multivariate case

Naïve extension to multivariate Euler

Analog to 

 linear program → semidefinite program.

But logdet non-convex on general matrices.

Set of diffeomorphisms is not convex! 
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Extension to Multivariate case

Idea: Lift to
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with embedding  

View diffeomorphisms as submanifold



Extension to Multivariate case

Embedding induces exp. on submanifold

41Curvature of embedding Curvature of barrier geometry



Extension to Multivariate case

Re-express as Eulerian conservation law
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IGR and diffusion

IGR provides inviscid regularization
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But squinting a lot, reminds of viscous reg.



IGR vs LAD
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IGR

:

Example: Localized Artificial Diffusivity (LAD)
[Cook & Cabot 2005, Kawai & Lele 2008, Mani et al. 2009] and others

LAD

:

“Viscosity” nonlocal and nonpositive



Nonlocality reduces oscillation
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Nonpositivity reduces dissipation
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Nonpositivity reduces dissipation
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Nonpositivity reduces dissipation
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Nonpositivity reduces dissipation



50

Nonpositivity reduces dissipation



EXASCALE APPLICATIONS OF 

INFORMATION GEOMETRIC

REGULARIZATION

Part II: Practical Applications
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Finite Volume Methods

Keep track of cell 

averages of soln.
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Finite Volume Methods

Keep track of cell 

averages of soln.

Compute left/right 

reconstruction
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Finite Volume Methods

Keep track of cell 

averages of soln.

Compute left/right 

reconstruction

Compute flux 

through interface
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Shocks and Oscillations

Discontinuities cause oscillations

Common remedy: (W)ENO type limiters

With IGR, can use standard reconstruction
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But is it not too costly?
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Computing flux needs solving for Σ

Elliptic Pb., But shock width is 𝛼

Choose 𝛼 ∝ mesh width

 ⇒ system is well-cond.

Two Jacobi iters suffice, negligible cost

Beyond Barotropic: Add Σ to pressure



Riemann pb. with entropy wave 



Riemann pb. with entropy wave 



Riemann pb. with entropy wave 



Application at Exascale

Collaborative effort to achieve largest ever 

compressible CFD simulation 

Integrate IGR into MFC code developed by 

Bryngelson group

Simulate back heating in multi-engine rockets
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Application at Exascale

Removing Riemann Solvers + Limiters 

enables 20x problem size and 4x speedup.

Further size improvements through unified 

memory and mixed precision computation

First CFD simulation with 

>1 quadrillion dofs

2025 Gordon Bell 

Prize Finalist
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Information Geom. Reg.

Exp𝜓 extends IPMs from opt. to dynamics

On prob. simplex Δ𝑛−1, define neg-entropy
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Exp𝜓 is the only exp. map on Δ𝑛−1 invariant 

under sufficient statistics, geodesically 

complete, and flat! [Chentsov 1972]



Geometries of samples and 

distributions
Log determinant is neg. 

Shannon entropy of 𝜌

||𝜙||𝐿2
2 : Particle geometry, Wasserstein geodesic

Logdet: Information geometry, dual geodesic

IGR combines the two. Appropriate for statistical 

estimator of physical truth!

63Benamou and Brenier (2000) Cuturi (2013)



Information Geometric Mechanics

“Ground truth:’’ Boltzmann equation

64

Euler eqn. = Gaussian ansatz for Boltzmann 
[Levermore 1996]

 

For constant 𝜃, logdet of IGR is its entropy



Information Geometric Mechanics

Common: PDE sols. describe representative 

volumes, subject to geometry of particles

Instead: View as describing parameters of 

prob. dists., subject to information geometry

IGR is only the first step!

 - Maximum likelihood discretization

 - Kinetic effects, Plasmas, Solids

 - Interaction with model uncertainties

 - Reduced order modeling across scales

  
65



66

MAXIMUM LIKELIHOOD 

DISCRETIZATION

Part III:

Brook Eyob

GT Ph.D. Student



Solving Transport

Consider mass transport
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Galerkin ansatz: 

Eyob and S (2025), arXiv:2505.10713

But solution leaves

ansatz space over time: 

Need to project back!



Maximum Likelihood 

Discretization
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Standard approach: 𝐿2 projection 

Method of moment for estimating ሶො𝜌 from 

advected particles. Prone to loss of ො𝜌 ≥ 0 
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Instead: Use Maximum Likelihood 

Results in Fisher-Rao projection



Relative Accuracy

70

Positivity preserving, conservative, global 

error bounds in KL-divergence.

Especially good at 

preserving relative 

accuracy, promise 

for reactions 



Integration in Euler Equation

71

Extreme temperature gradients can lead to 

vanishing density, causing blow-up of sim.
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BACKUP SLIDES

Part 4:
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https://www.firehouse.com/apparatus/article/21082328/does-vehicle-color-play-a-role-in-apparatus-safety
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