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The carbon footprint of HPC

CFD for the design of an aircraft
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NASA estimates that, by 2030, simulations with ~20B elements will be commonplace

150 T CO,e to perform 200 runs
. 1,350 MWh
« 858,000 Km in a passenger car (~20 times around the world!)



The carbon footprint of HPC

= Current industrial practice involves using over-refined meshes to avoid the
requirements of human expertise and the time-consuming process of tailoring meshes
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The carbon footprint of HPC
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Outline

= Al to predict mesh spacing using
o Mesh sources
o Background meshes
« Examples
« How green is the Al system?
« Extensions to anisotropic spacing, viscous turbulent flows and CAD integration

= Al to aid mesh adaptation
o High-order HDG and degree adaptation

« Examples

* Concluding remarks



Al system to predict mesh spacing
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Objective: Develop an Al system to predict mesh spacing

Increase speed and automation in the mesh generation process

Accelerate mesh independent studies

Speed up design processes

Reduce the carbon footprint of simulations

Preserve previous knowledge




Al system to predict mesh spacing

= How is a spacing function usually defined?

» Background mesh
o A (discrete) nodal spacing function is defined

« The spacing at any point is interpolated from the nodal spacing function in the (coarse)
background mesh

Spacing function



Al system to predict mesh spacing

= How is a spacing function usually defined?

= Mesh sources (point, lines, planes, etc)
o A point source is defined by a position, a desired spacing and a radius of influence

o The spacing at any point is calculated as the minimum spacing defined by all the sources

ho ifTST‘l

min {hoo, ho exp [ln(2) (: — ?;: )} } otherwise
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Spacing function Mesh



Al system to predict mesh spacing

= How is a spacing function usually defined?

= Background mesh
« A (discrete) nodal spacing function is defined

o The spacing at any point is interpolated from
the nodal spacing function in the (coarse)
background mesh

= Mesh sources (point, lines, planes, etc)

o A point source is defined by a position,
a desired spacing and a radius of influence

« The spacing at any point is calculated as
the minimum spacing defined by all the
sources




Al system to predict mesh spacing (using a background mesh)

= (enerate a spacing
function from a
given solution

" Spacing at a node x; along a direction 3 is related to the Hessian of a key variable

N 5mzn if Az',wm:c > K/(S?n,zna
52-2, Z (Hi)ubrbr | = K 0;i = ¢ Omaa if Nimar < K/02, 405 K = 5262 . Amaz
k,i=1 VE/Nimaz  otherwise,

° {)\i,j }jzl,_“’nsd eigenvalues of the Hessian at node ; and i mar = MaxXj—1, . n {Nij}
o Amar = MaX;=1, . n.{Nimaz} is the maximum for all nodes in the mesh

o Sis a scaling factor




Al system to predict mesh spacing (using a background mesh)

= (enerate a spacing
function from a
given solution

= Interpolate the
spacing onto a
background mesh

= Take a
conservative
approach to
interpolation

C Lock, O Hassan, RS, J Jones, Predicting the near-optimal mesh spacing for a simulation using machine learning, IMR, 20



Al system to predict mesh spacing (using a background mesh)

= Neural network architecture

Hidden layers

Outputs

= Each output involves a spacing

= Requires mesh morphing for variable geometric configurations

C Lock, O Hassan, RS, J Jones, Predicting the near-optimal mesh spacing for a simulation using machine learning, IMR, 2023



Al system to predict mesh spacing (using sources)

217 Sources

= Step 1 — ‘ .'

Generate point
sources from a Cose 1
given solution
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C Lock, O Hassan, RS, J Jones, Meshing using neural networks for improving the efficiency of computer modelling, Engineering with Computers, 2023



Al system to predict mesh spacing (using sources)

= Neural network architecture

Hidden layers

Outputs

= Each output involves a position (3 coordinates), a spacing and a radius of influence.

C Lock, O Hassan, RS, J Jones, Meshing using neural networks for improving the efficiency of computer modelling, Engineering with Computers, 2023



Al system to predict mesh spacing (using sources)

o Step 3 _ Trained NN
Use the trained Design parameters -
. (e.g., flow conditions,
NN to predict geometry)
the sources

characteristics

= Step 4 —
Reduce the
global set of
sources

C Lock, O Hassan, RS, J Jones, Meshing using neural networks for improving the efficiency of computer modelling, Engineering with Computers, 2023



Examples

= ONERA M6 wing — Variable flow conditions
« Mach [0.3, 0.9]
« Angle of Attack [0, 12]

= Solution from an inviscid compressible flow solver
= 10, 20, 40, 80, 120, 160 training cases, with 100 test cases

= Hyperparameters are tuned
o Number of hidden layers — 1, 2,...,6
o Neurons per layer — 25, 50, 75, ..., 200, 225, 250

= Using sources
o 19,345 global point sources

= Using background mesh
o 14,179 nodes



Examples

= ONERA M6 wing — Variable flow conditions
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= Shallow networks with 1 or 2 layers are enough to provide accurate predictions

= Spacing and radius of influence are more difficult to predict




Examples

= ONERA M6 wing — Variable flow conditions (2 parameters) — 160 training cases

L

= Prediction for unseen test cases
o« M=0.79, AoA=5.39°
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Examples

= ONERA M6 wing — Variable flow conditions (2 parameters) — 160 training cases

= Suitability of predicted meshes to perform simulations
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Examples

= Full aircraft — Variable geometry (11 parameters)

o Spacing prediction using a background mesh
« Flow conditions — M=0.8, AocA=2°




Examples

= Full aircraft — Variable geometry (11 parameters) — 10 vs 20 training cases

o Spacing prediction using a background mesh
« Flow conditions — M=0.8, AocA=2°
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How green is the Al system?

= (Carbon footprint for the parametric study using a fixed mesh

Task Wall clock (H) Carbon (Kg COge) Energy (MWh)
Mesh generation 1.0 3.61 x 1073 5.80 x 10~°
CFD solution 3,432.10 527.17 2.28
Total 3,433.0 D27.17 2.28

= (Carbon footprint for the parametric study using Al predicted meshes

Task Wall clock (H) Carbon (Kg COa2e) Energy (MWh)
Mesh generation 23.8 0.32 1.40 x 103
CFD solution 143.0 12.36 5.35 x 1072
Total 166.8 12.68 0.055

TOTAL carbon footprint is more than 35 times lower

C Lock, O Hassan, RS, J Jones, Meshing using neural networks for improving the efficiency of computer modelling, Engineering with Computers, 2023




ic spacing

Extension to anisotrop

= Isotropic spacing is suboptimal when there is a clear directionality in the solution field
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= Anisotropic spacing is described using a metric tensor at each node:

« Three orthogonal directions (eigenvectors of the Hessian of a key variable)

« Three spacings (eigenvalues of the Hessian of a key variable)



Extension to anisotropic spacing

= The Al system needs to predict a metric tensor at each point

= Qur strategy consists of

 expressing the first direction (minimum spacing) in spherical coordinates (two angles)

» expressing the second direction in polar coordinates in the normal plane to the first direction
(one angle)

= The third direction is given by the orthogonality property (no prediction needed)




Examples

= ONERA M6 wing — Variable flow conditions (2 parameters) — 80 training cases

= Prediction for unseen test cases

e M=0.89, AoA=7.12°
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Examples

= ONERA M6 wing — Variable geometry (11 parameters) — 40 training cases
* Flow conditions — M=0.8, AocA=2°

= Prediction for unseen test cases 1~ Spacing
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Extension to viscous turbulent flows

= Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

= The computation of the gradient (FEM, FV, FD) involves dividing by an area (for
high Reynolds this could be ~107)

Z 2|V, - 7
Vo, ~ eCPi Vo, = . Z (0i +0;)Cij + Z oiDi;
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Extension to viscous turbulent flows

= Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)
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= Pressure field for the RAE2822. M=0.729, AoA=2.31, Re=6.5x106
x103

-8.6

-8.6

x1043

4 42 44 46 48 5 52 5.4

- . T | .
FLITE (in-house) <10 NASA <10



Extension to viscous turbulent flows

= Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

8.6510° L

-8.7
-8.8
-8.9

-9.1
-9.2
-9.3
-9.4

P

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

FLITE (in-house) NASA -

= Very small variations of the pressure can lead to (non-physical) high gradients

= The computation of the gradient (FEM, FV, FD) involves dividing by an area (for
high Reynolds this could be ~107)
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Extension to viscous turbulent flows

= Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)
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= A smoothing of the pressure in the normal direction is proposed

o Mesh obtained using the spacing computed with the pressure as key variable

- Nosmoothing ~




Extension to viscous turbulent flows

= Several key variables required to define the spacing function capable of capturing all
tlow features

Pressure Density Mach
= Mesh obtained using the spacing computed with the different key variables

Key variable: Pressure Key variable: Pressure & density Key variable: Pressure & Mach

S Sanchez-Gamero, O Hassan, RS, A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations, arXiv, 2024



CAD integration

= Use NURBS control points as the design parameters (inputs of the NN)

S Sanchez-Gamero, O Hassan, RS, A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations, arXiv, 2024



CAD integration

= Use NURBS control points as the design parameters (inputs of the NN)

S Sanchez-Gamero, O Hassan, RS, A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations, arXiv, 2024



Examples

= 23 geometric parameters (control points of two NURBS curves)
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S Sanchez-Gamero, O Hassan, RS, A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations, arXiv, 2024



Outline

= Al to predict mesh spacing using
o Mesh sources
o Background meshes
« Examples
« How green is the Al system?
« Extensions to anisotropic spacing, viscous turbulent flows and CAD integration

= Al to aid mesh adaptation
o High-order HDG and degree adaptivity

« Examples

* Concluding remarks



High-order HDG and degree adaptivity

* Incompressible Navier—Stokm \
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= The HDG method solves the problem in two steps introducing the hybrid velocity
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M Giacomini, RS, A Huerta Tutorial on hybridisable discontinuous Galerkin (HDG) formulation for incompressible flow problems, CISM, 2020



High-order HDG and degree adaptivity

= Optimal convergence (k+1 rate) of the L2({2) norm of the error for velocity, pressure
AND mixed variable (velocity gradient) using polynomials of degree k

2 2
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= Enables the computation of a super-convergent velocity (k+2 rate) by solving element-
by-element problems

= A cheap error indicator is readily available (comparing the velocity and the super-
convergent velocity)

M Giacomini, RS, A Huerta Tutorial on hybridisable discontinuous Galerkin (HDG) formulation for incompressible flow problems, CISM, 2020



High-order HDG and degree adaptivity
= Example of degree adaptivity for a steady problem (Wang flow)
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High-order HDG and degree adaptivity
= For transient problems, solution features might travel to elements where the degree ot

approximation has not been adapted yet

= Example: velocity perturbation (gust) travelling in free space

Reference solution
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High-order HDG and degree adaptivity

= For transient problems, solution features might travel to elements where the degree ot
approximation has not been adapted yet

= Example: velocity perturbation (gust) travelling in free space

= An accurate computation requires repeating each time step
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Reference solution
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Degree adaptive solution Degree adaptive solution repeating each
time step



NN to aid degree-adaptivity

= A NN is designed to predict the velocity at a node at time t"*Z, from the velocity and
pressure at a number of “surrounding” points (not nodes) at time ¢"

)
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® o o O wu = velocity x-direction
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| . | | < v = velocity y-direction)

= Data is collected for a number of training cases (in this example varying gust intensity
and width)

= To speed up training and reduce bias, we remove redundant information



NN to aid degree-adaptivity

= A trained NN predicts the solution at the next time step so that the degree can be
adapted before the solution advances in time, avoiding repeating the time step

—e— Adaptivity
—e— Adaptivity with Prediction
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Concluding remarks

An Al system to predict near-optimal isotropic and anisotropic mesh spacing for new
simulations

o Operating conditions
o Geometric variations, including a link with the CAD

Meshes proved to be suitable to perform simulations of unseen cases

Reduction of computational cost and carbon emissions compared to current industrial
practice

An Al system to aid degree adaptivity for transient flows E PS RC

No need to repeat the time step to guarantee accurate simulations

Ploneering research
and skills

Future work involves

o Combine sources and a background mesh @ AIRBUS
o Simulation of gust impinging on aerodynamic shapes DEFENCE & SPACE
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