Mesh generation and adaptation using green AI

Joint work with

Oubay Hassan

Jason Jones

Agustina Felipe

Callum Lock

Sergi Sanchez

Zienkiewicz Institute for Modelling, Data and AI Swansea University, Swansea, Wales, UK

Swansea

THE MIT PRESS READER

"The Cloud now has a greater carbon footprint than the airline industry.

A single data centre can consume t

"The Exascale era is here and po consumption for HPC is skyrocked BMW Group moves HPC to Iceland

"Carbon footprint, the (not so) hidden cost of HPC."

ASIANSCIENTIST

Powering the world's top 500 supercomputers pumps around 2M $tCO_2/year$

ICTFOOTPRINT EU

BMW Group moves HPC to Iceland to reduce CO₂ by 3.5K tC02/year

Publishing The huge carbon footprint of large-scale computing

The carbon footprint of HPC

CFD for the design of an aircraft

- At least 200 runs to cover the flight envelope
- Each run using ~100M elements (12h using 512 CPU processors)
- 1.7 T CO₂e to perform 200 runs
 - 15.5 MWh
 - 9,840 Km in a passenger car

- NASA estimates that, by 2030, simulations with ~20B elements will be commonplace
- 150 T CO₂e to perform 200 runs
 - 1,350 MWh
 - 858,000 Km in a passenger car (~20 times around the world!)

The carbon footprint of HPC

• Current industrial practice involves using over-refined meshes to avoid the requirements of human expertise and the time-consuming process of tailoring meshes

The carbon footprint of HPC

• But from the point of view of simulation efficiency, each operating condition requires a different mesh

Outline

- AI to predict mesh spacing using
 - Mesh sources
 - Background meshes
 - Examples
 - How green is the AI system?
 - Extensions to anisotropic spacing, viscous turbulent flows and CAD integration
- AI to aid mesh adaptation
 - High-order HDG and degree adaptation
 - Examples
- Concluding remarks

- Objective: Develop an AI system to predict mesh spacing
- Increase speed and automation in the mesh generation process
- Accelerate mesh independent studies
- Speed up design processes
- Reduce the carbon footprint of simulations
- Preserve previous knowledge

- How is a spacing function usually defined?
- Background mesh
 - A (discrete) nodal spacing function is defined
 - The spacing at any point is interpolated from the nodal spacing function in the (coarse) background mesh

- How is a spacing function usually defined?
- Mesh sources (point, lines, planes, etc)
 - A point source is defined by a position, a desired spacing and a radius of influence
 - The spacing at any point is calculated as the minimum spacing defined by all the sources

$$h(\boldsymbol{x}; \boldsymbol{x}_c, h_0, r_1, r_2) = \begin{cases} h_0 & \text{if } r \leq r_1 \\ \min\left\{h_{\infty}, h_0 \exp\left[\ln(2)\left(\frac{r - r_1}{r_2 - r_1}\right)\right]\right\} & \text{otherwise} \end{cases}$$

Spacing function

Mesh

- How is a spacing function usually defined?
- Background mesh
 - A (discrete) nodal spacing function is defined
 - The spacing at any point is interpolated from the nodal spacing function in the (coarse) background mesh

- Mesh sources (point, lines, planes, etc)
 - A point source is defined by a position, a desired spacing and a radius of influence
 - The spacing at any point is calculated as the minimum spacing defined by all the sources

AI system to predict mesh spacing (using a background mesh)

Generate a spacing function from a given solution

Spacing at a node x_i along a direction β is related to the Hessian of a key variable

$$\delta_{i,\beta}^{2} \left(\sum_{k,l=1}^{\mathbf{n}_{sd}} (H_{i})_{kl} \beta_{k} \beta_{l} \right) = K \qquad \qquad \delta_{i} = \begin{cases} \delta_{min} & \text{if } \lambda_{i,max} > K/\delta_{min}^{2}, \\ \delta_{max} & \text{if } \lambda_{i,max} < K/\delta_{max}^{2}, \\ \sqrt{K/\lambda_{i,max}} & \text{otherwise,} \end{cases} \qquad K = S^{2} \delta_{min}^{2} \lambda_{max}$$

$$\delta_i = \begin{cases} \delta_{min} \\ \delta_{max} \\ \sqrt{K/\lambda_{i,max}} \end{cases}$$

if
$$\lambda_{i,max} > K/\delta_{min}^2$$
,
if $\lambda_{i,max} < K/\delta_{max}^2$,
otherwise,

$$K = S^2 \delta_{min}^2 \lambda_{max}$$

- $\{\lambda_{i,j}\}_{j=1,...,n_{sd}}$ eigenvalues of the Hessian at node \boldsymbol{x}_i and $\lambda_{i,max} = \max_{j=1,...,n_{sd}} \{\lambda_{i,j}\}$
- $\lambda_{max} = \max_{i=1,...,n_{no}} \{\lambda_{i,max}\}$ is the maximum for all nodes in the mesh
- S is a scaling factor

AI system to predict mesh spacing (using a background mesh)

- Generate a spacing function from a given solution
- Interpolate the spacing onto a background mesh
- Take a conservative approach to interpolation

AI system to predict mesh spacing (using a background mesh)

Neural network architecture

- Each output involves a spacing
- Requires mesh morphing for variable geometric configurations

AI system to predict mesh spacing (using sources)

• Step 1 –
Generate point sources from a given solution

Step 2 –
 Generate global sources from sets of local sources

AI system to predict mesh spacing (using sources)

Neural network architecture

• Each output involves a position (3 coordinates), a spacing and a radius of influence.

AI system to predict mesh spacing (using sources)

Step 3 –
 Use the trained
 NN to predict
 the sources
 characteristics

Step 4 –
 Reduce the global set of sources

- ONERA M6 wing Variable flow conditions
 - Mach [0.3, 0.9]
 - Angle of Attack [0, 12]
- Solution from an inviscid compressible flow solver
- 10, 20, 40, 80, 120, 160 training cases, with 100 test cases
- Hyperparameters are tuned
 - Number of hidden layers -1, 2, ..., 6
 - Neurons per layer 25, 50, 75, ..., 200, 225, 250
- Using sources
 - 19,345 global point sources
- Using background mesh
 - 14,179 nodes

- ONERA M6 wing Variable flow conditions
- NN training

- Shallow networks with 1 or 2 layers are enough to provide accurate predictions
- Spacing and radius of influence are more difficult to predict

■ ONERA M6 wing – Variable flow conditions (2 parameters) – 160 training cases

Prediction for unseen test cases

• M=0.79, AoA=5.39°

• Using sources, the spacing at 72% of the points are predicted within 5% of the target

background mesh, the spacing at 94% of the points are predicted within 5% of the target

- ONERA M6 wing Variable flow conditions (2 parameters) 160 training cases
- Suitability of predicted meshes to perform simulations

	$M_{\infty} = 0.41, \alpha = 8.90^{\circ}$		$M_{\infty} = 0.79, \alpha = 5.39^{\circ}$		$M_{\infty} = 0.80, \alpha = 8.19^{\circ}$	
	Target	Prediction	Target	Prediction	Target	Prediction
C_L	0.605	0.603	0.469	0.468	0.722	0.723
C_D	0.0342	0.0340	0.0289	0.0287	0.0828	0.0828

- Full aircraft Variable geometry (11 parameters)
 - Spacing prediction using a background mesh
 - Flow conditions M=0.8, AoA=2°

- Full aircraft Variable geometry (11 parameters) 10 vs 20 training cases
 - Spacing prediction using a background mesh

• Spacing at 83% of the points are predicted within 5% of the target

How green is the AI system?

• Carbon footprint for the parametric study using a fixed mesh

Task	Wall clock (H)	Carbon (Kg CO ₂ e)	Energy (MWh)
Mesh generation CFD solution	$ \begin{array}{c} 1.0 \\ 3,432.10 \end{array} $	$3.61 \times 10^{-3} \\ 527.17$	5.89×10^{-5} 2.28
Total	3,433.0	527.17	2.28

• Carbon footprint for the parametric study using AI predicted meshes

Task	Wall clock (H)	Carbon (Kg CO_2e)	Energy (MWh)
Mesh generation CFD solution	23.8 143.0	0.32 12.36	$1.40 \times 10^{-3} \\ 5.35 \times 10^{-2}$
Total	166.8	12.68	0.055

TOTAL carbon footprint is more than 35 times lower

Extension to anisotropic spacing

• Isotropic spacing is suboptimal when there is a clear directionality in the solution field

- Anisotropic spacing is described using a metric tensor at each node:
 - Three orthogonal directions (eigenvectors of the Hessian of a key variable)
 - Three spacings (eigenvalues of the Hessian of a key variable)

Extension to anisotropic spacing

- The AI system needs to predict a metric tensor at each point
- Our strategy consists of
 - expressing the first direction (minimum spacing) in spherical coordinates (two angles)
 - expressing the second direction in polar coordinates in the normal plane to the first direction (one angle)
- The third direction is given by the orthogonality property (no prediction needed)

- ONERA M6 wing Variable flow conditions (2 parameters) 80 training cases
- Prediction for unseen test cases

• M=0.88, AoA=2.13°

- ONERA M6 wing Variable geometry (11 parameters) 40 training cases
- Flow conditions M=0.8, AoA=2°

 Prediction for unseen test cases 1st Spacing 2nd Spacing Solution Target 3rd Spacing of elements Percentage $\sqrt{2}$ $1.5\sqrt{2}$ $1/\infty$ $1/2\sqrt{2}$ $1/1.5\sqrt{2}$ $1/\sqrt{2}$ Spacing ratio (Predicted/Target)

• Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

• The computation of the gradient (FEM, FV, FD) involves dividing by an area (for high Reynolds this could be $\sim 10^{-9}$)

$$oldsymbol{
abla} \sigma_i pprox rac{\displaystyle\sum_{\Omega_e \in \mathcal{P}_i} |\Omega_e| oldsymbol{
abla} \sigma_e}{\displaystyle\sum_{\Omega_e \in \mathcal{P}_i} |\Omega_e|}$$

$$\nabla \sigma_i \approx \frac{1}{|V_i|} \left[\sum_{j \in \mathcal{N}_i} \frac{1}{2} (\sigma_i + \sigma_j) \boldsymbol{C}_{ij} + \sum_{j \in \mathcal{N}_i^{\partial}} \sigma_i \boldsymbol{D}_{ij} \right]$$

• Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

• Pressure field for the RAE2822. M=0.729, AoA=2.31, Re=6.5×10⁶

• Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

- Very small variations of the pressure can lead to (non-physical) high gradients
- The computation of the gradient (FEM, FV, FD) involves dividing by an area (for high Reynolds this could be $\sim 10^{-9}$)

$$\boldsymbol{\nabla}\sigma_{i} \approx \frac{\sum_{\Omega_{e} \in \mathcal{P}_{i}} |\Omega_{e}| \boldsymbol{\nabla}\sigma_{e}}{\sum_{\Omega_{e} \in \mathcal{P}_{i}} |\Omega_{e}|} \qquad \boldsymbol{\nabla}\sigma_{i} \approx \frac{1}{|V_{i}|} \left[\sum_{j \in \mathcal{N}_{i}} \frac{1}{2} (\sigma_{i} + \sigma_{j}) \boldsymbol{C}_{ij} + \sum_{j \in \mathcal{N}_{i}^{\partial}} \sigma_{i} \boldsymbol{D}_{ij} \right]$$

• Challenges induced by highly stretched elements (e.g., boundary layer, shear layer)

- A smoothing of the pressure in the normal direction is proposed
 - Mesh obtained using the spacing computed with the pressure as key variable

• Several key variables required to define the spacing function capable of capturing all flow features

• Mesh obtained using the spacing computed with the different key variables

Key variable: Pressure

Key variable: Pressure & density

Key variable: Pressure & Mach

CAD integration

• Use NURBS control points as the design parameters (inputs of the NN)

CAD integration

• Use NURBS control points as the design parameters (inputs of the NN)

• 23 geometric parameters (control points of two NURBS curves)

S Sanchez-Gamero, O Hassan, RS, A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations, arXiv, 2024

Outline

- AI to predict mesh spacing using
 - Mesh sources
 - Background meshes
 - Examples
 - How green is the AI system?
 - Extensions to anisotropic spacing, viscous turbulent flows and CAD integration
- AI to aid mesh adaptation
 - High-order HDG and degree adaptivity
 - Examples
- Concluding remarks

Incompressible Navier-Stokes equations

$$\begin{cases}
\mathbf{u}_{t} - \nabla \cdot (2\nu \nabla^{s} \mathbf{u} - p\mathbf{I}) + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) = \mathbf{s} & \text{in } \Omega \times (0, T], \\
\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \times (0, T], \\
\mathbf{u} = \mathbf{u}_{D} & \text{on } \Gamma_{D} \times (0, T], \\
((2\nu \nabla^{s} \mathbf{u} - p\mathbf{I}) - (\mathbf{u} \otimes \mathbf{u})) \mathbf{n} = \mathbf{t} & \text{on } \Gamma_{N} \times (0, T], \\
\mathbf{u} = \mathbf{u}_{0} & \text{in } \Omega \times \{0\},
\end{cases}$$

$$oldsymbol{u}_t + oldsymbol{\nabla} \cdot (\sqrt{2\nu} oldsymbol{L} + p oldsymbol{I}) + oldsymbol{\nabla} \cdot (oldsymbol{u} \otimes oldsymbol{u}) = oldsymbol{s}$$
 $oldsymbol{L} = -\sqrt{2\nu} oldsymbol{\nabla}^{ extsf{s}} oldsymbol{u}$

• The HDG method solves the problem in two steps introducing the hybrid velocity

M Giacomini, RS, A Huerta Tutorial on hybridisable discontinuous Galerkin (HDG) formulation for incompressible flow problems, CISM, 2020

• Optimal convergence (k+1 rate) of the $L^2(\Omega)$ norm of the error for velocity, pressure AND mixed variable (velocity gradient) using polynomials of degree k

- Enables the computation of a super-convergent velocity (k+2 rate) by solving element-by-element problems
- A cheap error indicator is readily available (comparing the velocity and the superconvergent velocity)

• Example of degree adaptivity for a steady problem (Wang flow)

- For transient problems, solution features might travel to elements where the degree of approximation has not been adapted yet
- **Example:** velocity perturbation (gust) travelling in free space

- For transient problems, solution features might travel to elements where the degree of approximation has not been adapted yet
- Example: velocity perturbation (gust) travelling in free space
- An accurate computation requires repeating each time step

Reference solution

Degree adaptive solution

Degree adaptive solution repeating each time step

NN to aid degree-adaptivity

• A NN is designed to predict the velocity at a node at time t^{n+1} , from the velocity and pressure at a number of "surrounding" points (not nodes) at time t^n

- rying gust intensity
- Data is collected for a number of training cases (in this example varying gust intensity and width)
- To speed up training and reduce bias, we remove redundant information

NN to aid degree-adaptivity

• A trained NN predicts the solution at the next time step so that the degree can be adapted before the solution advances in time, avoiding repeating the time step

Concluding remarks

- An AI system to predict near-optimal isotropic and anisotropic mesh spacing for new simulations
 - Operating conditions
 - Geometric variations, including a link with the CAD
- Meshes proved to be suitable to perform simulations of unseen cases
- Reduction of computational cost and carbon emissions compared to current industrial practice
- An AI system to aid degree adaptivity for transient flows
- No need to repeat the time step to guarantee accurate simulations

- Future work involves
 - Combine sources and a background mesh
 - Simulation of gust impinging on aerodynamic shapes

Mesh generation and adaptation using green AI

