A Continuous Interior Penalty Method Framework for Sixth Order Cahn-Hilliard-type Equations with applications to microstructure evolution and microemulsions

Natasha S. Sharma Department of Mathematical Sciences The University of Texas at El Paso Funding: NSF DMS-2110774 Joint work with Amanda Diegel (Mississippi State University)



07/18/23

## Sixth Order Cahn-Hilliard-type Equations

Applications

æ

## Sixth Order Cahn-Hilliard-type Equations

Applications

æ

Applications

• Microstructure evolution specifically formation of defects within microstructures.

< □ > < □ > < □ > < □ > < □ >

Applications

- Microstructure evolution specifically formation of defects within microstructures.
- Microemulsions capturing the dynamics of phase transitions in a oil-water-surfactant mixtures with applications to designing drug delivery systems.

Applications

- Microstructure evolution specifically formation of defects within microstructures.
- Microemulsions capturing the dynamics of phase transitions in a oil-water-surfactant mixtures with applications to designing drug delivery systems.

Goal: Develop a Continuous Interior Penalty Method framework to solve these Sixth-Order Phase Field Models.

< □ > < □ > < □ > < □ > < □ >





#### Defects control



#### Defects control

 electrical conductivity whether they make efficient solar panels,



#### Defects control

 electrical conductivity whether they make efficient solar panels,

イロト イ団ト イヨト イヨト

Chemical reactivity

07/18/23



#### Defects control

 electrical conductivity whether they make efficient solar panels,

- Chemical reactivity
- tensile strength of a material



#### Defects control

 electrical conductivity whether they make efficient solar panels,

- Chemical reactivity
- tensile strength of a material



#### Defects control

- electrical conductivity whether they make efficient solar panels,
- Chemical reactivity
- tensile strength of a material

**Goal:** Control/predict the formation and evolution of defects.



#### Defects control

- electrical conductivity whether they make efficient solar panels,
- Chemical reactivity
- tensile strength of a material

**Goal:** Control/predict the formation and evolution of defects. **Approach:** 



#### Defects control

- electrical conductivity whether they make efficient solar panels,
- Chemical reactivity
- tensile strength of a material

**Goal:** Control/predict the formation and evolution of defects. **Approach:** 

• Use phase field crystal equation as our atomistic model.



#### Defects control

- electrical conductivity whether they make efficient solar panels,
- Chemical reactivity
- tensile strength of a material

**Goal:** Control/predict the formation and evolution of defects. **Approach:** 

- Use phase field crystal equation as our atomistic model.
- Develop an accurate, efficient, easy-to-compute numerical scheme.



07/18/23

2

イロン イロン イヨン イヨン

Two-phase system



07/18/23

2

< □ > < □ > < □ > < □ > < □ >

Two-phase system

 $\varphi :$  number density of atoms in the material occupying  $\Omega$  with



07/18/23

< □ > < □ > < □ > < □ > < □ >

Two-phase system

arphi: number density of atoms in the material occupying  $\Omega$  with

 $\diamond\,$  liquid phase characterized by a constant value of  $\varphi$ 



Two-phase system

 $\varphi :$  number density of atoms in the material occupying  $\Omega$  with

- $\diamond\,$  liquid phase characterized by a constant value of  $\varphi$
- $\diamond\,$  solid phase characterized by a spatially varying periodic function  $\varphi$  that inherits the symmetry and periodicity of the crystal lattice



Conservation Law:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (\mathcal{M} \nabla \mu)$$

イロト イロト イヨト イヨト 二日

Conservation Law:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (\mathcal{M} \nabla \mu)$$

 $\bullet~\mathcal{M}:$  mobility coefficient assumed to be constant

Conservation Law:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (\mathcal{M} \nabla \mu)$$

- $\bullet \ \mathcal{M}:$  mobility coefficient assumed to be constant
- $\mu = \delta_{\varphi} E$ : chemical potential

Conservation Law:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (\mathcal{M} \nabla \mu)$$

- $\bullet~\mathcal{M}:$  mobility coefficient assumed to be constant
- $\mu = \delta_{\varphi} E$ : chemical potential

• 
$$E(\varphi) = \int_{\Omega} \frac{\varphi^4}{4} - |\nabla \varphi|^2 + \frac{1-\varepsilon}{2} \varphi^2 + \frac{1}{2} (\Delta \varphi)^2 dx$$

Conservation Law:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (\mathcal{M} \nabla \mu)$$

- $\bullet \ \mathcal{M}:$  mobility coefficient assumed to be constant
- $\mu = \delta_{\varphi} E$ : chemical potential

• 
$$E(\varphi) = \int_{\Omega} \frac{\varphi^4}{4} - |\nabla \varphi|^2 + \frac{1-\varepsilon}{2} \varphi^2 + \frac{1}{2} (\Delta \varphi)^2 dx$$

Phase Field Crystal Equation (Elder et al. 2004)

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot \left( \mathcal{M} \nabla \left( \varphi^3 + 2\Delta \varphi + (1 - \varepsilon) \varphi + \Delta^2 \varphi \right) \right) \quad \text{on } \Omega \times (0, T).$$

< □ > < □ > < □ > < □ > < □ >

$$rac{\partial arphi}{\partial t} - 
abla \cdot (\mathcal{M} 
abla \mu) = 0, \ arphi^3 + (1 - arepsilon) arphi + 2\Delta arphi + \Delta^2 arphi - \mu = 0,$$

07/18/23

æ

Compliment

$$rac{\partial arphi}{\partial t} - 
abla \cdot (\mathcal{M} 
abla \mu) = 0,$$
  
 $arphi^3 + (1 - arepsilon) arphi + 2\Delta arphi + \Delta^2 arphi - \mu = 0,$ 

with either periodic boundary conditions or natural boundary conditions

$$\partial_n \varphi = \partial_n \ \Delta \varphi = \partial_n \mu = 0,$$

・ロト ・四ト ・ヨト ・ヨト

#### Compliment

$$rac{\partial arphi}{\partial t} - 
abla \cdot (\mathcal{M} 
abla \mu) = 0,$$
  
 $arphi^3 + (1 - arepsilon) arphi + 2\Delta arphi + \Delta^2 arphi - \mu = 0,$ 

with either periodic boundary conditions or natural boundary conditions

$$\partial_n \varphi = \partial_n \Delta \varphi = \partial_n \mu = 0,$$

and the initial value:

 $\varphi(0) = \varphi_0.$ 

#### Compliment

$$rac{\partial arphi}{\partial t} - 
abla \cdot (\mathcal{M} 
abla \mu) = 0,$$
  
 $arphi^3 + (1 - arepsilon) arphi + 2\Delta arphi + \Delta^2 arphi - \mu = 0,$ 

with either periodic boundary conditions or natural boundary conditions

$$\partial_n \varphi = \partial_n \Delta \varphi = \partial_n \mu = 0,$$

and the initial value:

$$\varphi(0) = \varphi_0.$$

Notation:

•  $H^{s}(\Omega)$  denote the Sobolev spaces of order  $s \geq 1$ ,

• 
$$Z := \{z \in H^2(\Omega) \mid n \cdot \nabla z = 0 \text{ on } \partial \Omega\}.$$

Find  $(\varphi, \mu)$  such that

$$\begin{split} \varphi &\in L^{\infty}(0,T;Z) \cap L^{2}(0,T;H^{3}(\Omega)), \\ \partial_{t}\varphi &\in L^{2}(0,T;H_{N}^{-1}(\Omega)), \\ \mu &\in L^{2}(0,T;H^{1}(\Omega)), \end{split}$$

and for almost all  $t \in (0, T)$ 

 $\langle \partial_t \varphi, \nu 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \quad \forall \nu \in H^1(\Omega)$   $\left( (\varphi)^3 + (1 - \epsilon)\varphi, \psi \right) - 2(
abla \varphi, 
abla \psi) + a(\varphi, \psi) - (\mu, \psi) = 0 \quad \forall \psi \in Z$ with  $a(u, v) := \int_{\Omega} (
abla^2 u : 
abla^2 v) dx$ ,

Find  $(\varphi, \mu)$  such that

$$\begin{split} \varphi &\in L^{\infty}(0,T;Z) \cap L^{2}(0,T;H^{3}(\Omega)), \\ \partial_{t}\varphi &\in L^{2}(0,T;H_{N}^{-1}(\Omega)), \\ \mu &\in L^{2}(0,T;H^{1}(\Omega)), \end{split}$$

and for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi, \nu 
angle + (\mathcal{M} \nabla \mu, \nabla \nu) = 0 \quad \forall \nu \in H^1(\Omega)$$
  
 $\left( (\varphi)^3 + (1 - \epsilon)\varphi, \psi \right) - 2(\nabla \varphi, \nabla \psi) + a(\varphi, \psi) - (\mu, \psi) = 0 \quad \forall \psi \in Z$ 

with  $a(u, v) := \int_{\Omega} (\nabla^2 u : \nabla^2 v) dx$ ,  $\varphi(0) = \varphi_0 \in H^4(\Omega)$  such that  $\varphi_0$  satisfies the boundary conditions.

[Pawlow et al., 2013]

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

• Space discretization: Choose a suitable discretization for the higher order term.

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Space discretization: Choose a suitable discretization for the higher order term.
- Time discretization: Classical methods give us **conditional** solvability and stability.

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Space discretization: Choose a suitable discretization for the higher order term.
- Time discretization: Classical methods give us **conditional** solvability and stability.

#### Numerical Schemes: Some Existing Literature



07/18/23
Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

• Finite Element Method for a Mixed form of three second-order equations: Backofen, Rätz, and Voigt 2007

<ロト < 回 > < 回 > < 回 > < 回 >

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Finite Element Method for a Mixed form of three second-order equations: Backofen, Rätz, and Voigt 2007
- Finite Difference Method: Wise, Wang, and Lowengrub 2009; Dong, Feng, Wang, Wise and Zhang, 2018

• • • • • • • • • • • •

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Finite Element Method for a Mixed form of three second-order equations: Backofen, Rätz, and Voigt 2007
- Finite Difference Method: Wise, Wang, and Lowengrub 2009; Dong, Feng, Wang, Wise and Zhang, 2018
- C<sup>1</sup> Finite Element Method: Gomez, Nogueira, 2012

A D > A B > A B > A

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Finite Element Method for a Mixed form of three second-order equations: Backofen, Rätz, and Voigt 2007
- Finite Difference Method: Wise, Wang, and Lowengrub 2009; Dong, Feng, Wang, Wise and Zhang, 2018
- C<sup>1</sup> Finite Element Method: Gomez, Nogueira, 2012
- Local Discontinuous Galerkin Method: Guo and Xu, 2016

• • • • • • • • • • • •

Phase Field Crystal Equation
$$\frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) = 0,$$
$$\varphi^3 + (1 - \varepsilon)\varphi + 2\Delta \varphi + \Delta^2 \varphi - \mu = 0 \quad \text{ on } \Omega \times (0, T).$$

- Finite Element Method for a Mixed form of three second-order equations: Backofen, Rätz, and Voigt 2007
- Finite Difference Method: Wise, Wang, and Lowengrub 2009; Dong, Feng, Wang, Wise and Zhang, 2018
- C<sup>1</sup> Finite Element Method: Gomez, Nogueira, 2012
- Local Discontinuous Galerkin Method: Guo and Xu, 2016
- Fourier-spectral Method: Li and Shen, 2020 (Scalar Auxiliary Variable approach) Yang and Han, 2017 (Invariant Energy Quadratization)

- Space discretization: Relax the C<sup>1</sup>-continuity, use C<sup>0</sup>-Interior Penalty Method
- Time discretization: Use Eyre's convex splitting scheme known to be uniquely solvable and unconditionally stable

イロト イヨト イヨト



∃ ∽ 07/18/23



∃ ∽ 07/18/23



• 
$$\Omega = \bigcup_{K \in \mathscr{T}_h} K$$
,  
Assume this particular

Assume this partition is geometrically-conforming and shape-regular.  $\mathcal{T}_h$ : collection of all elements K



• 
$$\Omega = \bigcup_{K \in \mathscr{T}_b} K$$
,

Assume this partition is geometrically-conforming and shape-regular.  $\mathcal{T}_h$ : collection of all elements K

•  $h_{K}$  = diameter of triangle K,  $h = \max_{K \in \mathscr{T}_{h}} h_{K}$ 



• 
$$\Omega = \bigcup_{K \in \mathscr{T}_h} K$$
,

Assume this partition is geometrically-conforming and shape-regular.  $\mathcal{T}_h$ : collection of all elements K

- $h_K$  = diameter of triangle K,  $h = \max_{K \in \mathscr{D}_h} h_K$
- $\mathcal{E}_h$ : collection of all edges e wrt  $\mathcal{T}_h$

# Classical C<sup>1</sup> Finite Element Method

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi, \nu 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \qquad \forall \, 
u \in H^1(\Omega)$$

 $\left(\varphi^{3}+(1-\epsilon)\varphi,\psi\right)-2\left(\nabla\varphi,\nabla\psi\right)+\mathbf{a}(\varphi,\psi)-(\mu,\psi)=0\qquad\forall\,\psi\in Z$ 

э

# Classical C<sup>1</sup> Finite Element Method

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t arphi, 
u 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \qquad orall \, 
u \in H^1(\Omega)$$

$$\left( \varphi^3 + (1-\epsilon)\varphi, \psi \right) - 2\left( \nabla \varphi, \nabla \psi \right) + a(\varphi, \psi) - (\mu, \psi) = 0 \qquad \forall \, \psi \in Z$$

Find finite dimensional subspaces:

 $V_h \subset H^1(\Omega), \ Z_h \subset Z,$ 

# Classical C<sup>1</sup> Finite Element Method

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi, 
u 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \qquad orall 
u \in H^1(\Omega)$$

$$\left( \varphi^3 + (1-\epsilon)\varphi, \psi \right) - 2\left( \nabla \varphi, \nabla \psi \right) + a(\varphi, \psi) - (\mu, \psi) = 0 \qquad \forall \, \psi \in Z$$

Find finite dimensional subspaces:

$$V_{\mathbf{h}} \subset H^1(\Omega), \ Z_{\mathbf{h}} \subset Z,$$

 $(\varphi_h, \mu_h) : [0, T] \rightarrow Z_h \times V_h$ :

 $\langle \partial_t \varphi_h, \nu \rangle + (\mathcal{M} \nabla \mu_h, \nabla \nu) = 0 \,\, \forall \, \nu \in V_h$ 

ヘロト 人間 ト 人造 ト 人造 トー

$$\left((\varphi_{\mathbf{h}})^{3} + (1-\epsilon)\varphi_{\mathbf{h}},\psi\right) - 2\left(\nabla\varphi_{\mathbf{h}},\nabla\psi\right) + \mathbf{a}(\varphi_{\mathbf{h}},\psi) - (\mu_{\mathbf{h}},\psi) = 0 \ \forall \psi \in Z_{\mathbf{h}}$$

holds for almost all  $t \in (0, T)$ .

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi , \nu 
angle + (\mathcal{M} \nabla \mu, \nabla \nu) = 0 \qquad \forall \, \nu \in H^1(\Omega)$$

 $\left(\varphi^{3}+(1-\epsilon)\varphi,\psi\right)-2\left(\nabla\varphi,\nabla\psi\right)+\mathbf{a}(\varphi,\psi)-(\mu,\psi)=0\qquad\forall\,\psi\in Z$ 

・ロト ・四ト ・ヨト ・ヨト

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi , \nu 
angle + (\mathcal{M} \nabla \mu, \nabla \nu) = 0 \qquad \forall \, \nu \in H^1(\Omega)$$

$$\left(\varphi^3 + (1-\epsilon)\varphi,\psi\right) - 2\left(\nabla\varphi,\nabla\psi\right) + a(\varphi,\psi) - (\mu,\psi) = 0 \qquad \forall \, \psi \in Z$$

Find finite dimensional subspaces:

 $V_{h} \subset H^{1}(\Omega), \ \mathbb{Z}_{h} \not\subset \mathbb{Z},$ 

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi \, , 
u 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \qquad orall \, 
u \in H^1(\Omega)$$

$$\left(\varphi^3 + (1-\epsilon)\varphi,\psi\right) - 2\left(\nabla\varphi,\nabla\psi\right) + a(\varphi,\psi) - (\mu,\psi) = 0 \qquad \forall \, \psi \in Z$$

Find finite dimensional subspaces:

 $V_h \subset H^1(\Omega), \ Z_h \not\subset Z,$ 

 $Z_h \subset H^1(\Omega)$ 

Find  $(\varphi, \mu) : [0, T] \to Z \times H^1(\Omega)$  s.t. for almost all  $t \in (0, T)$ 

$$\langle \partial_t \varphi \ , 
u 
angle + (\mathcal{M} 
abla \mu, 
abla 
u) = 0 \qquad orall 
u \in H^1(\Omega)$$

$$\left( \varphi^3 + (1-\epsilon)\varphi, \psi \right) - 2\left( \nabla \varphi, \nabla \psi \right) + a(\varphi, \psi) - (\mu, \psi) = 0 \qquad \forall \, \psi \in Z$$

Find finite dimensional subspaces:

$$V_h \subset H^1(\Omega), \ Z_h \not\subset Z,$$

 $Z_h \subset H^1(\Omega)$ 

 $(\varphi_h, \mu_h) : [0, T] \rightarrow Z_h \times V_h$ :

 $\langle \partial_t \varphi_h, \nu \rangle + (\mathcal{M} \nabla \mu_h, \nabla \nu) = 0,$  $\left( (\varphi_h)^3 + (1 - \epsilon) \varphi_h, \psi \right) - 2 (\nabla \varphi_h, \nabla \psi) + \frac{\partial^P}{\partial_h} (\varphi_h, \psi) - (\mu_h, \psi) = 0$ 

 $\forall \nu \in V_h, \ \psi \in Z_h$  holds for almost all  $t \in (0, T)$ .

$$V_h := \{ v \in C(\overline{\Omega}) | v|_{\mathcal{K}} \in P_1(\mathcal{K}) \ \forall \mathcal{K} \in \mathscr{T}_h \}$$

07/18/23

э

$$V_h := \{ v \in C(\overline{\Omega}) | v|_{\mathcal{K}} \in P_1(\mathcal{K}) \ \forall \mathcal{K} \in \mathscr{T}_h \}$$
$$Z_h := \{ v \in C(\overline{\Omega}) | v|_{\mathcal{K}} \in P_2(\mathcal{K}) \ \forall \mathcal{K} \in \mathscr{T}_h \},$$

$$V_h := \{ v \in C(\overline{\Omega}) | v|_K \in P_1(K) \ \forall K \in \mathscr{T}_h \}$$

$$Z_h := \{ v \in C(\overline{\Omega}) | v|_{\mathcal{K}} \in P_2(\mathcal{K}) \ \forall \mathcal{K} \in \mathscr{T}_h \},$$

 $R_h: H^1(\Omega) \to V_h$  is a Ritz projection operator such that

$$\left( 
abla \left( R_{h} \mu - \mu 
ight), 
abla \xi 
ight) = 0 \quad \forall \, \xi \in V_{h}, \quad \left( R_{h} \mu - \mu, 1 
ight) = 0.$$

$$V_h := \{ v \in C(\overline{\Omega}) | v|_K \in P_1(K) \ \forall K \in \mathscr{T}_h \}$$

$$Z_h := \{ v \in C(\overline{\Omega}) | v|_{\mathcal{K}} \in P_2(\mathcal{K}) \ \forall \mathcal{K} \in \mathscr{T}_h \},$$

 $R_h: H^1(\Omega) o V_h$  is a Ritz projection operator such that

$$(\nabla (R_h \mu - \mu), \nabla \xi) = 0 \quad \forall \xi \in V_h, \quad (R_h \mu - \mu, 1) = 0.$$

 $P_h: Z \to Z_h$  is a Ritz projection operator such that

$$a_{h}^{IP}\left(P_{h}\varphi-\varphi,\xi\right)+\left(1-\epsilon\right)\left(P_{h}\varphi-\varphi,\xi\right)=0\quad\forall\xi\in Z_{h},\quad\left(P_{h}\varphi-\varphi,1\right)=0.$$

07/18/23

 $a_h^{IP}: Z_h imes Z_h o \mathbb{R}$  according to

$$a_h^{IP}\left(\xi_h,\psi_h\right) := \sum_{K\in\mathscr{T}_h} \int_K \nabla^2 \xi_h : \nabla^2 \psi_h \ d\mathsf{x} \ + J(\xi_h,\psi_h), \quad \xi_h,\psi_h \in Z_h$$

where

$$J(\xi_h, \psi_h) := \sum_{e \in \mathscr{E}_h} \int_e \left( [\mathsf{n}_e \cdot \nabla \xi_h]_e \ \{\mathsf{n}_e \cdot \nabla^2 \psi_h \mathsf{n}_e\}_e + \{\mathsf{n}_e \cdot \nabla^2 \xi_h \mathsf{n}_e\}_e \ [\mathsf{n}_e \cdot \nabla \psi_h]_e \right) ds$$
$$+ \sum_{e \in \mathscr{E}_h} \int_e \frac{\alpha}{h_e} \ [\mathsf{n}_e \cdot \nabla \xi_h]_e \ [\mathsf{n}_e \cdot \nabla \psi_h]_e \ ds, \quad \xi_h, \psi_h \in Z_h$$

and  $\alpha > 0$  is a penalty parameter.

#### Lemma (Boundedness of $a_{h}^{IP}(\cdot, \cdot)$ )

There exists positive constants  $C_{cont}$  and  $C_{coer}$  such that for choices of the penalty parameter  $\alpha$  large enough we have

$$\begin{aligned} a_h^{IP}\left(w_h, v_h\right) &\leq C_{cont} \left\|w_h\right\|_{2,h} \left\|v_h\right\|_{2,h} \quad \forall w_h, v_h \in Z_h \\ C_{coer} \left\|w_h\right\|_{2,h}^2 &\leq a_h^{IP}\left(w_h, w_h\right) \quad \forall w_h \in Z_h, \end{aligned}$$

where the constants  $C_{cont}$  and  $C_{coer}$  depend only on the shape regularity of  $\mathcal{T}_h$ .

where the C<sup>0</sup>-IP Norm is:

$$\|\xi_{h}\|_{2,h}^{2} := \sum_{K \in \mathscr{T}_{h}} |\xi_{h}|_{H^{2}(K)}^{2} + \sum_{e \in \mathscr{E}_{h}} \alpha \|h_{e}^{-\frac{1}{2}}[\mathsf{n}_{e} \cdot \nabla \xi_{h}]_{e} \|_{L^{2}(e)}^{2}.$$

### **Time Discretization**

We introduce a partition of (0,T)

æ

### Time Discretization

We introduce a partition of (0,T)



into M sub-intervals  $(t_{m-1}, t_m)$ :

$$t_m = t_{m-1} + \tau$$
, for  $1 \le m \le M$ 

#### **Time Discretization**

We introduce a partition of (0,T)



into M sub-intervals  $(t_{m-1}, t_m)$ :

$$t_m = t_{m-1} + \tau$$
, for  $1 \le m \le M$ 

<u>Notation</u>:  $\varphi^m$  approximate  $\varphi$  at time  $t_m$ .

Numerical time derivative w.r.t.  $\tau$ :

$$\delta_{\tau}\varphi^{m} := \frac{\varphi^{m+1} - \varphi^{m}}{\tau}$$

# Convex Time Splitting Scheme

• Basic Idea:

$$\begin{split} \mu &= \delta_{\varphi} E(\varphi) = \delta_{\varphi} \Big( \underbrace{E^{+}(\varphi)}_{\text{convex}} + \underbrace{E^{-}(\varphi)}_{\text{convave}} \Big) \\ \implies \mu^{m} = \underbrace{(\varphi^{m})^{3} + (1-\epsilon)\varphi^{m} + \Delta^{2}\varphi^{m}}_{\delta_{\varphi} E^{+}(\varphi^{m})} + \underbrace{2\Delta\varphi^{m-1}}_{\delta_{\varphi} E^{-}(\varphi^{m-1})} \end{split}$$
  
where  $E(\varphi) = \int_{\Omega} \Big( \frac{\varphi^{4}}{4} + \frac{1-\varepsilon}{2}\varphi^{2} + \frac{1}{2}(\Delta\varphi)^{2} - |\nabla\varphi|^{2} \Big) dx. \end{split}$ 

∃ ∽ 07/18/23

### Convex Time Splitting Scheme

• Basic Idea:

$$\mu = \delta_{\varphi} E(\varphi) = \delta_{\varphi} \Big( \underbrace{E^{+}(\varphi)}_{\text{convex}} + \underbrace{E^{-}(\varphi)}_{\text{convave}} \Big)$$
$$\implies \mu^{m} = \underbrace{(\varphi^{m})^{3} + (1 - \epsilon)\varphi^{m} + \Delta^{2}\varphi^{m}}_{\delta_{\varphi}E^{+}(\varphi^{m})} + \underbrace{2\Delta\varphi^{m-1}}_{\delta_{\varphi}E^{-}(\varphi^{m-1})}$$
where  $E(\varphi) = \int_{\Omega} \Big( \frac{\varphi^{4}}{4} + \frac{1 - \epsilon}{2}\varphi^{2} + \frac{1}{2}(\Delta\varphi)^{2} - |\nabla\varphi|^{2} \Big) dx.$ 

Given  $arphi^{0}$  , find  $(arphi^{m},\mu^{m})$  for  $\ 1\leq m\leq M$  by

$$\delta_{\tau}\varphi^m - \nabla \cdot (\mathcal{M}\nabla\mu^m) = 0,$$
  
 $(\varphi^m)^3 + (1-\epsilon)\varphi^m + \Delta^2\varphi^m + 2\Delta\varphi^{m-1} - \mu^m = 0,$ 

with boundary conditions

$$\partial_n \varphi^m = \partial_n \Delta \varphi^m = \partial_n \mu^m = 0.$$

Natasha S. Sharma (UTEP)

Given  $\varphi_h^{m-1} \in Z_h$ , find  $\varphi_h^m, \mu_h^m \in Z_h \times V_h$  such that for all  $\nu_h \in V_h$ ,  $\psi_h \in Z_h$  it holds

$$(\delta_{\tau}\varphi_{h}^{m},\nu_{h}) + (\mathcal{M}\nabla\mu_{h}^{m},\nabla\nu_{h}) = 0$$

$$\left((\varphi_{h}^{m})^{3} + (1-\epsilon)\varphi_{h}^{m},\psi_{h}\right) + a_{h}^{IP}(\varphi_{h}^{m},\psi_{h}) - 2\left(\nabla\varphi_{h}^{m-1},\nabla\psi_{h}\right) - (\mu_{h}^{m},\psi_{h}) = 0,$$
where  $\varphi_{h}^{0} := P_{h}\varphi_{0}$  and  $\mu_{h}^{0} \in V_{h}$  is defined as  $\mu_{h}^{0} := R_{h}\mu_{0}.$ 

#### Remark

The scheme satisfies the discrete conservation property

$$(\varphi_h^m, 1) = (\varphi_h^0, 1) = (\varphi_0, 1)$$
 for any  $1 \le m \le M$ .

Unique Solvability:

æ

 Unique Solvability: Relies on Convexity arguments.

 Unique Solvability: Relies on Convexity arguments.

Onconditional Stability:

 Unique Solvability: Relies on Convexity arguments.

Onconditional Stability:

$$F(\varphi_{h}^{m}) := \frac{1}{4} \|\varphi_{h}^{m}\|_{L^{4}}^{4} + \frac{1-\epsilon}{2} \|\varphi_{h}^{m}\|_{L^{2}}^{2} - \|\nabla\varphi_{h}^{m}\|_{L^{2}}^{2} + \frac{1}{2} a_{h}^{IP}(\varphi_{h}^{m},\varphi_{h}^{m})$$

 Unique Solvability: Relies on Convexity arguments.

Onconditional Stability:

$$F(\varphi_{h}^{m}) := \frac{1}{4} \|\varphi_{h}^{m}\|_{L^{4}}^{4} + \frac{1-\epsilon}{2} \|\varphi_{h}^{m}\|_{L^{2}}^{2} - \|\nabla\varphi_{h}^{m}\|_{L^{2}}^{2} + \frac{1}{2}a_{h}^{IP}(\varphi_{h}^{m},\varphi_{h}^{m})$$

Direct consequence of the convex decomposition of the energy.

 Unique Solvability: Relies on Convexity arguments.

Onconditional Stability:

$$F(\varphi_{h}^{m}) := \frac{1}{4} \|\varphi_{h}^{m}\|_{L^{4}}^{4} + \frac{1-\epsilon}{2} \|\varphi_{h}^{m}\|_{L^{2}}^{2} - \|\nabla\varphi_{h}^{m}\|_{L^{2}}^{2} + \frac{1}{2}a_{h}^{IP}(\varphi_{h}^{m},\varphi_{h}^{m})$$

Direct consequence of the convex decomposition of the energy.

Optimal error estimates:
# Properties of Scheme

 Unique Solvability: Relies on Convexity arguments.

Onconditional Stability:

$$F(\varphi_{h}^{m}) := \frac{1}{4} \|\varphi_{h}^{m}\|_{L^{4}}^{4} + \frac{1-\epsilon}{2} \|\varphi_{h}^{m}\|_{L^{2}}^{2} - \|\nabla\varphi_{h}^{m}\|_{L^{2}}^{2} + \frac{1}{2}a_{h}^{IP}(\varphi_{h}^{m},\varphi_{h}^{m})$$

Direct consequence of the convex decomposition of the energy.

### Optimal error estimates: Main Result!

## Definition

Define the functional  $G_h : \mathring{Z}_h \to \mathbb{R}$ 

$$\begin{split} \mathcal{G}_{h}(\varphi_{h}) &:= \frac{\tau}{2} \left\| \frac{\varphi_{h} - \varphi_{h}^{m-1}}{\tau} \right\|_{-1,h}^{2} + \frac{1}{2} a_{h}^{\prime P}(\varphi_{h},\varphi_{h}) + \frac{1}{4} \left\| \varphi_{h} + \overline{\varphi}_{0} \right\|_{L^{4}(\Omega)}^{4} \\ &+ \frac{1 - \epsilon}{2} \left\| \varphi_{h} + \overline{\varphi}_{0} \right\|_{L^{2}(\Omega)}^{2} - 2\left( \nabla \varphi_{h}^{m-1}, \nabla \varphi_{h} \right), \end{split}$$

where

$$\|v_h\|_{-1,h} = (\nabla T_h v_h, \nabla T_h v_h)^{1/2} = (v_h, T_h v_h)^{1/2} = (T_h v_h, v_h)^{1/2},$$

with  $T_h : \mathring{Z}_h \to \mathring{Z}_h$  defined as: given  $\zeta_h \in \mathring{Z}_h$ , find  $T_h \zeta_h \in \mathring{Z}_h$ :

$$(\nabla \mathsf{T}_h \zeta_h, \nabla \chi_h) = (\zeta_h, \chi_h) \qquad \forall \, \chi_h \in \mathring{Z}_h.$$

イロン イ団 とく ヨン イヨン

The fully discrete C<sup>0</sup>-IP scheme is uniquely solvable for any mesh parameters:  $\tau$  and h and for any  $\varepsilon < 1$ .

# Proof.

The fully discrete C<sup>0</sup>-IP scheme is uniquely solvable for any mesh parameters:  $\tau$  and h and for any  $\varepsilon < 1$ .

# Proof.

The fully discrete C<sup>0</sup>-IP scheme is uniquely solvable for any mesh parameters:  $\tau$  and h and for any  $\varepsilon < 1$ .

## Proof.

Shown through the zero mean formulation corresponding to our scheme

The fully discrete C<sup>0</sup>-IP scheme is uniquely solvable for any mesh parameters:  $\tau$  and h and for any  $\varepsilon < 1$ .

## Proof.

- Shown through the zero mean formulation corresponding to our scheme
- Prove the one-to-one correspondence between solution of our scheme with the solution to the zero mean formulation

The fully discrete C<sup>0</sup>-IP scheme is uniquely solvable for any mesh parameters:  $\tau$  and h and for any  $\varepsilon < 1$ .

## Proof.

- Shown through the zero mean formulation corresponding to our scheme
- Prove the one-to-one correspondence between solution of our scheme with the solution to the zero mean formulation
- Existence of the unique solution to the **zero mean formulation** proved through existence of a minimizer for a functional  $G_h$ .

# Lemma (Discrete Energy Law)

Let  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  be a solution of the C<sup>0</sup>-IP method. Then the following energy law holds for any  $h, \tau > 0$ :

$$\begin{split} &= \left(\varphi_h^{\ell}\right) + \tau \sum_{m=1}^{\ell} \left\| \mathcal{M}^{1/2} \nabla \mu_h^m \right\|_{L^2(\Omega)}^2 \\ &+ \tau^2 \sum_{m=1}^{\ell} \left\{ \frac{(1-\epsilon)}{2} \left\| \delta_\tau \varphi_h^m \right\|_{L^2(\Omega)}^2 + \left\| \nabla \delta_\tau \varphi_h^m \right\|_{L^2(\Omega)}^2 \\ &+ \frac{1}{4} \left\| \delta_\tau (\varphi_h^m)^2 \right\|_{L^2(\Omega)}^2 + \frac{1}{2} \left\| \varphi_h^m \delta_\tau \varphi_h^m \right\|_{L^2(\Omega)}^2 + \frac{1}{2} a_h^{IP} \left( \delta_\tau \varphi_h^m, \delta_\tau \varphi_h^m \right) \right\} \\ &= F \left(\varphi_h^0\right), \quad 1 \le \ell \le M. \end{split}$$

#### Lemma

Let  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  be the unique solution of  $C^0$ -IP scheme. Suppose that  $F(\varphi_h^0) \leq C$  independent of h and  $\epsilon < \frac{C_{coer}-4}{C_{coer}} < 1$ . For any  $h, \tau > 0$ :  $\max_{0 \le m \le M} \left[ \|\varphi_h^m\|_{L^4(\Omega)}^2 + \|\varphi_h^m\|_{L^2(\Omega)}^2 + \|\varphi_h^m\|_{2,h}^2 \right] \le C$  $\max_{0 \le m \le M} \|\varphi_h^m\|_{H^1}^2 \le C$  $\tau \sum_{k=1}^{\ell} \left\| \mathcal{M}^{1/2} \nabla \mu_{h}^{m} \right\|_{L^{2}(\Omega)}^{2} \leq C$  $\tau^{2} \sum_{m=1}^{\ell} \left\{ \left\| \nabla \delta_{\tau} \varphi_{h}^{m} \right\|_{L^{2}(\Omega)}^{2} + \left\| (\varphi_{h}^{m})^{2} \delta_{\tau} (\varphi_{h}^{m})^{2} \right\|_{L^{2}(\Omega)}^{2} + \left\| \delta_{\tau} \varphi_{h}^{m} \right\|_{2,h}^{2} \right\} \leq C$ 

for some constant C that is independent of  $h, \tau$ , and T.

Assume additional regularites:

$$\begin{split} \varphi &\in L^{\infty}\left(0, T; H^{3}(\Omega)\right) \cap L^{2}\left(0, T; H^{3}(\Omega)\right), \\ \partial_{t}\varphi &\in L^{2}\left(0, T; H^{3}(\Omega)\right) \cap L^{2}(0, T; H_{N}^{-1}(\Omega)), \\ \partial_{tt}\varphi &\in L^{2}\left(0, T; L^{2}(\Omega)\right), \\ \mu &\in L^{2}\left(0, T; H^{2}(\Omega)\right), \\ \partial_{t}\mu &\in L^{2}\left(0, T; L^{2}(\Omega)\right). \end{split}$$

C<sup>0</sup>-IP Norm:

$$\|\xi_{h}\|_{2,h}^{2} := \sum_{K \in \mathscr{T}_{h}} |\xi_{h}|_{H^{2}(K)}^{2} + \sum_{e \in \mathscr{E}_{h}} \alpha \|h_{e}^{-\frac{1}{2}}[\mathsf{n}_{e} \cdot \nabla \xi_{h}]_{e} \|_{L^{2}(e)}^{2}.$$

Notation:

$$e^{\varphi,m} := \varphi^m - \varphi^m_h, \quad e^{\mu,m} := \mu^m - \mu^m_h,$$

Assumption:  $\mathcal{M} \equiv 1$ .

2

# Error Analysis: Error Equation

### Weak Form:

$$\langle \partial_t \varphi^m, \nu \rangle + (\nabla \mu^m, \nabla \nu) = 0 \ \forall \nu \in H^1(\Omega)$$

$$\left( (\varphi^m)^3 + (1 - \epsilon)\varphi^m, \psi \right) - 2 (\nabla \varphi^m, \nabla \psi) + a(\varphi^m, \psi) - (\mu^m, \psi) = 0 \ \forall \psi \in Z.$$

$$(2)$$

### Fully Discrete C<sup>0</sup>-IP Form:

$$(\delta_{\tau}\varphi_{h}^{m},\nu) + (\nabla\mu_{h}^{m},\nabla\nu) = 0 \ \forall\nu \in V_{h}$$

$$((\varphi_{h}^{m})^{3} + (1-\epsilon)\varphi_{h}^{m},\psi) - 2 (\nabla\varphi_{h}^{m-1},\nabla\psi) + a_{h}^{IP}(\varphi_{h}^{m},\psi) - (\mu_{h}^{m},\psi) = 0, \forall\psi \in Z_{h}$$

$$(4)$$

э

# Error Analysis: Error Equation

#### Weak Form:

$$\langle \partial_t \varphi^m, \nu \rangle + (\nabla \mu^m, \nabla \nu) = 0 \ \forall \nu \in H^1(\Omega)$$

$$\left( (\varphi^m)^3 + (1 - \epsilon)\varphi^m, \psi \right) - 2 \left( \nabla \varphi^m, \nabla \psi \right) + a(\varphi^m, \psi) - (\mu^m, \psi) = 0 \ \forall \psi \in Z.$$

$$(2)$$

#### Fully Discrete C<sup>0</sup>-IP Form:

$$(\delta_{\tau}\varphi_{h}^{m},\nu) + (\nabla\mu_{h}^{m},\nabla\nu) = 0 \ \forall\nu \in V_{h}$$

$$((\varphi_{h}^{m})^{3} + (1-\epsilon)\varphi_{h}^{m},\psi) - 2(\nabla\varphi_{h}^{m-1},\nabla\psi) + a_{h}^{IP}(\varphi_{h}^{m},\psi) - (\mu_{h}^{m},\psi) = 0, \forall\psi \in Z_{h}$$

$$(4)$$

• (1) and (3)  $\Longrightarrow$   $(\delta_{\tau}e^{\varphi,m},\nu_h) + (\nabla e^{\mu,m},\nabla \nu_h) = (\delta_{\tau}\varphi^m - \partial_t\varphi^m,\nu_h), \nu_h \in V_h \subset H^1(\Omega).$ 

э

# Error Analysis: Error Equation

#### Weak Form:

$$\langle \partial_t \varphi^m, \nu \rangle + (\nabla \mu^m, \nabla \nu) = 0 \ \forall \nu \in H^1(\Omega)$$

$$\left( (\varphi^m)^3 + (1 - \epsilon)\varphi^m, \psi \right) - 2 (\nabla \varphi^m, \nabla \psi) + a(\varphi^m, \psi) - (\mu^m, \psi) = 0 \ \forall \psi \in Z.$$

$$(2)$$

#### Fully Discrete C<sup>0</sup>-IP Form:

$$(\delta_{\tau}\varphi_{h}^{m},\nu) + (\nabla\mu_{h}^{m},\nabla\nu) = 0 \ \forall \nu \in V_{h}$$

$$((\varphi_{h}^{m})^{3} + (1-\epsilon)\varphi_{h}^{m},\psi) - 2 (\nabla\varphi_{h}^{m-1},\nabla\psi) + a_{h}^{IP}(\varphi_{h}^{m},\psi) - (\mu_{h}^{m},\psi) = 0, \forall \psi \in Z_{h}$$

$$(4)$$

• (1) and (3)  $\Longrightarrow (\delta_{\tau} e^{\varphi,m}, \nu_h) + (\nabla e^{\mu,m}, \nabla \nu_h) = (\delta_{\tau} \varphi^m - \partial_t \varphi^m, \nu_h), \nu_h \in V_h \subset H^1(\Omega).$ 

• Error equation based on (2) and (4) is not well-defined since  $Z_h \not\subset Z!$ 

ヘロト ヘロト ヘヨト ヘヨト

$$\left(\left(\varphi^{m}\right)^{3}+(1-\epsilon)\varphi^{m},\psi\right)-2\left(\nabla\varphi^{m},\nabla\psi\right)+a(\varphi^{m},\psi)-(\mu^{m},\psi)=0\;\forall\psi\in Z.$$

### Fully Discrete C<sup>0</sup>-IP Form:

$$\left(\left(\varphi_{h}^{m}\right)^{3}+(1-\epsilon)\varphi_{h}^{m},\psi\right)-2\left(\nabla\varphi_{h}^{m-1},\nabla\psi\right)+a_{h}^{IP}\left(\varphi_{h}^{m},\psi\right)-\left(\mu_{h}^{m},\psi\right)=0,\forall\psi\in Z_{h}$$

э

$$\left(\left(\varphi^{m}\right)^{3}+(1-\epsilon)\varphi^{m},\psi\right)-2\left(\nabla\varphi^{m},\nabla\psi\right)+a(\varphi^{m},\psi)-(\mu^{m},\psi)=0\;\forall\psi\in Z.$$

## Fully Discrete C<sup>0</sup>-IP Form:

$$\left(\left(\varphi_{h}^{m}\right)^{3}+(1-\epsilon)\varphi_{h}^{m},\psi\right)-2\left(\nabla\varphi_{h}^{m-1},\nabla\psi\right)+a_{h}^{IP}\left(\varphi_{h}^{m},\psi\right)-\left(\mu_{h}^{m},\psi\right)=0,\forall\psi\in Z_{h}$$

$$\left( (\varphi^m)^3 - (\varphi^m_h)^3 + (1 - \epsilon) e^{\varphi, m}, \psi \right) - 2 \left( \nabla e^{\varphi, m}, \nabla \psi \right) + a(\varphi^m, \psi) - a_h^{IP} \left( \varphi^m_h, \psi \right) \\ - \left( e^{\mu, m}, \psi \right) = 0$$

э

$$\left(\left(\varphi^{m}\right)^{3}+(1-\epsilon)\varphi^{m},\psi\right)-2\left(\nabla\varphi^{m},\nabla\psi\right)+a(\varphi^{m},\psi)-(\mu^{m},\psi)=0\;\forall\psi\in Z.$$

### Fully Discrete C<sup>0</sup>-IP Form:

$$\left(\left(\varphi_{h}^{m}\right)^{3}+(1-\epsilon)\varphi_{h}^{m},\psi\right)-2\left(\nabla\varphi_{h}^{m-1},\nabla\psi\right)+a_{h}^{IP}\left(\varphi_{h}^{m},\psi\right)-\left(\mu_{h}^{m},\psi\right)=0,\forall\psi\in Z_{h}$$

$$\left( (\varphi^m)^3 - (\varphi^m_h)^3 + (1 - \epsilon) e^{\varphi, m}, \psi \right) - 2 \left( \nabla e^{\varphi, m}, \nabla \psi \right) + a(\varphi^m, \psi) - a_h^{IP} \left( \varphi^m_h, \psi \right) \\ - \left( e^{\mu, m}, \psi \right) = 0$$

Problem:  $\psi \in Z$  is not in  $H^{2+1/2}$  locally!  $\psi \in Z_h$  is not in  $H^2$  globally!

$$\left(\left(\varphi^{m}\right)^{3}+(1-\epsilon)\varphi^{m},\psi\right)-2\left(\nabla\varphi^{m},\nabla\psi\right)+a(\varphi^{m},\psi)-(\mu^{m},\psi)=0\;\forall\psi\in Z.$$

## Fully Discrete C<sup>0</sup>-IP Form:

$$\left(\left(\varphi_{h}^{m}\right)^{3}+(1-\epsilon)\varphi_{h}^{m},\psi\right)-2\left(\nabla\varphi_{h}^{m-1},\nabla\psi\right)+a_{h}^{IP}\left(\varphi_{h}^{m},\psi\right)-\left(\mu_{h}^{m},\psi\right)=0,\forall\psi\in Z_{h}$$

$$\left( (\varphi^m)^3 - (\varphi^m_h)^3 + (1 - \epsilon) e^{\varphi, m}, \psi \right) - 2 \left( \nabla e^{\varphi, m}, \nabla \psi \right) + a(\varphi^m, \psi) - a_h^{IP} \left( \varphi^m_h, \psi \right) \\ - \left( e^{\mu, m}, \psi \right) = 0$$

Problem:  $\psi \in Z$  is not in  $H^{2+1/2}$  locally!  $\psi \in Z_h$  is not in  $H^2$  globally! Remedy: Lift  $\psi \in Z_h$  into a finite dimensional subspace of Z.

• Remedy: Introduce  $W_h \subset Z$  to be the Hsieh-Clough-Tocher micro finite element space associated with  $\mathcal{T}_h$ .

07/18/23

- Remedy: Introduce  $W_h \subset Z$  to be the Hsieh-Clough-Tocher micro finite element space associated with  $\mathcal{T}_h$ .
- Define the enriching operator  $E_h : Z_h \to W_h \cap Z$  [Brenner, Gudi, Sung '12]

- Remedy: Introduce  $W_h \subset Z$  to be the Hsieh-Clough-Tocher micro finite element space associated with  $\mathcal{T}_h$ .
- Define the enriching operator  $E_h : Z_h \to W_h \cap Z$  [Brenner, Gudi, Sung '12]
- Weak Form with correction term: find  $(\varphi^m, \mu^m) \in Z \times H^1(\Omega)$ :

$$\begin{aligned} &(\partial_t \varphi^m, \nu_h) + (\nabla \mu^m, \nabla \nu_h) = 0 \quad \forall \, \nu_h \in V_h, \\ &\mathsf{a}_h^{IP}(\varphi^m, \psi_h) + \left( (\varphi^m)^3 + (1 - \epsilon)\varphi^m, \psi_h \right) - 2 \left( \nabla \varphi^m, \nabla \psi_h \right) - (\mu^m, \psi_h) \\ &= \mathcal{L}(\varphi^m, \mu^m; \psi_h - E_h \psi_h) \qquad \forall \, \psi_h \in Z_h \end{aligned}$$

where

$$\begin{aligned} \mathcal{L}(\varphi^{m},\mu^{m};\psi_{h}-E_{h}\psi_{h}) &:= a_{h}^{IP}\left(\varphi^{m},\psi_{h}-E_{h}\psi_{h}\right) - \left(\mu^{m},\psi_{h}-E_{h}\psi_{h}\right) \\ &+ \left(\left(\varphi^{m}\right)^{3} + \left(1-\epsilon\right)\varphi^{m},\psi_{h}-E_{h}\psi_{h}\right) - 2\left(\nabla\varphi^{m},\nabla\psi_{h}-\nabla E_{h}\psi_{h}\right). \end{aligned}$$

- Remedy: Introduce  $W_h \subset Z$  to be the Hsieh-Clough-Tocher micro finite element space associated with  $\mathcal{T}_h$ .
- Define the enriching operator  $E_h : Z_h \to W_h \cap Z$  [Brenner, Gudi, Sung '12]
- Weak Form with correction term: find  $(\varphi^m, \mu^m) \in Z \times H^1(\Omega)$ :

$$\begin{aligned} (\partial_t \varphi^m, \nu_h) + (\nabla \mu^m, \nabla \nu_h) &= 0 \quad \forall \nu_h \in V_h, \\ a_h^{IP}(\varphi^m, \psi_h) + \left( (\varphi^m)^3 + (1 - \epsilon) \varphi^m, \psi_h \right) - 2 \left( \nabla \varphi^m, \nabla \psi_h \right) - (\mu^m, \psi_h) \\ &= \mathcal{L}(\varphi^m, \mu^m; \psi_h - E_h \psi_h) \qquad \forall \ \psi_h \in Z_h \end{aligned}$$

where

$$\mathcal{L}(\varphi^{m},\mu^{m};\psi_{h}-E_{h}\psi_{h}) := a_{h}^{IP}(\varphi^{m},\psi_{h}-E_{h}\psi_{h}) - (\mu^{m},\psi_{h}-E_{h}\psi_{h}) + ((\varphi^{m})^{3} + (1-\epsilon)\varphi^{m},\psi_{h}-E_{h}\psi_{h}) - 2(\nabla\varphi^{m},\nabla\psi_{h}-\nabla E_{h}\psi_{h}).$$

Solutions to weak form are consistent since a<sup>IP</sup><sub>h</sub> (φ, E<sub>h</sub>ψ) = a(φ, E<sub>h</sub>ψ) for all ψ ∈ Z<sub>h</sub>.

Subtracting fully discrete form from the weak form with the correction term gives:

$$\left(\delta_{\tau} e^{\varphi,m}, \nu_{h}\right) + \left(\nabla e^{\mu,m}, \nabla \nu_{h}\right) = \left(\delta_{\tau} \varphi^{m} - \partial_{t} \varphi^{m}, \nu_{h}\right),$$
(5)

$$a_{h}^{IP}\left(e^{\varphi,m},\psi_{h}\right)+\left((1-\epsilon)e^{\varphi,m},\psi_{h}\right)-2\left(\nabla e^{\varphi,m-1},\nabla\psi_{h}\right)-\left(e^{\mu,m},\psi_{h}\right)=-\left(\left(\varphi^{m}\right)^{3}-\left(\varphi_{h}^{m}\right)^{3},\psi_{h}\right)-2\left(\nabla \varphi^{m-1}-\nabla \varphi^{m},\nabla\psi_{h}\right)+\mathcal{L}(\varphi^{m},\mu_{h}^{m};\psi_{h}-E_{h}\psi_{h}).$$
(6)

### Notation:

$$\begin{split} e^{\varphi,m} &= e_P^{\varphi,m} + e_h^{\varphi,m}, \quad e_P^{\varphi,m} := \varphi^m - P_h \varphi^m, \quad e_h^{\varphi,m} := P_h \varphi^m - \varphi_h^m, \\ e^{\mu,m} &= e_R^{\mu,m} + e_h^{\mu,m}, \quad e_R^{\mu,m} := \mu^m - R_h \mu^m, \quad e_h^{\mu,m} := R_h \mu^m - \mu_h^m. \end{split}$$

07/18/23

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Subtracting fully discrete form from the weak form with the correction term gives:

$$\left(\delta_{\tau} e^{\varphi,m}, \nu_{h}\right) + \left(\nabla e^{\mu,m}, \nabla \nu_{h}\right) = \left(\delta_{\tau} \varphi^{m} - \partial_{t} \varphi^{m}, \nu_{h}\right),$$
(5)

$$a_{h}^{IP}\left(e^{\varphi,m},\psi_{h}\right)+\left((1-\epsilon)e^{\varphi,m},\psi_{h}\right)-2\left(\nabla e^{\varphi,m-1},\nabla\psi_{h}\right)-\left(e^{\mu,m},\psi_{h}\right)=-\left(\left(\varphi^{m}\right)^{3}-\left(\varphi_{h}^{m}\right)^{3},\psi_{h}\right)-2\left(\nabla \varphi^{m-1}-\nabla \varphi^{m},\nabla\psi_{h}\right)+\mathcal{L}(\varphi^{m},\mu_{h}^{m};\psi_{h}-E_{h}\psi_{h}).$$
(6)

### Notation:

$$\begin{aligned} e^{\varphi,m} &= e_{P}^{\varphi,m} + e_{h}^{\varphi,m}, \quad e_{P}^{\varphi,m} := \varphi^{m} - P_{h}\varphi^{m}, \quad e_{h}^{\varphi,m} := P_{h}\varphi^{m} - \varphi_{h}^{m}, \\ e^{\mu,m} &= e_{R}^{\mu,m} + e_{h}^{\mu,m}, \quad e_{R}^{\mu,m} := \mu^{m} - R_{h}\mu^{m}, \quad e_{h}^{\mu,m} := R_{h}\mu^{m} - \mu_{h}^{m}. \end{aligned}$$
  
Set  $\nu_{h} = e_{h}^{\mu,m}$  in (5) and  $\psi_{h} = \delta_{\tau} e_{h}^{\varphi,m}$  in (6).

э

\*ロト \*個ト \*注下 \*注下

$$\begin{split} \|\nabla e_{h}^{\mu,m}\|_{L^{2}}^{2} + a_{h}^{IP}\left(e_{h}^{\varphi,m},\delta_{\tau}e_{h}^{\varphi,m}\right) + \left((1-\epsilon)e_{h}^{\varphi,m},\delta_{\tau}e_{h}^{\varphi,m}\right) - 2\left(\nabla e_{h}^{\varphi,m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &= \left(\delta_{\tau}\varphi^{m} - \partial_{t}\varphi^{m},e_{h}^{\mu,m}\right) - \left(\delta_{\tau}e_{P}^{\varphi,m},e_{h}^{\mu,m}\right) + \left(e_{R}^{\mu,m},\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &+ 2\left(\nabla\varphi^{m} - \nabla\varphi^{m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) - \left(\left(\varphi^{m}\right)^{3} - \left(\varphi_{h}^{m}\right)^{3},\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &+ 2\left(\nabla e_{P}^{\varphi,m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) + \mathcal{L}(\varphi^{m},\mu_{h}^{m};\psi_{h} - E_{h}\psi_{h}) \end{split}$$

∃ ∽ 07/18/23

#### Lemma

Let  $(\varphi^m, \mu^m)$  be a weak solution with the additional regularities. Then for any  $h, \tau > 0$  and any  $0 \le m \le M$ , we have

$$\|\delta_{\tau} e_{h}^{\varphi,m}\|_{-1,h}^{2} \leq 4 \|\nabla e_{h}^{\mu,m}\|_{L^{2}}^{2} + \frac{Ch^{2}}{\tau} \int_{t_{m-1}}^{t_{m}} \|\partial_{s}\varphi(s)\|_{H^{2}}^{2} ds + C\tau \int_{t_{m-1}}^{t_{m}} \|\partial_{ss}\varphi(s)\|_{H^{1}}^{2} ds$$

where the constant C may depend upon a Poincaré constant but does not depend on h or  $\tau$ .

where  $\|v_h\|_{-1,h} = (\nabla T_h v_h, \nabla T_h v_h)^{1/2} = (v_h, T_h v_h)^{1/2} = (T_h v_h, v_h)^{1/2}$  and  $T_h$  is the discrete inverse Laplacian.

$$\begin{split} \|\nabla e_{h}^{\mu,m}\|_{L^{2}}^{2} + a_{h}^{IP}\left(e_{h}^{\varphi,m},\delta_{\tau}e_{h}^{\varphi,m}\right) + \left(\left(1-\epsilon\right)e_{h}^{\varphi,m},\delta_{\tau}e_{h}^{\varphi,m}\right) - 2\left(\nabla e_{h}^{\varphi,m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &= \left(\delta_{\tau}\varphi^{m} - \partial_{t}\varphi^{m},e_{h}^{\mu,m}\right) - \left(\delta_{\tau}e_{P}^{\varphi,m},e_{h}^{\mu,m}\right) + \left(e_{R}^{\mu,m},\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &+ 2\left(\nabla\varphi^{m} - \nabla\varphi^{m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) - \left(\left(\varphi^{m}\right)^{3} - \left(\varphi_{h}^{m}\right)^{3},\delta_{\tau}e_{h}^{\varphi,m}\right) \\ &+ 2\left(\nabla e_{P}^{\varphi,m-1},\nabla\delta_{\tau}e_{h}^{\varphi,m}\right) + \mathcal{L}(\varphi^{m},\mu_{h}^{m};\psi_{h} - E_{h}\psi_{h}) \end{split}$$

Polarization Property:

$$\begin{aligned} a_h^{IP}\left(e_h^{\varphi,m}, \delta_\tau e_h^{\varphi,m}\right) &= \frac{1}{2} \delta_\tau \, a_h^{IP}\left(e_h^{\varphi,m}, e_h^{\varphi,m}\right) + \frac{\tau}{2} a_h^{IP}\left(\delta_\tau e_h^{\varphi,m}, \delta_\tau e_h^{\varphi,m}\right) \\ \left((1-\epsilon)e_h^{\varphi,m}, \delta_\tau e_h^{\varphi,m}\right) &= \frac{(1-\epsilon)}{2} \delta_\tau \left\|e_h^{\varphi,m}\right\|_{L^2}^2 + \frac{(1-\epsilon)}{2} \left\|\delta_\tau e_h^{\varphi,m}\right\|_{L^2}^2 \\ -2\left(\nabla e_h^{\varphi,m-1}, \nabla \delta_\tau e_h^{\varphi,m}\right) &= \tau \left\|\nabla \delta_\tau e_h^{\varphi,m}\right\|_{L^2}^2 - \delta_\tau \left(\nabla e_h^{\varphi,m}, \nabla e_h^{\varphi,m}\right) \end{aligned}$$

∃ ∽ 07/18/23

$$(\delta_ au arphi^m - \partial_t arphi^m, e_h^{\mu,m}) \leq C au \int_{t_{m-1}}^{t_m} \left\| \partial_{ss} arphi(s) 
ight\|_{L^2}^2 \, ds + rac{1}{12} \left\| 
abla e_h^{\mu,m} 
ight\|_{L^2}^2 \, ,$$

$$\begin{split} (\delta_{\tau} e_{P}^{\varphi,m}, e_{h}^{\mu,m}) &\leq C \left\| \delta_{\tau} e_{P}^{\varphi,m} \right\|_{L^{2}}^{2} + \frac{1}{12} \left\| \nabla e_{h}^{\mu,m} \right\|_{L^{2}}^{2} \\ &\leq \frac{C}{\tau} \int_{t_{m-1}}^{t_{m}} \left\| P_{h} \partial_{s} \varphi(s) - \partial_{s} \varphi(s) \right\|_{L^{2}}^{2} ds + \frac{1}{12} \left\| \nabla e_{h}^{\mu,m} \right\|_{L^{2}}^{2} \\ &\leq \frac{C}{\tau} \int_{t_{m-1}}^{t_{m}} \left\| \partial_{s} \varphi(s) - P_{h} \partial_{s} \varphi(s) \right\|_{2,h}^{2} ds + \frac{1}{12} \left\| \nabla e_{h}^{\mu,m} \right\|_{L^{2}}^{2}, \\ (e_{R}^{\mu,m}, \delta_{\tau} e_{h}^{\varphi,m}) &\leq C \left\| \nabla e_{R}^{\mu,m} \right\|_{L^{2}}^{2} + \frac{1}{36} \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{-1,h}^{2}, \end{split}$$

Natasha S. Sharma (UTEP)

07/18/23

æ

$$\begin{split} 2\left(\nabla\varphi^{m}-\nabla\varphi^{m-1},\nabla\delta_{\tau}\boldsymbol{e}_{h}^{\varphi,m}\right) &= -2\left(\tau\Delta\delta_{\tau}\varphi^{m},\delta_{\tau}\boldsymbol{e}_{h}^{\varphi,m}\right) \\ &\leq 2\left\|\tau\nabla\Delta\delta_{\tau}\varphi^{m}\right\|_{L^{2}}\left\|\delta_{\tau}\boldsymbol{e}_{h}^{\varphi,m}\right\|_{-1,h} \\ &\leq C\tau\int_{t_{m-1}}^{t_{m}}\left\|\partial_{s}\varphi(s)\right\|_{H^{3}}^{2}\,ds + \frac{1}{36}\left\|\delta_{\tau}\boldsymbol{e}_{h}^{\varphi,m}\right\|_{-1,h}^{2}. \end{split}$$

$$\begin{split} \left( \left(\varphi^{m}\right)^{3} - \left(\varphi_{h}^{m}\right)^{3}, \delta_{\tau} e_{h}^{\varphi,m} \right) &\leq \left\| \nabla \left( \left(\varphi^{m}\right)^{3} - \left(\varphi_{h}^{m}\right)^{3} \right) \right\|_{L^{2}} \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{-1,h} \\ &= \left\| 3 \left(\varphi^{m}\right)^{2} \nabla \varphi^{m} - 3 \left(\varphi_{h}^{m}\right)^{2} \nabla \varphi_{h}^{m} \right\|_{L^{2}} \\ &\times \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{-1,h} \\ &= 3 \left\| \left(\varphi^{m} + \varphi_{h}^{m}\right) \nabla \varphi^{m} e^{\varphi,m} + \left(\varphi_{h}^{m}\right)^{2} \nabla e^{\varphi,m} \right\|_{L^{2}} \\ &\times \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{-1,h} \end{split}$$

07/18/23

2

$$\begin{split} \left( \left(\varphi^{m}\right)^{3} - \left(\varphi_{h}^{m}\right)^{3}, \delta_{\tau} e_{h}^{\varphi,m} \right) \\ & \leq 3 \left( \|\varphi^{m} + \varphi_{h}^{m}\|_{L^{6}} \|\nabla\varphi^{m}\|_{L^{6}} \|e^{\varphi,m}\|_{L^{6}} + \|\varphi_{h}^{m}\|_{L^{6}}^{2} \|\nabla e^{\varphi,m}\|_{L^{6}} \right) \\ & \times \|\delta_{\tau} e_{h}^{\varphi,m}\|_{-1,h} \\ & \leq C \left( \|\nabla e_{P}^{\varphi,m}\|_{L^{2}} + \|\nabla e_{h}^{\varphi,m}\|_{L^{2}} + \|e_{P}^{\varphi,m}\|_{2,h} + \|e_{h}^{\varphi,m}\|_{2,h} \right) \\ & \times \|\delta_{\tau} e_{h}^{\varphi,m}\|_{-1,h} \\ & \leq C \left( \|\nabla e_{P}^{\varphi,m}\|_{L^{2}} + \|\nabla e_{h}^{\varphi,m}\|_{L^{2}} + \|e_{P}^{\varphi,m}\|_{2,h} + \|e_{h}^{\varphi,m}\|_{2,h} \right) \\ & \times \|\delta_{\tau} e_{h}^{\varphi,m}\|_{-1,h} \\ & \leq C \left\| e_{P}^{\varphi,m} \right\|_{2,h}^{2} + C \left\| e_{h}^{\varphi,m} \right\|_{2,h}^{2} + \frac{1}{36} \left\|\delta_{\tau} e_{h}^{\varphi,m} \right\|_{-1,h}^{2}. \end{split}$$

Natasha S. Sharma (UTEP)

∃ √) 07/18/23

Using discrete product rule:

$$\begin{pmatrix} a^{m-1}, \frac{b^m - b^{m-1}}{\tau} \end{pmatrix} = \frac{1}{\tau} \left[ (a^m, b^m) - (a^{m-1}, b^{m-1}) \right] - \left( \frac{a^m - a^{m-1}}{\tau}, b^m \right)$$
$$= \delta_\tau \left( a^m, b^m \right) - \left( \delta_\tau a^m, b^m \right),$$

we have the following bound

$$\begin{split} 2\left(\nabla e_{P}^{\varphi,m-1},\nabla \delta_{\tau}e_{h}^{\varphi,m}\right) &= 2\delta_{\tau}\left(\nabla e_{P}^{\varphi,m},\nabla e_{h}^{\varphi,m}\right) - 2\left(\nabla \delta_{\tau}e_{P}^{\varphi,m},\nabla e_{h}^{\varphi,m}\right) \\ &\leq 2\delta_{\tau}\left(\nabla e_{P}^{\varphi,m},\nabla e_{h}^{\varphi,m}\right) + C\left\|\delta_{\tau}e_{P}^{\varphi,m}\right\|_{L^{2}}^{2} + C\left\|e_{h}^{\varphi,m}\right\|_{2,h}^{2} \\ &\leq 2\delta_{\tau}\left(\nabla e_{P}^{\varphi,m},\nabla e_{h}^{\varphi,m}\right) + \frac{C}{\tau}\int_{t_{m-1}}^{t_{m}}\left\|\partial_{s}\varphi(s) - P_{h}\partial_{s}\varphi(s)\right\|_{2,h}^{2}ds \\ &+ C\left\|e_{h}^{\varphi,m}\right\|_{2,h}^{2}. \end{split}$$

07/18/23

### Lemma

Suppose  $(\varphi^m, \mu^m)$  is a weak solution to the PFC equation, with the additional regularities. Then for any  $h, \tau > 0$  and any  $0 \le m \le M$  and any  $\beta > 0$ ,

$$\begin{aligned} a_{h}^{IP}\left(\varphi^{m}, e_{h}^{\varphi,m} - E_{h}e_{h}^{\varphi,m}\right) + \left(\left(\varphi^{m}\right)^{3} + (1-\epsilon)\varphi^{m}, e_{h}^{\varphi,m} - E_{h}e_{h}^{\varphi,m}\right) \\ - 2\left(\nabla\varphi^{m}, \nabla\left(e_{h}^{\varphi,m} - E_{h}e_{h}^{\varphi,m}\right)\right) - \left(\mu^{m}, e_{h}^{\varphi,m} - E_{h}e_{h}^{\varphi,m}\right) \leq C\left[Osc_{j}(\mu^{m})\right]^{2} + \\ C\left\|e_{P}^{\varphi,m}\right\|_{2,h}^{2} + \frac{C_{coer}}{4\beta}\left\|e_{h}^{\varphi,m}\right\|_{2,h}^{2} \end{aligned}$$

and

$$\begin{aligned} a_{h}^{IP}\left(\delta_{\tau}\varphi^{m}, e_{h}^{\varphi,m-1} - E_{h}e_{h}^{\varphi,m-1}\right) + \left(\delta_{\tau}\left((\varphi^{m})^{3} + (1-\epsilon)\varphi^{m}\right), e_{h}^{\varphi,m-1} - E_{h}e_{h}^{\varphi,m-1}\right) \\ - 2\left(\delta_{\tau}\nabla\varphi^{m}, \nabla\left(e_{h}^{\varphi,m-1} - E_{h}e_{h}^{\varphi,m-1}\right)\right) - \left(\delta_{\tau}\mu^{m}, e_{h}^{\varphi,m-1} - E_{h}e_{h}^{\varphi,m-1}\right) \\ &\leq C\left[Osc_{j}(\mu_{t}(t^{*}))\right]^{2} + C\left\|e_{P}^{\varphi,m}\right\|_{2,h}^{2}\end{aligned}$$

$$\begin{split} \|\nabla e_{h}^{\mu,m}\|_{L^{2}}^{2} &+ \frac{1}{2}\delta_{\tau} a_{h}^{IP} \left(e_{h}^{\varphi,m}, e_{h}^{\varphi,m}\right) + \frac{\tau}{2}a_{h}^{IP} \left(\delta_{\tau} e_{h}^{\varphi,m}, \delta_{\tau} e_{h}^{\varphi,m}\right) \\ &+ \frac{(1-\epsilon)}{2}\delta_{\tau} \left\|e_{h}^{\varphi,m}\right\|_{L^{2}}^{2} + \frac{(1-\epsilon)\tau}{2} \left\|\delta_{\tau} e_{h}^{\varphi,m}\right\|_{L^{2}}^{2} + \tau \left\|\nabla\delta_{\tau} e_{h}^{\varphi,m}\right\|_{L^{2}}^{2} \\ &\leq \delta_{\tau} \left(\nabla e_{h}^{\varphi,m}, \nabla e_{h}^{\varphi,m}\right) + 2\delta_{\tau} \left(\nabla e_{P}^{\varphi,m}, \nabla e_{h}^{\varphi,m}\right) + \frac{6}{12} \left\|\nabla e_{h}^{\mu,m}\right\|_{L^{2}}^{2} + C \left\|e_{h}^{\varphi,m}\right\|_{2,h}^{2} \\ &+ C \left\|e_{h}^{\varphi,m-1}\right\|_{2,h}^{2} + C \left\|\nabla e_{R}^{\mu,m}\right\|_{L^{2}}^{2} + C \left\|e_{P}^{\varphi,m}\right\|_{2,h}^{2} + C \left[\operatorname{Osc}_{j}(\mu_{t}(t^{*}))\right]^{2} \\ &+ C\tau \int_{t_{m-1}}^{t_{m}} \left[\left\|\partial_{s}\varphi(s)\right\|_{H^{3}}^{2} + \left\|\partial_{ss}\varphi(s)\right\|_{L^{2}}^{2}\right] ds + \frac{C}{\tau} \int_{t_{m-1}}^{t_{m}} \left\|\partial_{s}\varphi(s) - P_{h}\partial_{s}\varphi(s)\right\|_{2,h}^{2} ds \\ &+ \delta_{\tau} a_{h}^{IP} \left(\varphi^{m}, e_{h}^{\varphi,m} - E_{h} e_{h}^{\varphi,m}\right) + \delta_{\tau} \left(\left(\varphi^{m}\right)^{3} + (1-\epsilon)\varphi^{m}, e_{h}^{\varphi,m} - E_{h} e_{h}^{\varphi,m}\right) \\ &- 2\delta_{\tau} \left(\nabla\varphi^{m}, \nabla \left(e_{h}^{\varphi,m} - E_{h} e_{h}^{\varphi,m}\right)\right) - \delta_{\tau} \left(\mu^{m}, e_{h}^{\varphi,m} - E_{h} e_{h}^{\varphi,m}\right). \end{split}$$

07/18/23

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○日●

Applying  $2 au\sum_{m=1}^{\ell}$  , using the fact that  $e_h^{arphi,0}=0$  we obtain

$$a_{h}^{IP}\left(e_{h}^{\varphi,\ell},e_{h}^{\varphi,\ell}\right)+\left(1-\epsilon\right)\left\|e_{h}^{\varphi,\ell}\right\|_{L^{2}}^{2}+\tau\sum_{m=1}^{\ell}\left\|\nabla e_{h}^{\mu,m}\right\|_{L^{2}}^{2}$$

$$+ \tau^{2} \sum_{m=1}^{\ell} \left[ a_{h}^{IP} \left( \delta_{\tau} e_{h}^{\varphi,m}, \delta_{\tau} e_{h}^{\varphi,m} \right) + (1-\epsilon) \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{L^{2}}^{2} + 2 \left\| \nabla \delta_{\tau} e_{h}^{\varphi,m} \right\|_{L^{2}}^{2} \right]$$

$$\leq \frac{C_{coer}}{2\beta} \left\| e_{h}^{\varphi,\ell} \right\|_{2,h}^{2} + \frac{8\beta}{C_{coer}} \left\| e_{h}^{\varphi,\ell} \right\|_{L^{2}}^{2} + C \left\| e_{P}^{\varphi,\ell} \right\|_{2,h}^{2} + C\tau \sum_{m=1}^{\ell} \left\| e_{h}^{\varphi,m} \right\|_{2,h}^{2}$$

$$+ C\tau \sum_{m=1}^{\ell} \left[ \|\nabla e_{R}^{\mu,m}\|_{L^{2}}^{2} + \|e_{P}^{\varphi,m}\|_{2,h}^{2} + [\operatorname{Osc}_{j}(\mu_{t}(t^{*}))]^{2} \right] \\ + C\tau^{2} \int_{t_{0}}^{t_{\ell}} \left[ \|\partial_{s}\varphi(s)\|_{H^{3}}^{2} + \|\partial_{ss}\varphi(s)\|_{L^{2}}^{2} \right] ds + C \int_{t_{0}}^{t_{\ell}} \|\partial_{s}\varphi(s) - P_{h}\partial_{s}\varphi(s)\|_{2,h}^{2} ds \\ + 2 \Big[ C \left[ \operatorname{Osc}_{j}(\mu^{\ell}) \right]^{2} + C \left\| e_{P}^{\varphi,\ell} \right\|_{2,h}^{2} + \frac{C_{coer}}{4\beta} \left\| e_{h}^{\varphi,\ell} \right\|_{2,h}^{2} \Big],$$

2

Suppose  $(\varphi^m, \mu^m)$  is a weak solution to the weak form of the PFC equation, with the additional regularities. Then for any  $\tau, h > 0, \epsilon < \frac{C_{coer} - 16}{C_{coer}} < 1$  and any  $0 \le \tau \le M$ ,

$$\begin{split} \left\| e_{h}^{\varphi,\ell} \right\|_{2,h}^{2} + C \left\| e_{h}^{\varphi,\ell} \right\|_{L^{2}}^{2} + C\tau \sum_{m=1}^{\ell} \left\| \nabla e_{h}^{\mu,m} \right\|_{L^{2}}^{2} + \\ C\tau^{2} \sum_{m=1}^{\ell} \left[ \left\| \delta_{\tau} e_{h}^{\varphi,\ell} \right\|_{2,h}^{2} + (1-\epsilon) \left\| \delta_{\tau} e_{h}^{\varphi,m} \right\|_{L^{2}}^{2} + \left\| \nabla \delta_{\tau} e_{h}^{\varphi,m} \right\|_{L^{2}}^{2} \right] \leq C^{*}(h^{2} + \tau^{2}) \end{split}$$

where  $C^*$  may depend on the oscillations of  $\mu$  and  $\partial_t \mu$  and the final stopping time T but does not depend upon the spacial step size h or the time step size  $\tau$ .

# **Our Numerical Scheme**

Natasha S. Sharma (UTEP)

07/18/23

æ

メロト メロト メヨト メヨト

# **Our Numerical Scheme**

• Project  $\varphi_h^0 := P_h \varphi_0$ 

2
- Project  $\varphi_h^0 := P_h \varphi_0$
- Given  $\varphi_h^{m-1} \in Z_h$ , solve for  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$ : Given  $\varphi_h^{m-1} \in Z_h$ , find  $\varphi_h^m, \mu_h^m \in Z_h \times V_h$  such that for all  $\nu_h \in V_h$ ,  $\psi_h \in Z_h$  it holds

$$\begin{split} & \left(\delta_{\tau}\varphi_{h}^{m},\nu_{h}\right)+\left(\mathcal{M}\nabla\mu_{h}^{m},\nabla\nu_{h}\right)=0\\ & \left(\left(\varphi_{h}^{m}\right)^{3}+(1-\epsilon)\varphi_{h}^{m},\psi_{h}\right)+a_{h}^{IP}\left(\varphi_{h}^{m},\psi_{h}\right)-2\left(\nabla\varphi_{h}^{m-1},\nabla\psi_{h}\right)-\left(\mu_{h}^{m},\psi_{h}\right)=0, \end{split}$$

where  $\varphi_h^0 := P_h \varphi_0$  and  $\mu_h^0 \in V_h$  is defined as  $\mu_h^0 := R_h \mu_0$ . model parameters:  $\varepsilon = 0.025$  and  $\mathcal{M} = 1$ , penalty parameter:  $\alpha = 20$ .

- Project  $\varphi_h^0 := P_h \varphi_0$
- Given  $\varphi_h^{m-1} \in Z_h$ , solve for  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$ : Given  $\varphi_h^{m-1} \in Z_h$ , find  $\varphi_h^m, \mu_h^m \in Z_h \times V_h$  such that for all  $\nu_h \in V_h$ ,  $\psi_h \in Z_h$  it holds

$$\begin{split} & (\delta_{\tau}\varphi_{h}^{m},\nu_{h}) + (\mathcal{M}\nabla\mu_{h}^{m},\nabla\nu_{h}) = 0 \\ & \left( (\varphi_{h}^{m})^{3} + (1-\epsilon)\varphi_{h}^{m},\psi_{h} \right) + a_{h}^{IP}(\varphi_{h}^{m},\psi_{h}) - 2\left(\nabla\varphi_{h}^{m-1},\nabla\psi_{h}\right) - (\mu_{h}^{m},\psi_{h}) = 0, \end{split}$$

where  $\varphi_h^0 := P_h \varphi_0$  and  $\mu_h^0 \in V_h$  is defined as  $\mu_h^0 := R_h \mu_0$ . model parameters:  $\varepsilon = 0.025$  and  $\mathcal{M} = 1$ , penalty parameter:  $\alpha = 20$ .

• We use Newton iteration method to solve the discrete nonlinear system with tolerance of the Newton iteration is set to  $10^{-6}$ .

The initial guess at each time step is taken as the numerical solution at the previous time level.

One to three Newton's iterative steps are involved at each time step.

#### Example (Hu, Wise, Wang, Lowengrub, 2009)

$$\begin{aligned} \varphi_0(x,y) &= 0.07 - 0.02 \cos\left(\frac{2\pi(x-12)}{32}\right) \sin\left(\frac{2\pi(y-1)}{32}\right) \\ &+ 0.02 \cos^2\left(\frac{\pi(x+10)}{32}\right) \cos^2\left(\frac{\pi(y+3)}{32}\right) \\ &- 0.01 \sin^2\left(\frac{4\pi x}{32}\right) \sin^2\left(\frac{4\pi(y-6)}{32}\right) \end{aligned}$$

$$\begin{split} \Omega &= (0,32) \times (0,32), \ T = 10. \\ \mathcal{M} &\equiv 1, \ \varepsilon = 0.025, \ \text{and the penalty parameter} \ \alpha = 20. \end{split}$$

#### Numerical Experiment I: Accuracy Test

$$\|\xi_{h}\|_{2,h}^{2} := \sum_{K \in \mathscr{T}_{h}} |\xi_{h}|_{H^{2}(K)}^{2} + \sum_{e \in \mathscr{E}_{h}} \alpha \|h_{e}^{-\frac{1}{2}}[\mathsf{n}_{e} \cdot \nabla \xi_{h}]_{e} \|_{L^{2}(e)}^{2}.$$

Mesh  $h = \frac{32}{512}$  with  $\tau$  with  $\tau = 0.05h$  and T = 10 as the 'exact' solution,  $\varphi_{exact}$ .

$$error_{\varphi} := \varphi_h - \varphi_{exact}$$

where  $\varphi_h$  indicates the solution on the mesh size *h*.

| h      | $\ error_{\varphi}\ _{2,h}$ | rate    | $\ error_{\mu}\ _{H^1}$ | rate    |
|--------|-----------------------------|---------|-------------------------|---------|
| 32/8   | 0.08412                     | N/A     | 0.00522                 | N/A     |
| 32/16  | 0.05896                     | 0.71329 | 0.00242                 | 1.07627 |
| 32/32  | 0.03466                     | 0.85058 | 0.00157                 | 0.76970 |
| 32/64  | 0.01568                     | 1.10514 | 0.00103                 | 0.76082 |
| 32/128 | 0.00601                     | 1.30482 | 0.00041                 | 1.25840 |
| 32/256 | 0.00255                     | 1.17707 | 0.00016                 | 1.27362 |

< □ > < □ > < □ > < □ > < □ >

## Numerical Experiment I: Unconditional Stability



Figure: Unconditional stability demonstrated through the time evolution of the scaled total energy  $F/32^2$  for time step sizes dt = 10h, 5h, h with the spacial step size  $h = \frac{32}{256}$ .

<ロト < 回 > < 回 > < 回 > < 回 >

#### Numerical Experiment II: Crystal growth

#### Example (Gomez, Nogueira, 2012)

$$\varphi_0(x,y) = \bar{\varphi} + C \Big[ \cos\left(\frac{q}{\sqrt{3}}y\right) \cos(qx) - 0.5 \cos\left(\frac{2q}{\sqrt{3}}y\right) \Big]$$

where  $\bar{\varphi} = 0.285$ , C = 0.466, q = 0.66,  $\Omega = (0, 201) \times (0, 201)$ ,  $h = {}^{201}\!/_{402}$ .



Natasha S. Sharma (UTEP)

07/18/23

## Motion of liquid-crystal interfaces and grain boundaries



イロト イボト イヨト イヨ

## Phase Field Model for Microemulsions: Motivation



## Phase Field Model for Microemulsions: Motivation



[Picture Courtesy: Biolin Scientific]

(日) (四) (日) (日) (日)



#### Source: Walgreens

Natasha S. Sharma (UTEP)



#### Source: Walgreens

• **Issue:** Topical cream formulations contain petrochemical ingredients (such as petrolatum, silicones).



- **Issue:** Topical cream formulations contain petrochemical ingredients (such as petrolatum, silicones).
- **Goal:** Develop skin drug delivery systems that contain natural and renewable sourced alternatives to these ingredients without compromising on the functionality.

#### Source: Walgreens



#### Source: Walgreens

- **Issue:** Topical cream formulations contain petrochemical ingredients (such as petrolatum, silicones).
- **Goal:** Develop skin drug delivery systems that contain natural and renewable sourced alternatives to these ingredients without compromising on the functionality.
- **Approach:** Provide computational tools to predict and assess the properties of novel and more sustainable alternatives to the toxic ingredients.

[Source: The Nabi Laboratory of Bioengineered Therapeutics, UTEP]

•  $\Omega \subset \mathbb{R}^2$  be a bounded polygonal domain occupied by the ternary mixture.

< □ > < □ > < □ > < □ > < □ >

- $\Omega \subset \mathbb{R}^2$  be a bounded polygonal domain occupied by the ternary mixture.
- $\varphi$  : the scalar order parameter indicating the local difference between oil and water concentrations.

(日) (四) (日) (日) (日)

- $\Omega \subset \mathbb{R}^2$  be a bounded polygonal domain occupied by the ternary mixture.
- $\varphi$  : the scalar order parameter indicating the local difference between oil and water concentrations.
- $\varphi = -1$  (water phase),  $\varphi = 1$  (oil phase) and  $\varphi = 0$  (microemulsions phase)

- $\Omega \subset \mathbb{R}^2$  be a bounded polygonal domain occupied by the ternary mixture.
- $\varphi$  : the scalar order parameter indicating the local difference between oil and water concentrations.
- $\varphi = -1$  (water phase),  $\varphi = 1$  (oil phase) and  $\varphi = 0$  (microemulsions phase)
- $E(\varphi)$  : (Ginzburg-Landau free energy)

$$\underbrace{\int\limits_{\Omega} \left\{ \frac{(\varphi^2 - a_0)}{2} |\nabla \varphi|^2 + \frac{\lambda}{2} (\Delta \varphi)^2 \right\} dx}_{\text{tendency to mix}} dx + \underbrace{\frac{\beta}{2} \int\limits_{\Omega} (\varphi + 1)^2 (\varphi^2 + 0.5) (\varphi - 1)^2 dx}_{\text{tendency to separate}}$$

```
[Gompper et. al. 90]
```

イロト イヨト イヨト イヨト

07/18/23

Conservation Law:

$$\partial_t \varphi + \nabla \cdot \mathbf{j} = \mathbf{0}$$

- $\varphi$  : the scalar order parameter
- $j = -\mathcal{M} \nabla \mu$ : mass flux
- $\mathcal{M}$ : mobility coefficient,  $\mu = \delta_{\varphi} E$ : chemical potential

$$E(\varphi) = \int_{\Omega} \left\{ \frac{(\varphi^2 - a_0)}{2} |\nabla \varphi|^2 + \frac{\lambda}{2} (\Delta \varphi)^2 + \frac{\beta}{2} (\varphi + 1)^2 (\varphi^2 + 0.5) (\varphi - 1)^2 \right\} dx$$

Conservation Law:

$$\partial_t \varphi + \nabla \cdot \mathbf{j} = \mathbf{0}$$

- $\varphi$  : the scalar order parameter
- $\mathbf{j} = -\mathcal{M} \nabla \mu$ : mass flux
- $\mathcal{M}$ : mobility coefficient,  $\mu = \delta_{\varphi} E$ : chemical potential

$$E(\varphi) = \int_{\Omega} \left\{ \frac{(\varphi^2 - a_0)}{2} |\nabla \varphi|^2 + \frac{\lambda}{2} (\Delta \varphi)^2 + \frac{\beta}{2} (\varphi + 1)^2 (\varphi^2 + 0.5) (\varphi - 1)^2 \right\} dx$$

$$\mu = 3\beta(\varphi^5 - \varphi^3) + \varphi |\nabla \varphi|^2 - \nabla \cdot (\varphi^2 \nabla \varphi) + a_0 \Delta \varphi + \lambda \Delta^2 \varphi.$$

Conservation Law:

$$\partial_t \varphi + \nabla \cdot \mathbf{j} = \mathbf{0}$$

- $\varphi$  : the scalar order parameter
- $\mathbf{j} = -\mathcal{M} \nabla \mu$ : mass flux
- $\mathcal{M}$ : mobility coefficient,  $\mu = \delta_{\varphi} E$ : chemical potential

$$E(\varphi) = \int_{\Omega} \left\{ \frac{(\varphi^2 - a_0)}{2} |\nabla \varphi|^2 + \frac{\lambda}{2} (\Delta \varphi)^2 + \frac{\beta}{2} (\varphi + 1)^2 (\varphi^2 + 0.5) (\varphi - 1)^2 \right\} dx$$

$$\mu = 3\beta(\varphi^5 - \varphi^3) + \varphi |\nabla \varphi|^2 - \nabla \cdot (\varphi^2 \nabla \varphi) + a_0 \Delta \varphi + \lambda \Delta^2 \varphi.$$

Conservation Law:

$$\partial_t \varphi + \nabla \cdot \mathbf{j} = \mathbf{0}$$

- $\varphi$  : the scalar order parameter
- $\mathbf{j} = -\mathcal{M} \nabla \mu$ : mass flux
- $\mathcal{M}$ : mobility coefficient,  $\mu = \delta_{\varphi} E$ : chemical potential

$$E(\varphi) = \int_{\Omega} \left\{ \frac{(\varphi^2 - \mathsf{a}_0)}{2} |\nabla \varphi|^2 + \frac{\lambda}{2} (\Delta \varphi)^2 + \frac{\beta}{2} (\varphi + 1)^2 (\varphi^2 + 0.5) (\varphi - 1)^2 \right\} dx$$

$$\mu = 3\beta(\varphi^5 - \varphi^3) + \varphi |\nabla \varphi|^2 - \nabla \cdot (\varphi^2 \nabla \varphi) + a_0 \Delta \varphi + \lambda \Delta^2 \varphi.$$

$$\partial_t arphi - \mathcal{M} \Delta \Big( 3eta (arphi^5 - arphi^3) + arphi |
abla arphi|^2 - 
abla \cdot ((arphi^2 - 4) 
abla arphi) + \lambda \Delta^2 arphi \Big) = 0.$$

#### Compliment

$$\begin{aligned} \frac{\partial \varphi}{\partial t} - \nabla \cdot (\mathcal{M} \nabla \mu) &= 0, \quad \text{in } \Omega^{\mathcal{T}} := \Omega \times (0, \mathcal{T}), \\ 3\beta(\varphi^5 - \varphi^3) + \varphi |\nabla \varphi|^2 - \nabla \cdot ((\varphi^2 - a_0) \nabla \varphi) + \lambda \Delta^2 \varphi - \mu = 0, \quad \text{in } \Omega^{\mathcal{T}} \end{aligned}$$

with natural boundary conditions

$$\partial_n \varphi = \lambda \partial_n \Delta \varphi = \partial_n \mu = 0, \quad \text{ on } \partial \Omega^T$$

and the initial value:

$$\varphi(\mathbf{0}) = \varphi_{\mathbf{0}}.$$

Notation:

- $H^{s}(\Omega)$  denote the Sobolev spaces of order  $s \geq 1$ ,
- $Z := \{z \in H^2(\Omega) \mid \partial_n z = 0 \text{ on } \partial\Omega\}.$  [Pawlow et al., 2011]

• Hoppe/Linsemnann 2019: Fully implicit backward Euler and C<sup>0</sup>-IP Method quasi-optimal error estimates without any discrete energy law

- Hoppe/Linsemnann 2019: Fully implicit backward Euler and C<sup>0</sup>-IP Method quasi-optimal error estimates without any discrete energy law
- Diegel/Sharma 2022: Closely related literature is the C<sup>0</sup>-IP framework developed for the Phase Field Crystal Equation based on Eyre's convex splitting scheme.

< □ > < □ > < □ > < □ > < □ >

Given  $\varphi_h^{m-1} \in Z_h$ , find  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  which satisfies  $(\delta_\tau \varphi_h^m, \nu_h) + (M \nabla \mu_h^m, \nabla \nu_h) = 0, \quad \forall \quad \nu_h \in V_h$   $3\beta \left((\varphi_h^m)^5 - (\varphi_h^{m-1})^3, \psi_h\right) + \left((\varphi_h^m)^2 \nabla \varphi_h^m, \nabla \psi_h\right) + (\varphi_h^m |\nabla \varphi_h^{m-1}|^2, \psi_h)$   $-a_0 \left(\nabla \varphi_h^{m-1}, \nabla \psi_h\right) + \lambda a_h^{IP} \left(\varphi_h^m, \psi_h\right) - (\mu_h^m, \psi_h) = 0 \quad \forall \quad \psi_h \in Z_h$ with initial data taken to be  $\varphi_h^0 := P_h \varphi_0$ .

イロト イヨト イヨト --

#### Theorem

Let  $\lambda \geq \frac{3\beta |\overline{\varphi_0}|^4 C_{P,1}}{2C_{coer}}$ , where  $C_{P,1}$  depends upon a Poincarè constant but does not depend upon h or  $\tau$ . Then, there exists a solution  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  to the scheme.

イロン イ団 とく ヨン イヨン

$$F(\varphi) := \frac{\beta}{2} \left\|\varphi\right\|_{L^6}^6 - \frac{3\beta}{4} \left\|\varphi\right\|_{L^4}^4 + \frac{\beta|\Omega|}{4} + \frac{1}{2} \left\|\varphi\nabla\varphi\right\|_{L^2}^2 - \frac{a_0}{2} \left\|\nabla\varphi\right\|_{L^2}^2 + \frac{\lambda}{2} a_h^{IP}\left(\varphi,\varphi\right).$$

#### Theorem (Discrete Energy Law)

Let  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  be a solution. Then the following energy law holds for any  $h, \tau > 0$ :

$$F\left(\varphi_{h}^{\ell}\right)+\tau\sum_{m=1}^{\ell}\left\|\sqrt{\mathcal{M}}\nabla\mu_{h}^{m}\right\|_{L^{2}}^{2}\leq F\left(\varphi_{h}^{0}\right),$$

for all  $1 \leq \ell \leq M$ .

#### Theorem

Let  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$  be the  $C^0$  IP approximation. Suppose that  $F(\varphi_h^0) \leq C$ independent of h and that  $\lambda > \max\left\{\frac{3\beta |\overline{\varphi_0}|^4 C_{P,1}}{2C_{coer}}, \frac{a_0 C_{P,2}}{C_{coer}}\right\} > 0$  where  $C_{P,1}, C_{P,2}$ are Poincarè constants and do not depend on h or  $\tau$ . Then the following estimates hold for any  $\tau, h > 0$ :

$$\max_{\substack{0 \le m \le M}} \left\| \varphi_h^m \right\|_{2,h}^2 \le C$$
$$\max_{\substack{0 \le m \le M}} \left[ \left\| \varphi_h^m \right\|_{L^2}^2 + \left\| \nabla \varphi_h^m \right\|_{L^2}^2 + \left\| \varphi_h^m \nabla \varphi_h^m \right\|_{L^2}^2 + \left\| \varphi_h^m \right\|_{L^\infty}^2 \right] \le C^*$$
$$\tau \sum_{m=1}^{\ell} \left\| \sqrt{\mathcal{M}} \nabla \mu_h^m \right\|_{L^2}^2 \le C$$

for some constants  $C^*$ , C that is independent of  $h, \tau$ , and T.

イロト イヨト イヨト

#### Theorem

Let  $\varphi_h^{m-1} \in Z_h$  be given and

$$\lambda > \max\left\{\frac{3\beta |\overline{\varphi_0}|^4 C_{P,1}}{2C_{coer}}, \frac{a_0 C_{P,2}}{C_{coer}}, \frac{C^* C_{P,3}}{2C_{coer}}\right\} > 0,$$

where  $C^*$  is the constant from uniform a priori bounds and  $C_{P,1}$ ,  $C_{P,2}$ ,  $C_{P,3}$  are all Poincarè constants and do not depend on h or  $\tau$ . The solution to the fully discrete scheme is unique for all  $h, \tau > 0$ .

• Project 
$$\varphi_h^0 := P_h \varphi_0$$

07/18/23

æ

メロト メロト メヨト メヨト

• Project 
$$\varphi_h^0 := P_h \varphi_0$$

07/18/23

æ

メロト メロト メヨト メヨト

• Project 
$$\varphi_h^0 := P_h \varphi_0$$
  
• Given  $\varphi_h^{m-1} \in Z_h$ , solve for  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$ :  
 $(\delta_\tau \varphi_h^m, \nu_h) + (M \nabla \mu_h^m, \nabla \nu_h) = 0, \quad \forall \quad \nu_h \in V_h$ 

$$\begin{split} & 3\beta \left( (\varphi_h^m)^5 - (\varphi_h^{m-1})^3, \psi_h \right) + \left( (\varphi_h^m)^2 \nabla \varphi_h^m, \nabla \psi_h \right) + \left( \varphi_h^m |\nabla \varphi_h^{m-1}|^2, \psi_h \right) \\ & - a_0 \left( \nabla \varphi_h^{m-1}, \nabla \psi_h \right) + \lambda \, a_h^{IP} \left( \varphi_h^m, \psi_h \right) - (\mu_h^m, \psi_h) = 0 \quad \forall \quad \psi_h \in Z_h, \end{split}$$

model parameters:  $a_0 = 4$  and  $\beta = 5$ , penalty parameter:  $\alpha = 8$ .

イロト イロト イヨト イヨト 二日

• Project 
$$\varphi_h^0 := P_h \varphi_0$$
  
• Given  $\varphi_h^{m-1} \in Z_h$ , solve for  $(\varphi_h^m, \mu_h^m) \in Z_h \times V_h$ :  
 $(\delta_\tau \varphi_h^m, \nu_h) + (M \nabla \mu_h^m, \nabla \nu_h) = 0, \quad \forall \quad \nu_h \in V_h$ 

$$\begin{split} &3\beta\left((\varphi_h^m)^5 - (\varphi_h^{m-1})^3, \psi_h\right) + \left((\varphi_h^m)^2 \nabla \varphi_h^m, \nabla \psi_h\right) + \left(\varphi_h^m |\nabla \varphi_h^{m-1}|^2, \psi_h\right) \\ &- a_0\left(\nabla \varphi_h^{m-1}, \nabla \psi_h\right) + \lambda \, a_h^{IP}\left(\varphi_h^m, \psi_h\right) - \left(\mu_h^m, \psi_h\right) = 0 \quad \forall \quad \psi_h \in Z_h, \end{split}$$

model parameters:  $a_0 = 4$  and  $\beta = 5$ , penalty parameter:  $\alpha = 8$ .

• We use Newton iteration method to solve the discrete nonlinear system with tolerance of the Newton iteration is set to  $10^{-6}$ .

The initial guess at each time step is taken as the numerical solution at the previous time level.

One to three Newton's iterative steps are involved at each time step.

#### Example

$$arphi_0(x,y) = 0.3\cos{(3x)} + 0.5\cos{(y)}$$
  
 $\Omega = [0,2\pi]^2, \ T = 0.4.$ 

 $\mathcal{M}=10^{-3}$ ,  $\lambda=1$ 

イロト 不同 トイヨト イヨト

## Numerical Experiment I: First Order Convergence

•  $\varphi_{256}$ : "exact" solution

| N   | $\ \varphi_{256} - \varphi_N\ _{2,h}$ | rate   | $\ \varphi_{256} - \varphi_N\ _{L^2}$ | rate   |
|-----|---------------------------------------|--------|---------------------------------------|--------|
| 8   | 6.1911                                | -      | 0.2625                                | -      |
| 16  | 1.9293                                | 1.6045 | 0.0624                                | 2.1039 |
| 32  | 0.5601                                | 1.7221 | 0.0151                                | 2.0685 |
| 64  | 0.1599                                | 1.7516 | 0.0035                                | 2.1336 |
| 128 | 0.0461                                | 1.7354 | 0.0008                                | 2.1887 |

Table: Errors and convergence rates of the C<sup>0</sup>-IP method with  $M = 10^{-3}$ ,  $\lambda = 1$ ,  $h = 2\sqrt{2\pi}/N$ ,  $\tau = 0.05/N$ .

## Numerical Experiment I: First Order Convergence

- $\varphi_{256}$ : "exact" solution
- N indicates the number of sub-intervals per side of  $\Omega$

| Ν   | $\ \varphi_{256} - \varphi_N\ _{2,h}$ | rate   | $\ \varphi_{256} - \varphi_N\ _{L^2}$ | rate   |
|-----|---------------------------------------|--------|---------------------------------------|--------|
| 8   | 6.1911                                | -      | 0.2625                                | -      |
| 16  | 1.9293                                | 1.6045 | 0.0624                                | 2.1039 |
| 32  | 0.5601                                | 1.7221 | 0.0151                                | 2.0685 |
| 64  | 0.1599                                | 1.7516 | 0.0035                                | 2.1336 |
| 128 | 0.0461                                | 1.7354 | 0.0008                                | 2.1887 |

Table: Errors and convergence rates of the C<sup>0</sup>-IP method with  $M = 10^{-3}$ ,  $\lambda = 1$ ,  $h = 2\sqrt{2\pi}/N$ ,  $\tau = 0.05/N$ .

イロト イヨト イヨト
# Numerical Experiment I: First Order Convergence

- $\varphi_{256}$ : "exact" solution
- N indicates the number of sub-intervals per side of  $\boldsymbol{\Omega}$

• 
$$\tau = 0.05/N$$

| N   | $\ \varphi_{256} - \varphi_N\ _{2,h}$ | rate   | $\ \varphi_{256} - \varphi_N\ _{L^2}$ | rate   |
|-----|---------------------------------------|--------|---------------------------------------|--------|
| 8   | 6.1911                                | -      | 0.2625                                | -      |
| 16  | 1.9293                                | 1.6045 | 0.0624                                | 2.1039 |
| 32  | 0.5601                                | 1.7221 | 0.0151                                | 2.0685 |
| 64  | 0.1599                                | 1.7516 | 0.0035                                | 2.1336 |
| 128 | 0.0461                                | 1.7354 | 0.0008                                | 2.1887 |

Table: Errors and convergence rates of the C<sup>0</sup>-IP method with  $M = 10^{-3}$ ,  $\lambda = 1$ ,  $h = 2\sqrt{2\pi}/N$ ,  $\tau = 0.05/N$ .

(日) (四) (日) (日) (日)

#### Example

$$\varphi_0(x,y) = 0.3\cos(3x) + 0.5\cos(y)$$

$$\Omega := [0, 10]^2$$
,  $T = 5$ .

 $\mathcal{M}=10^{-3}$ ,  $\lambda=1$ , penalty parameter lpha=8

 $F(\varphi) = \frac{\beta}{2} \|\varphi\|_{L^6}^6 - \frac{3\beta}{4} \|\varphi\|_{L^4}^4 + \frac{\beta|\Omega|}{4} + \frac{1}{2} \|\varphi\nabla\varphi\|_{L^2}^2 - \frac{a_0}{2} \|\nabla\varphi\|_{L^2}^2 + \frac{\lambda}{2} a_h^{IP}(\varphi,\varphi).$ 

#### Example

$$\varphi_0(x,y) = 0.3\cos(3x) + 0.5\cos(y)$$

$$\Omega := [0, 10]^2$$
,  $T = 5$ .

 $\mathcal{M}=10^{-3}$ ,  $\lambda=1$ , penalty parameter lpha=8

$$\begin{split} F(\varphi) &= \frac{\beta}{2} \|\varphi\|_{L^6}^6 - \frac{3\beta}{4} \|\varphi\|_{L^4}^4 + \frac{\beta|\Omega|}{4} + \frac{1}{2} \|\varphi\nabla\varphi\|_{L^2}^2 - \frac{a_0}{2} \|\nabla\varphi\|_{L^2}^2 + \frac{\lambda}{2} a_h^{IP}(\varphi,\varphi). \end{split}$$
Track the scaled energy  $F(\varphi) - \frac{\beta|\Omega|}{4}$  for time step sizes  $\tau = 0.5, 0.25, 0.0125,$  and 0.0625.

イロト イヨト イヨト --

## Numerical Experiment II: Energy Dissipation



Figure: The time evolution of the scaled total energy  $F(\varphi) - \frac{\beta |\Omega|}{4}$ ,  $h = \frac{10\sqrt{2}}{128}$ 

07/18/23

< □ > < □ > < □ > < □ > < □ >

## Numerical Experiment III: Microemulsions Simulation

#### Example

#### $\Omega = (-5,5)^2$ , T = 0.1, $\tau = 1.1 \times 10^{-4}$ , $h = 10\sqrt{2}/128$ , $\mathcal{M} = 10$ , $\lambda = 10^{-2}$ .





Figure: Profiles at m = 0, 1, 2 and 3.

メロト メタト メヨト メヨト



Figure: Profiles at m = 0, 1, 2 and 3.



Figure: Profiles at m = 4, 11, 20 and 25.



Figure: Profiles at m = 37, 74, 158 and 511.

メロト メタト メヨト メヨト



Figure: Profiles at m = 37, 74, 158 and 511.

• Different temporal scales capture different stages of phase-field evolution.

< □ > < 同 > < 回 > < 回 >



Figure: Profiles at m = 37, 74, 158 and 511.

- Different temporal scales capture different stages of phase-field evolution.
- Optimal time steps for each stage can differ by several orders of magnitude.

< □ > < 同 > < 回 > < Ξ > < Ξ



Figure: Profiles at m = 37, 74, 158 and 511.

- Different temporal scales capture different stages of phase-field evolution.
- Optimal time steps for each stage can differ by several orders of magnitude.
- Time-step adaptivity is crucial for accuracy and efficiency of the numerical scheme.

< □ > < 同 > < 回 > < Ξ > < Ξ

# Conclusions and Ongoing Work

æ

• Numerical schemes using the C<sup>0</sup>-IP framework were presented for the sixth-order phase field models.

Novel contribution: provide an error analysis of the C<sup>0</sup>-IP framework.

イロト イヨト イヨト

 Numerical schemes using the C<sup>0</sup>-IP framework were presented for the sixth-order phase field models.
Novel contribution: provide an error analysis of the C<sup>0</sup>-IP framework.

• **Open challenge:** Little is known a priori about the dynamics of the system thus making the task of choosing optimal time step and mesh size parameters difficult.

- Numerical schemes using the C<sup>0</sup>-IP framework were presented for the sixth-order phase field models.
  Novel contribution: provide an error analysis of the C<sup>0</sup>-IP framework.
- **Open challenge:** Little is known a priori about the dynamics of the system thus making the task of choosing optimal time step and mesh size parameters difficult.
- Focus: Derive a framework which automatically adapts the choice of the method parameters in response to the change in the dynamics of the problem.

- Numerical schemes using the C<sup>0</sup>-IP framework were presented for the sixth-order phase field models.
  Novel contribution: provide an error analysis of the C<sup>0</sup>-IP framework.
- **Open challenge:** Little is known a priori about the dynamics of the system thus making the task of choosing optimal time step and mesh size parameters difficult.
- Focus: Derive a framework which automatically adapts the choice of the method parameters in response to the change in the dynamics of the problem.

#### Thank you for your attention!

## Numerical Experiment: Discrete Mass Conservation

Initial Conditions:

#### Example

```
\Omega = (-5,5)^2, T = 0.1, \ \tau = 1.1 	imes 10^{-4}, \ h = 10\sqrt{2}/128, \ \mathcal{M} = 10, \ \lambda = 10^{-1}, 10^{-2}, 10^{-3}.
```



Theory suggests that increasing  $\lambda$  guarantees the existence and stability of the solution.



Figure:  $\lambda = 10^{-1}, 10^{-2}, 10^{-3}$ 

 $\Omega = (-5,5)^2, T = 0.1, \ \tau = 1.1 imes 10^{-4}, \ h = 10\sqrt{2}/128, \ \mathcal{M} = 10,$