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Outline

1. Mass-matrix-free FEM

— FEM-type Residual Distribution (RD) in space
— Deferred-correction (DeC) type time-stepping

2. Applications to Lagrangian hydrodynamics
3. Structure preserving RD scheme (IDP-RD)

4. Advection-diffusion problems
— DeC + Multirate time integration
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Part |: Matrix-free FEM
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Finite element approximation
Consider a hyperbolic PDE: BF +Vx-fU)=0
Polynomial interpolation in space: U~ Uy = Zf\; Ui()pi(x)

FEM method requires a linear solver with a global sparse mass matrix:

du
M ot +F=0
Matrix-free FEM framework
® Diagonal mass matrix and high-order:
du
D o +R=0

¢ No mass matrix = No linear solver!

* Qur "matrix-free” idea is different from e.g. "partial assembly” (avoids storing the matrix)
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RD for steady problem V, - f(U) =0

Step 1: Define the total residual on element

Step 2: Compute the distribu-
tion coefficients 8K

Step 3: Gather the residuals at
every DOF

O = [ 7 HUp)eidx+ VI
K

Z V,-K =0 (1storder art. viscosity)
ieK

ok =3 ol E/}Lva(U/JdX

iekK

ok = KoK
> at=t
ieK

Distribution coeff. 8K ensure
upwinding, conservation and
stabilization.

Do (Un) =0

K>i

High-order scheme in space
because ¢X is high-order!

~
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Computation of residuals
* Monotonicity-preserving residual (first order):

O (Up) = /Vx% " dx+/ - ny;dy + ax(U; — Uk),
oK
where Uy = NLK > jek Ui, Nk is the number of DOFs in K, and

a = maxp(Vuf(U)) ]l n,:/w,dx.
ieK K

Here, p(A) is the spectral radius of the matrix A.
¢ Higher order of accuracy + monotonicity is achieved e.g. by setting

max (d’(:: , 0)

Zmax( &K ,0).

jek

B (Un) =

e | ater in this talk: alternative definition of Q,K via invariant domain preservation
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Matrix-free FEM for time-dependent problems

* Define a functional £ to be

ou

Li(U) = (— + Vx - 1(U), sof)

ot L2([tn, t+1]x Q)

* A high-order approximation of £ is given by

tn+1

L) = > MG () = U(e") +/

n
] t

I < /Q V- 1(Un) o1 dx> dt. 2)

* A low-order approximation of £ is given by

tn+ 1

LHU) = D;(Ui(t™") — Ui(t")) +/n I (/Q Vi - 1(Un) pi dx) dt. (3)

t
lumped mass matrix

=3
‘r LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025 | 8
-



UNCLASSIFIED

A Useful Lemma’

Let £t cH . RN — RN be a pair of operators which satisfy the following conditions for any

norm, || - ||, on RN,

1. There exist at least one nontrivial element of Ker(L").

2. The operator L' is invertible and coercive in the sense that there exist some Cy > 0 such
that for any v,5 € RN Cy|lv — 3| < [|£fv — L5

3. The operator L' — £" has Lipschitz constant C, < (0, Cy).

Then, the operator L" is invertible and the unique element y* € Ker(L£") can be obtained,
for any initial guess with m € Ny, via the iteration £Ly(m+1) = £Ly(m) _ £Hy(m)  The error of

the iterative procedure is given by ||y™! — y*|| < (%) y° —y*|l.
Abgrall 2017; Lohmann 2019; Kuzmin and Hajduk 2023.
UNCLASSIFIED FEM@LLNL 01/14/2025 | 9
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High order in time + RD

* High order in time:

— Define sub-steps on [tn, thi1]: th = tho < th1 < thm = tht1.
— Define (Unp, - .., Unum)-
lterative timestepping method (deferred-correction type)

LHUSEDY = cHUSh) — MU, m=1,....M

)

e £t —low order operator (explicit)
e £H —high order operator (implicit)

® resulting timestepping method is explicit and high order
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Definition of the low-order operator -

For any o € K, define L] as:

Lo(U) = chumt,.. umM)

tn,M

C,|(UpMr — Um0y + 3 I (e (U), s) ds
KloeK Jtho
tn,1

ICo|(UPt — Um0 + 3 I (e (U), s) ds
Klo’EK tn‘O

In order to make the operator £L explicit in time, we set

I (eK(UD), s) = o (um0).
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Definition of the high-order operator £

The operator £2 is defined as?
cAuny = chmtr, o ummny

tn,
Z /SOU UnMI’ Uno) dx+/ MIH(d)gva(U(r))7S> dS)

Kloek tho

: tn,1
> /goa (urtr — uno) dx+/ I (oK (UD), s) ds)

Kloek tno

where Z is the interpolating polynomial of degree M.

2R. Abgrall, P. Bacigaluppi, ST. High-order residual distribution scheme for the time-dependent Euler
‘aequatlons of fluid dynamics. CAMWA, 2018
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Resulting high-order RD scheme

Form=1,...,M:

|Ca|(Ug,m,r+1 _ Ug,m,r) - _ Z /B(I)'( Z (/@U/(Un.m,r _ Un_o) ax
K

Ko o'eK

tn,m
+/ Tu (52 (UmOT), .. o (UM 5) ds)

th0

oK, = red

ol —
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About 3/ coefficients

=
“4»

e ey . Here, we simply offer two examples for the case N = 3, presenting the vectors
DefInItIOI’l Comm0n|y Used since Abgra” & B= (B, B2, B5) and p=(B,, By, B;) as the barycentric coordinates of a point in
. space with respect to an equilateral triangle. To ensure boundedness, we insist that,

Roe 2003 . for all j, 0< [f] < 1, so that the point f lies within the triangle, or on its boundary.
A weaker condition, constraining the point § to a finite neighborhood of the

max ( ﬁK O) N q) K fres triangle, seems possible but has not yet been explored.
ﬂK ( U ) — ) K — ] If the monotone weights are all positive, then B already lies within the triangle,
] h "K ? ] (DK and it is natural to take simply p = B. If B lies outside the triangle, one possibility is
Z max ( B iy 0) simply to project p onto the boundary of the triangle. For example, we may take
jeK LB
pi==- with  x* =max(0, x) (12)

It was derived for 2D, Q1 triangles, for I

steady-state problems

Seems to generalize and works OK in 2D 23 =0 s1=0
with Q1/Q2 quads

Drawback: accuracy suffers on
higher-order elements in time-dependent
problems

In Part 11l of this talk: rethinking the
meaning of ,B,K via convex limiting for
arbitrary high order elements Limiting by eqn(12)

T2 =0

LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025
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Convergence in 2D for Eulerian formulation: isentropic vortex®

10! Convergence of rho
:

=—a Bl
1wl - - order2
e—e B2
-~ order3
*—+ B3 E

order 4

102}

L,-error

107

10-6 .
107 10° 0!

h

3R. Abgrall, P. Bacigaluppi, ST. High-order residual distribution scheme for the time-dependent Euler
‘aequatlons of fluid dynamics. CAMWA, 2018
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Part Il: Lagrangian hydrodynamics*

& Credits: Steven Walton, Nathaniel Morgan
“" LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025 | 16
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Lagrangian hydrodynamics

Consider the compressible Euler equations which, in the Lagrangian reference frame, with
d% =0+ u-Vand(t,x) € [0, T] x Q CR* x R3, T > 0 are given by the system

Tdp _

P =V-o (4)
de
pafo'.Vu,

and are complemented by an equation of motion

dx
— 5
dt u, ©)

where x = x(1), u = u(t, x), e = e(t, x), p = p(t, x) and o = (¢, x) denote the position,
velocity, specific internal energy, density and the stress tensor, respectively.

=3
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FE discretization®

kinematic space (d-dimensional) V C [H'(Q0)]? with basis {ap,-},’iﬁ

continuous FE for velocity:
Ny

un(X, 1) = ui()ei(X),
i=1
N, — number of DOFs in Qq.
thermodynamic space £ C L»(fo) with basis {w,-};";

piecewise-continuous elements for energy, so that on any mesh element K:

el (X, t) = Ze

NX — number of DOFs in K.

SV.A. Dobrev, T.V. Kolev, R.N. Rieben. High-order finite element methods for Lagrangian

‘,\hydrodynamlcs SIAM J. Sci. Comput. 34 ( 201U21\)c 606—641.
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Full System Discretization

* We can now write the fully discretized Eu
e Fork=0,...,Kandm=1,... M

LUy =
Lhel ) =

L)

p

LA-UR-25-20090

ler equations.

= LHub) — £Puhh),

cHehn) — £(eln),

= L (x50 — £H(x5%),
(k1) _ |detdy|

|d tJ,,k+1)|

UNCLASSIFIED
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Second order in time

For k =0,1:

Y |(uf ™ = uf)+ ) {M}’ (uF —u") + A;(/ (V of v O'n)go,-dx> } =0,
K

K>i
k+1 £ n At k n k n
\mf|(e +Z M —-e") + > K((J:Vu) + (0 : V) )1/)idx+€/+5i =0,
Kai
k n
)(I.k‘H Atu’ ;u =0.
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Artificial Viscosity
® The stress tensor has the form
oc=—pl+ o,

e Lete = }(Vu+ V'u) denote the symmetric gradient tensor, ¢; denotes the sound speed
and ¢ = /(x) is a characteristic length. Following®, we define the artificial viscosity to be

O3 = JIE.
The coefficient u is a function defined at the quadrature points which we define to be

o= S(aau)pz(bcs + £|6u*|)

where su* = min6u(x), su(x) = W—r=(-8) and & denoting the velocity average.

6VonNeumann and Richtmyer 2004; Campbell and M.J. Shashkov 2001; CARAMANA and Loubere
2006; CARAMANA, Burton, et al. 1998; CARAMANA, M.J. Shashkov, and Whalen 1998; Lipnikov and
~M. Shashkov 2010.
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Artificial Viscosity

¢ The coefficient function b is a measure of vorticity’.

¢ The function »
S(adu) = (1 + exp(aéu))

serves a sigmoidal limiter on the artificial viscosity, with a a tuneable parameter defining
the transition width of the activation function which is typically set to one.

1 _
 The length scale is is given £(x) = EOW, with the initial length ¢ = 1|H|"/® the

cubed root of the volume of an element H € H in the initial configuration scaled by the
inverse of the kinematic polynomial order.

&  Dobrev, Kolev, and Rieben 2012.
tg LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025
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Taylor-Green Vortex

1.0e+00

|
o
o
vel Magnitude
vel Magnitude

0.0e+00

Figure: Q4Qg3 simulation of the Taylor-Green Vortex. The mesh is 16x16x1. The velocity field
is shown at t = 0.0 (left) and t = 0.5 (right).
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Sedov

" Pposition

Figure: Q4Q3 simulation of the Sedov problem. Left: Density (cell-averages). Center:

Scatter plot of density at Gauss quadrature points. On an 8x8x8 mesh, we reach 94.6%of

the analytic maximum peak. Right: Scatter plot of density at Gauss quadrature points. On a
16x16x16 mesh, we reach 101.5% of the analytic maximum peak.

FEM@LLNL 01/14/2025 | 24
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Triple Point

Figure: Density (cell averages) at t = 2,3 and 4.3 for Triple Point problem. Top: Q1Q0
solution with ~173k nodes. Bottom: Q4Q3 solution with ~12k nodes.
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Triple Point

Figure: Q4Q3 simulation of the Triple Point problem. The mesh is 12x12x1. The cell-average
density is shown at t = 5.0.
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Part lll: Structure-preserving matrix-free
RD scheme®

= 8Credits: Jean-Luc Guermond, Eric Tovar, Matthias Maier, Steven Walton
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Structure preserving RD scheme®

Structure preserving, or Invariant Domain Preserving (IDP) schemes ensure the following
important properties at the discrete level:

® conservation

e positivity, bounds

® entropy inequality

* asymptotics, equilibria, etc.

IDP framework:

1.

Construct a low-order (LO) RD scheme with provable IDP properties

2. Construct a high-order (HO) scheme possibly violating IDP properties
gl
4

. Connection with 8X coefficients for RD framework

"Blend” LO and HO schemes via convex limiting

)

®Based on the work by Kuzmin, Guermond, et al.
LA-UR-25-20090 UNCLASSIFIED FEM®@LLNL 01/14/2025
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Low-order scheme

LO IDP scheme based on graph viscosity approach of Guermond et al:

graph artificial viscosity

uL n+1 Un
my= " = - 7 e+ > dp(ul - u), (7)
JeI(S) JEI(Si)
where m; = " mf¢ Z/g@, ax, C,/—/cp,Vgal ax.
K>oi K>i
This scheme can be written in terms on residual distribution:
L,n+1 n
u; — U K,La K
m—-t—-—" . ’—|—Zﬂi " =0 (8)
K>i
where
K,L KL, KL ot K,L
CHS :Z[f(u/) —d (] _Uin)}v B = q;K ’ ¢K:Z¢/7 :/Kv-f(u)dx.
JEK JEK

(s
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High-order scheme

HO scheme written in terms of residual distribution (lumped mass for now, can be modified to
account for full mass matrix or DeC time iterations):

L’/‘H’HJr1 —u K.H 4 K
i 3 BN~ 0, ©)
K>oi

Here /" are high-order distribution coefficients TBD.

Take the difference between HO and LO schemes:

H L, T K,H K,L
U,' 7n+1_1 U n+1_52(6/, _Bl)q)K

" K>i
; Ln+1 T K,L K,Hy 4 K
D R S A AL
1 B
K>oi K>i

ubmH L T (gKiL _ gKH
= Z ( " + g (677 =6 )‘DK)
K>i i
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RD blending and IDP limiter
High-order update:

K
uiH,n+1 Z‘”I (uiL,n+1

m K
Ksi ! m;

(B = B0k (10)

RD schemes often use blending of high-order and low-order schemes by means of the
distribution coefficients, namely, we can define

BIH = 0K BIo% (1 — 0Bk, (11)
where

. B,K’G corresponds to a high-order Galerkin scheme

6K < [0, 1] is the blending parameter
e 9K — 0 returns a low order scheme

e 9% =1 returns a high-order scheme

this blending preserves the conservation condition >, 51" = 1.

=3
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Substituting this blended coefficient for B,K’H into (10), we get

T

u}"/7n+1 _ (UILJH—'I + K(B/K,L _ B/K,H)q)K)

m:
Kal /

ﬁ ubntt T gKill _ gKgK.G (4 _ oK) gKilypK
m (U7 4 (81— 06— (1 - 651 )0)

QF( Ln+1+7(W_9KBIK,G_}((+9K6/K,L)¢K)
K>i ’
_Z mll( (uLn+1 oKr;K(IBKL /BK G)¢K> (12)

K>i i
0K is the IDP limiter!

Kai

Conclusion

The RD blending parameter has the meaning of the IDP limiter, hence we can use standard
techniques of Guermond et al to enforce IDP property in RD schemes!
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IDP limiting'®

High-order solution as a convex combination:

gttt — Z m_/K(uL,nH + eKi(ﬁK,L _ ﬁK,G)q)K) _ Z m_,K (UL,n+1 n GKPK> (13)
i = m; \"i mK \Pi i = m; \7i i
K>i ! K>i

make IDP

Lemma (Guermond 2018)

Let W(u) be a quasi-concave function. Assume that the limiting parameters 0k are such that
W(ur™ 4 9KPKY > 0, then w(u"™") > 0.

IDP limiter is defined by

k_ )1 if W(ur™" + PK) >0,
max{0 € [0,1] s. t. W(u"""" +6PK) >0}, otherwise.

e Guermond et al
“ LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025 | 33
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Local bounds

® Line search is generally required to compute the limiter.

* There are a few exceptions, e.g. enforcing local bounds, leading to algebraic expressions
for the limiter.

e Define the IDP functionals ¥, = u— u™" >0and W_ = u™ — u > 0.
The limiter is given by

uprin — ™t L+ i

min WJ , if ul,7ﬂ+ + PK < ymin
; €
i

K _ H i L,n+1 K max
oK = {1, ) if u™n < u; + P < uy;
1
) umax _ N+ )

min <I|PK|_’1’1 s if ul[nax < UI-L7n+1 + PIK
P €
i

=3
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Sod problem

IDP-RD ——
Beta-RD ——
Lax-Friedrichs

0 0.2 0.4 0.6 0.8 1

Figure: Sod shock tube test, 200 cells, quadratic Bernstein polynomials
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Shu-Osher problem

IDP-RD ——
Beta-RD ——
Lax-Friedrichs

4 J\/\f\v’{\w Uq

-6 -4 -2 0 2 4 6

Figure: Shu-Osher test, 800 cells, quadratic Bernstein polynomials
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Woodward-Colella problem

0

IDP-RD ——
Beta-RD ——
Lax-Friedrichs

J

L

0

0.2 0.4 0.6

0.8

p

Figure: Woodward-Colella test, 1600 cells, quadratic Bernstein polynomials

~
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Part IV (WIP): Advection-Diffusion
Problems, IMEX, MRI...
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Advection-Diffusion Problems

¢ 1D advection-diffusion equation

ov  Of(v) 0?v

— = f=—s. 14
ot T Tax  Moxe (14)
® The Galerkin residual is given by
tn,m 2
of(v)  o°v
K,a _ nmk oy
o= ot omas < [ eGanena
additional term for time-dependent problems space-time integral

® The space-time RD scheme then results in an explicit, matrix-free method:

ypmIET — ke Zcb where of = gfoK oK =N o/ (15)
Kal ieK
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Results

Model advection-diffusion PDE:
U[ + aUX = MUXX

T — T T T 0 steps ——
10 steps —— 500 steps
20 steps 2 1000 steps ——
30 steps 1500 steps
40 steps 4 2000 steps
50 steps —— 2500 steps
3000 steps ——
1.8 3500 steps =— o
4000 steps ——
4500 steps
5000 steps ———
5500 steps
1.6 BO0O steps B
1.4 E
1.2 1
| — T
0.8
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2
advection-diffusion pure diffusion
LA-UR-25-20090 UNCLASSIFIED FEM@LLNL 01/14/2025 | 40
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Convergence

Convergence of u

error
=5
L

—&— Bl
~ == order 2
107% 1 —@— B2
=== order 3
—— B3
=== order 4
—m— Bl

=== order 5

10-1°

10° 10"

Figure: Convergence analysis for pure diffusion with RD solver.
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Multirate time integration

y' = Sty

diffusion (slow) — Implicit

SIAM J. NUMER, ANAL,
Vol. 57, No. 5, pp. 23002327

© 2019 Society for Industrial and Applied Mathematics

A CLASS OF MULTIRATE INFINITESIMAL GARK METHODS*

ADRIAN SANDU!

Abstract. Differential equations arising in many practical applications are characterized by
multiple time scales. Multirate time integration seeks to solve them efficiently by discretizing each
scale with a different, appropriate time step, while ensuring the overall accuracy and stability of
the numerical solution. In a seminal paper, Knoth and Wolke [Appl. Numer. Math., 28 (1998),
pp. 327-341] proposed a hybrid solution approach: discretize the slow component with an explicit
Runge-Kutta method, and advance the fast component via a modified fast differential equation. The
idea led to the development of multirate infinitesimal step (MIS) methods by Wensch, Knoth, and
Galant [BIT, 49 (2009), pp. 449-473). Giinther and Sandu [Numer. Math., 133 (2016), pp. 4 4]
explained MIS schemes as a particular case of multirate General-structure Additive Runge Kutta
(MR-GARK) methods. The hybrid approach offers extreme flexibility in the choice of the numerical
solution process for the fast component. This work constructs a family of multirate infinitesimal
GARK schemes (MRI-GARK) that extends the hybrid dynamics approach in multiple ways. Order
conditions theory and stability analyses are developed, and practical explicit and implicit methods
of up to order four are constructed. Numerical results confirm the theoretical findings. We expect
the new MRI-GARK family to be most useful for systems of equations with widely disparate time
scales, where the fast process is dispersive, and where the influence of the fast component on the
slow dynamics is weak.

(1.1) Fy) =9y + Py ylte) = o

I
<

[
09 LA-UR-25-20090
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i (t,y)

N—_——
advection (fast) — DeC+MF-FEM

DEFINITION 2.2 (MRI-GARK methods for additively partitioned systems). A
multirate infinitesimal GARK (MRI-GARK) scheme applied to the additively par-
ti tem (1.1) advances the solution from t, to ti1 = t, + H as follows:

oned

(220) Y=y,
v(0) =¥},
Ty =t,+ ¢ H,
@20) Qo = A B (T4 AP0, 0) + S5 vy () £ (T3 )
for 6 € [0, H],

v =), st
22)  pa =Y,

Linear combinations of the slow function values are added as forcing to the modified
fast ODE system (2.2D); in order to use only already computed slow stages, one needs
Yis (1) =0 for j > i.

The implicit trapezoidal method is the slow component (2.1a) of the following second
order implicit MRI-GARK scheme (2.2):

0(0) =y V' = fI )+ F (), oo, Y = o(H),
@D v =Y 1O @)+ 11 ()

Unt1 = Y;M — £ () + £ ()

FEM@LLNL 01/14/2025 | 42
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Model advection-diffusion PDE:
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Conclusions & work in progress...

1. RDis a flexible framework to construct high-order schemes for hyperbolic PDEs
Mass-matrix-free FEM

Easily extends to higher order in space and time

IDP property enforced via distribution coefficients

WIP: Consider more IDP functionals (e.g., entropy inequality)

WIP: 2D/3D

WIP: Lagrangian MF-FEM-IDP-RD
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THANK YOU!
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