Hardware-oriented Numerics for
Massively Parallel & Low Precision Accelerator Hardware
and Application to ,large scale” CFD Problems

Faster & more reliable predictions are needed...

S. Turek & FeatFlow Team
Institute for Applied Mathematics (Chair LS 1lI)
TU Dortmund University

https://wwwold.mathematik.tu-dortmund.de/Isiii

Superfast Microsoft Al is first to predict air pollution for the whole world https://www.nature.com/articles/d41586-024-01677-2

nature

nature > news > article

NEWS | 04 June 2024

Superfast Microsoft Al is first to predict air
pollution for the whole world

The model, called Aurora, also forecasts global weather for ten days — all in less than a minute.

By Carissa Wong

2von5

Superfast Microsoft Al is first to predict air pollution for the whole world https://www.nature.com/articles/d41586-024-01677-2

£ o & £ g PAdd

Weather forecasting is benefitting from the boom in artificial intelligence. Credit: NESDIS/STAR/NOAA/Alamy

An artificial intelligence (Al) model developed by Microsoft can accurately forecast weather and air pollution for the

whole world —and it does it in less than a minute.

The model, called Aurora, is one of a slew of Al weather-forecasting tools being developed by tech giants, including

GraphCast from Google DeepMind in London and FourCastNet from Nvidia, based in Santa Clara, California. But

Aurora’s ability to quickly predict air pollution globally is pioneering, say researchers.

“This, for me, is the first big step in a journey of atmospheric chemistry and machine
learning,” says machine-learning researcher Matthew Chantry at the European Centre
for Medium-Range Weather Forecogig%o@(fﬂil]\}VF) in Reading, UK.

3vonS5

Superfast Microsoft Al is first to predict air pollution for the whole world https://www.nature.com/articles/d41586-024-01677-2

Conventional weather forecasting uses mathematical models of physical processes in & i
DeepMind Al accurately the atmosphere, land and sea. To predict air-pollution levels, researchers have
forecasts weather —on a previously used machine learning along with conventional mathematical models, says
desktopcomputer

Chantry. Aurora seems to be the first entirely Al model to generate a global pollution

forecast —which is a much more complex task than weather forecasting, says Chantry.

“That was the thing where | went: wow, that’s a really cool result,” he says. The benefit of Al models is that they often

require less computational power to make predictions than do conventional models, says Chantry.

Al researcher Paris Perdikaris at Microsoft Research Al for Science in Amsterdam and his colleagues found that

Aurora could in less than a minute predict the levels of six major air pollutants worldwide: carbon monoxide,

nitrogen oxide, nitrogen dioxide, sulfur dioxide, ozone and particulate matter. Its predictions span five days. It can

. 1
do it “at orders of magnitude smaller computational cost” than a conventional model used by the Copernicus < m
Atmosphere Monitoring Service at the ECMWF, which predicts global air-pollution levels, the team wrote in a
preprint' published on arXiv on 20 May.
RELATED Aurora’s predictions were of a similar quality to those of the conventional model. < 1
Policymakers use such predictions to track air pollution and protect against the
related health harms. Air pollution has been linked to an increased risk of asthma,
heart disease and dementia.
The researchers trained Aurora oPedt&tHan a million hours of data from six weather 4von 5

How Alisimprovingclimate and climate models. After training the model, the team tweaked it to predict pollution

Superfast Microsoft Al is first to predict air pollution for the whole world https://www.nature.com/articles/d41586-024-01677-2

forecasts and weather globally. The model generates a ten-day global weather forecast

alongside the air-pollution prediction.

The team says that, on some tasks, Aurora could outperform other Al weather-forecasting models, such as

GraphCast —which can outperform conventional models and make global weather predictions in minutes. Butitis &
too early to make a definitive comparison, says Chantry. “You’d have to spend a lot of time, and probably have

access to the models themselves, to be able to really go into detail and say with some certainty that model A is
better than model B,” he says.

Further research will reveal whether ‘foundational’ Al models trained on diverse data sets, such as Aurora, perform

better than those trained on a single data set, such as GraphCast. “There’s lots of cool science to be done,” he says.

doi: https.//doi.org/10.1038/d41586-024-01677-2

References

1. Bodnar, C. et al. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.13063 (2024).

Reprints and permissions

06.06.2024, 10:11 Svons

My personal view:

We, the MFM (Mathematical Fluid Mechanics) & CFD
(Computational Fluid Dynamics) community, have to work
,harder®, or differently, if we don’t want to be displaced by Al
(Artifical Intelligence)....

....because this could lead to (political) problems in research,
teaching and industrial applications in the
future (especially with regard to the associated budgets, human
and computer ressources) ®

.....and it is bad for Al without accurate training data

Because, | am (still) convinced that the combination of modern and
powerful MFM & CFD tools can (and must) provide:

- more accurate simulations results, for instance via user-specific &
goal-oriented a posteriori error control

- Theory: OK Practical realization in ,real life” cases: Not yet
- My personal experience: appr. 10 — 100 more effort needed than for
one (1) simulation (which is in most cases fully nonstationary & 3D!)

- more efficient results due to numerical, computational & algorithmic
improvement and exploitation of much faster supercomputing power

Here: | will mainly concentrate onto efficiency aspects!

Because, | am (still) convinced that the combination of modern and
powerful MFM & CFD tools can (and must) provide:

- more accurate simulations results, for instance via user-specific &
goal-oriented a posteriori error control

- Theory: OK Practical realization in ,real life” cases: Not yet
- My personal experience: appr. 10 — 100 more effort needed than for
one (1) simulation (which is in most cases fully nonstationary & 3D!)

- more efficient results due to numerical, computational & algorithmic
improvement and exploitation of much faster supercomputing power

Here: | will mainly concentrate onto efficiency aspects!
However: Accuracy might be more important w.r.t. Al

No. 1in year System Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

El Capitan - HPE
Cray EX2553,
AMD 4th
Generation EPYC
Nov 2024 24C 1.8GHz, 11,039,616 1,742.00 2,746.38 29,581
AMD Instinct
MI300A
DOE/NNSA/LLNL
USA

Compare 2024 vs. 1996:
Factor (more than) 1.000.000

No. 1in year System Cores Rmax (GFlop/s) Rpeak (GFlop/s) Power (kW)

SR2201/1024,
Hitachi
June 1996 University of 1,024 220.40 307.20 ?7??

Tokyo
Japan

No. 1in year

Nov 2024

No. 1in year

June 1996

System Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

E' Cagixtggs-HPE Compare 2024 vs. 1996:

ray d,

avDath Factor (more than) 1.000.000

24C 1.8GHz, 11,039,616 1,742.00 2,746.38 29,581

AMD Instinct

MI300A

DOE/NNSA/LLNL

UsA Colossus (Elon Musk, 3-4 Bill. Dollar):
100,000 x H100 (150 MW)
3.4 EFlop/s in FP64 (49.5 EFlop/s in TF32)

System Cores Rmax (GFlop/s) Rpeak (GFlop/s) Power (kW)

SR2201/1024,

Hitachi

University of 1,024 220.40 307.20 ?7??

Tokyo

Japan

Performance

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s

1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s

Projected Performance Development

o
C ol
L
i
S e
p vy Compare 2024 vs. 1996:
M -__.-"”" Factor (more than) 1.000.000
,éé#f
/,/;?"'.why 19967
"
S e e a0

Start for 3 “successful” Benchmark Initiatives

* FAC: Flow Around Cylinder (2D + 3D) = 1996
* FSI: Fluid-Structure-Interaction (2D....... and 3D) - 2006

* RISING BUBBLE: Multiphase Flow (2D.....and later also 3D)
— 2009 and 2019

http://www.featflow.de/en/benchmarks/cfdbenchmarking.htmi

Important since well-accepted tools to
evaluate the ,realistic” quality of Al, ML
(PINN) or ,,unconventional” tools (LBM, SPH)

FAC Benchmarks (1996): M. Schéfer, S. Turek, R. Rannacher et al

Stefan Turek - Google Scholar https://scholar.google.de/citations?user=ug5000MAAAAJ& hl=de&cstart=0&pagesize=20
Stefan Turek EIGENES PROFIL ERSTELLEN
o Alle Seit 2019
TU Dortmund Zitate 14402 4812
Mathematik h-index 54 30
i10-index 147 81
13 Artikel 95 Artikel
nicht verfugbar verfugbar

Basierend auf Férdermandaten

TITEL ZITIERT VON JAHR

Benchmark computations of laminar flow around a cylinder 1142 1996
M Schéfer, S Turek, F Durst, E Krause, R Rannacher
Flow simulation with high-performance computers Il: DFG priority research ...

Efficient solvers for incompressible flow problems: An algorithmic and computational approache 890 1999
S Turek
Springer Science & Business Media

Simple nonconforming quadrilateral Stokes element 889 1992
R Rannacher, S Turek
Numerical Methods for Partial Differential Equations 8 (2), 97-111

Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar 829 2006
incompressible flow

S Turek, J Hron

Fluid-Structure Interaction: modelling, simulation, optimisation, 371-385

Artificial boundaries and flux and pressure conditions for the incompressible Navier—Stokes equations 793 1996
JG Heywood, R Rannacher, S Turek
International Journal for numerical methods in fluids 22 (5), 325-352

Quantitative benchmark computations of two-dimensional bubble dynamics 677 2009
S Hysing, S Turek, D Kuzmin, N Parolini, E Burman, S Ganesan, ...
International Journal for Numerical Methods in Fluids 60 (11), 1259-1288

The ,Flow around a Cylinder” Benchmarks (1996)

BENCHl: Re=20 domain O i inflow boundary Ty wall boundary Ty
T F
stationar 021 {2
(Y) +-F0OT o1 0.41
02 =
+ ok :
F0.2 % 2.0
BENCH2: Re=100 [
(periodical vortex
. |
shedding)
level nodes edges element #dofs(v) #dofs(p) total
0 65 113 4: 452K 65K 517K
. —_ 1 226 418 192 1672K 226K 1898K
BENCH3' Re(t)<_100 2 836 1604 768 6416K 836K 7252K
_ 3 3208 6280 3072 25120K 3208K 28328K
(for T <= [OISS]) 4 12560 24848 12288 99392K 12560K 111952K

Simulations on IBM SP2 in 1996: Today: More than 1el3, that
6 million (6e6) unknowns (in 3D) means 10 trillion unknowns
(in hours, resp., 1 day) should be possible???

FAC Benchmarks (1996): M. Schéfer, S. Turek et al.

BENCH1: Re=20 = most recent calculations with more than 1 Billion unkowns (in 2D and 3D)

2D FAC:
Drag: 5.5795352338440[35:59]
Lift: 0.01061894814606[80:91] '

P-Diff: 0.1175201[65:70] 7{&)

2D FAS:

Drag: 6.940[64:71]
Lift: 0.08619[00:32]

P-Diff: 0.12622[75:81]

3D FAC:

Drag: 6.18532[04:86]
Lift: 0.0094010[27:65]
P-Diff: 0.17[0999:1010]

3D FAS:

Drag: 7.7[69:72]

Lift: 0.069[05:16]
P-Diff: 0.1757[06:29]

FAC Benchmarks (1996): M. Schéfer, S. Turek et al.

BENCH1: Re=20 = most recent calculations with more than 1 Billion unkowns (in 2D and 3D)

2D FAC: 10 Billion unkowns

Drag: 5.5795352338440[35:59]

Lift: 0.01061894814606[80:91] .

P-Diff: 0.1175201[65:70] @ ' are feasible
2D FAS:

Drag: 6.940[64:71]

Lift: 0.08619[00:32]

P-Diff: 0.12622[75:81]

3D FAC:

Drag: 6.18532[04:86]
Lift: 0.0094010[27:65]
P-Diff: 0.17[0999:1010]

3D FAS:

A big challenge
Qrag: 7.7[69:72] .
o, evenin 2025..®

Why do our MFM & CFD techniques
not scale appropriately with the
obviously increasing compute power???

And what can we do from a numerical,
computational & algorithmic perspective to realize
much more efficient CFD simulation tools?

2 trends for HPC Hardware—> TOP500 November 24 (LINPACK)

Rank System #Cores R,..x (PFlop/s) Accelerator

1 El Capitan 11,039,616 1,742 AMD MI300A

2 Frontier 9,066,176 1,353 AMD MI250X

3 Aurora 9,264,128 1,012 Intel Ponte Vecchio
4 Eagle 2,073,600 561 NVIDIA H100

5 HPC6 3,143,520 478 AMD MI250X

6 Fugaku 7,630,848 442 (A64FX)

7 Alps 2,121,600 435 NVIDIA GH200

8 LUMI 2,752,704 380 AMD MI250X

9 Leonardo 1,824,768 241 NVIDIA A100

10 Tuolumne 1,161,216 208 AMD MI300A

Exploiting massive parallelism: more than 1 million cores

Exploiting single node performance: special accelerators (nvibia, ambp)

- HPC compute power = #nodes x #TFLOP/s per node

Frontier supercomputer (8 881152 cores) L MI250X (1803 PFlop/%)
s 9408 AMD Epyc 7713 (64 cores) 98.94%

Epyc 7713 (19 PFlop/s)
m 9408 - 4 AMD Instinct MI250X (220 cores)

-
| Leading TOP500 supercomputer (June 2024) Theoretical performance of Frontier
(R) EFIOp /S) in double precision
max .
1 Nvidia A100 (2020) I8 AMD MI250X (2021)
2,000 [l B Nvidia H100 (2022) 18 AMD MI325X (2024)
% 1,307 [B Nvidia B200 (2024)
o}
& 1,000
383 163
134
>~ 08l 0308
half precision single precision double precision

Without tensor cores (Nvidia) and matrix cores (AMD)

Frontier supercomputer (8 831152 cores) L MI250X (3601 PFlop/&)
m 9408 AMD Epyc 7713 (64 cores) 99.47%

m 9408 - 4 AMD Instinct MI250X (220 cores)

/ Epyc 7713 (19 PFlop/s)

| Leading TOP500 supercomputer (June 2024) Theoretical performance of Frontier
(R = |2 EFIOp /S) in double precision
max — .
1 2,250 Nvidia A100 (2020) I8 AMD MI250X (2021)
2,000 [l B Nvidia H100 (2022) 8 AMD MI325X (2024)
@ | 307 [B Nvidia B200 (2024)
g 950 1,100
& 1,000
m ﬂ o6 163 67 40 96 163
e [—_— e,
half precision single precision double precision

Using tensor cores (Nvidia) and matrix cores (AMD)

Eagle supercomputer (2 073600 cores)
m 1800 x 2 INTEL XEON (48 cores)
= 1800 x 8 NVIDIA HI00 (132 cores)

| Nr.3 TOP500 supercomputer (June 2024)

(Rmax = 0.56 EFlop/s)

2,000

TFlop/s

1,000

A

H100 (7128.0 PFlop/s, 99.7%)
o 8480C (21.6 PFlop/s, 0.3%)

Theoretical performance of Eagle in
single precision

2,250 Nvidia A100 (2020) 5 AMD MI250X (2021)
I 8 Nvidia H100 (2022) '8 AMD MI325X (2024)
307 o I B Nvidia B200 (2024)
990 ’
<1
s = 163 163
] | K 6740585

half precision

single precision

N,
>

double precision

Using tensor cores (Nvidia) and matrix cores (AMD)

To be more precise:

How to exploit efficiently (,,that means with optimal computational
and numerical efficiency”) not only Massively Parallel hardware,
but also Lower Precision Accelerator hardware as major trends?

Important components:

- Prehandling & semi-iterative sparse-dense solvers in lower precision
- Global-in-time Newton & Oseen (= linearized NSE) solvers
— Parallel-in-time / Simultaneous-in-time Multigrid approaches

To be more precise:

How to exploit efficiently (,,that means with optimal computational
and numerical efficiency”) not only Massively Parallel hardware,
but also Lower Precision Accelerator hardware as major trends?

How to realize for “large scale” CFD problems?

Important components:

- Prehandling & semi-iterative sparse-dense solvers in lower precision
- Global-in-time Newton & Oseen (= linearized NSE) solvers
— Parallel-in-time / Simultaneous-in-time Multigrid approaches

Prototypical , large scale” CFD simulations (I)

Navier-Stokes equations
olug +u-Vu) —vAu+Vp=g, V-u=0

- (many) Oseen-type Problems

- (very many) Poisson Problems |

- (very many) Convection-Diffusion
Problems

Particularly on (almost)
arbitrarily complex geometries
in realistic applications

—> Twin screws...

Prototypical , large scale” CFD simulations (ll)

Navier-Stokes equations
olug +u-Vu) —vAu+Vp=g, V-u=0

- (many) Oseen-type Problems

- (very many) Poisson Problems

- (very many) Convection-Diffusion
Problems

Particularly on (almost)
arbitrarily complex geometries
in realistic applications

— Extrusion dies for polymer melts
realized in StromungsRaum
(software together with IANUS Simulation)

AIM: AUTOMATIC EXTRUSION SIMULATIONS IN STROMUNGSRAUM

2

PARAMETRIC GENERATION OF AUTOMATIC GENERATION OF 2D AUTOMATIC SIMULATION ON HPC AUTOMATIC REPORTING OF RESULTS
DIGITAL TWINS SURFACES AND 3D MESHES HARDWARE AND RECOMMENDATIONS

STROMUNGSRAUM

[rrppee— T 1 Y Yoo

SUBMISSION AND LOGGING OF THE
AUTOMATED SIMULATION SCRIPT

AUTOMATIC ADAPTIVE 3D HEX-(COARSE) GRID GENERATION

EXAMPLE: OPTIMIZATION OF EXTRUSION DIES

L1 : 68K elems ~2M dofs Problems:
L2 : 544K elems ~15M dofs Highly resolved + very large coarse meshes
13:4.35Melems ~117M dofs Many highly dimensional problems (= L5 !)

L4 : 34.8M elems ~940M dofs

a

. oL &
Alternative: (Very) coarse meshes
+ many levels = even larger problems
- But: Better for GPUs?

a

. o< &
Alternative: (Very) coarse meshes
+ many levels = even larger problems
- But: Better for GPUs?

&

. oz X
Alternative: (Very) coarse meshes
+ many levels = even larger problems
- But: Better for GPUs?

g

. oz &
Alternative: (Very) coarse meshes
+ many levels = even larger problems
- But: Better for GPUs?

g

. o< &
Alternative: (Very) coarse meshes
+ many levels = even larger problems
—> But: Better for GPUs?

g

Alternative: (Very) coarse meshes
+ many levels = even larger problems
—> But: Better for GPUs?

\f\ SIMULATIVE DESIGN OPTIMISATION

DIGITAL TWIN AND SIMULATION FOR OPTIMAL PROFILE DIE DESIGN

IANUS

SIMULATION
LB

Fluid
Domain

Prototype 1 Prototype 2 Prototype 3

Y N
ﬁ

Requires ,large scale” Methods & , large scale“ HPC Hardware;
s

2 trends for HPC Hardware—> TOP500 November 24 (LINPACK)

Rank System #Cores R,..x (PFlop/s) Accelerator

1 El Capitan 11,039,616 1,742 AMD MI300A

2 Frontier 9,066,176 1,353 AMD MI250X

3 Aurora 9,264,128 1,012 Intel Ponte Vecchio
4 Eagle 2,073,600 561 NVIDIA H100

5 HPC6 3,143,520 478 AMD MI250X

6 Fugaku 7,630,848 442 (AG4FX)

7 Alps 2,121,600 435 NVIDIA GH200

8 LUMI 2,752,704 380 AMD MI250X

9 Leonardo 1,824,768 241 NVIDIA A100

10 Tuolumne 1,161,216 208 AMD MI300A

Exploiting massive parallelism: more than 1 million cores

Exploiting single node performance: special accelerators (nvibia, ambp)

- HPC compute power = #nodes x #TFLOP/s per node

Problem 1: More cores > (Spatially) discretized problems ,too smal

— Example: Heat equation with multigrid

LiDO3 (2x Intel Xeon E5-2640v4 and 64GB memory per
node, Infiniband QDR interconnect (40Gbps))

4 BiCGSTAB pre- and post-smoothing steps, V-cycle

level 5 in space, 2048 total time steps

- more and more cores (#CPUs) for
parallelization “only” in space do not help!

Ill

A

10° 3

time [g]

10° ¢

Y

10° 10! 102 10°
4CPUs

Solver time per iteration

Problem 1: More cores > (Spatially) discretized problems ,too small*“

— Example: Heat equation with multigrid

| K
I 1 o— 2 H—4
LiDO3 (2x Intel Xeon E5-2640v4 and 64GB memory per : ' 24 * 128 * ZEB
node, Infiniband QDR interconnect (40Gbps)) 4;—512—;—1024—0—2048
_ , - 10t
4 BiCGSTAB pre- and post-smoothing steps, V-cycle & I
level 5 in space, 2048 total time steps
10° ¢
- more and more cores (#CPUs) for o ot e e
parallelization “only” in space do not help! 4CPUs

—> Better scaling (for K blocked time steps) via | o
Parallel/Simultaneous-in-Time Krylov-Multigrid Solver time per iteration

Trends for Accelerator Hardware - NVIDIA, AMD, Amazon

— Tensor Cores (TC) by NVIDIA

* Originally developed to accelerate Al applications
 Perform (dense) matrix operations at very high speed
- V100 (2017), A100 (2020), H100 (2023), B200 (2024)
 Alternatives: A64FX ARM, AMD MI250X, Trainium?2

FP64 FP64 TC FP32 TF32 FP16 FP16 TC
V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 78 312
H100 34 67 67 495 n/a 990
B200 40 - 80 2,200 n/a 4,500
MI300A 61 - 122 490 n/a 981
A64FX 3.4 - 6.8 - 13.5
Trainium?2 - - 181 667 667

(Hundreds of) TFlop/s peak rates (in FP32/TF32) -2 is it realistic.....for PDEs?

Metric for single node performance for PDEs?

Consider (optimal) geometrical multigrid for Poisson problems
with appr. 10? grid points = ,, 1000 FLOPs per grid point“

- Full performance of 100 TF/s: 0.01s on 1(!) node
-2 If only 1% available = 1 TF/s: 1s on 1(!) node

Or: ,,Solution speed” 1000 MDOF/s

Let’s be self-critical: How far are we away from
exploiting the high single-node performance
for such (,,optimal”) fast solvers???

SPECIFICATIONS
Tesla V100 Tesla V100
PCle SXM2
GPU Architecture NVIDIA Volta
NVIDIA Tensor 640
Cores
\
NVIDIA CUDA 5,120
Cores
Double-Frecision o4 npe 7.8 TFLOPS
Performance
Single-Precision
14 TFLOPS 15.7 TFLOPS

Performance

Tensor

112 TFLOPS 125 TFLOPS
Performance

GPU Memory 32GB /16GB HBM2
Memory
9

Bandwidth 00GB/sec
ECC Yes
Interconnect
Bandwidth 32GB/sec 300GB/sec
System Interface PCle Gen3 NVIDIA NVLink
Form Factor PCle Full

Height/Length SXM2
Max Power 250 W 300 W
Comsumption
Thermal Solution Passive
Compute APls CUDA, DirectCompute,

OpenCL™, OpenACC

Problem 2: Sparse & multigrid vs. dense matrix operations (GEMM)

300 ; 312 |
— double precision 900 |
— single precision 156
i} half precision
250 | 100 |
’ Dense MM
50 |
200 |
- g} 19.5
ol e
S 150 S 10}
& - double precision peak
100 - double precision
single precision peak
Lt - single precision
50 | .
Sparse MV half precision peak
- half precision
n 1 L L 1 L
10° 10° 10° 10° 10° 102 10° 10*

N

N
Only 300 GFLOP/s for sparse MV vs. dense MM (300 TFLOP/s) on A100

Only 10-20 MDOF/s on recent architectures (in FEAT3) with gMG

2 Trends for HPC Hardware—> TOP500 November 24 (HPCG)

Rank HPCG (HPL) System R...x (PFlop/s) HPCG/HPL
1 (6) Fugaku 16.0 3.6%
2 (2) Frontier 14,1 1.0%
3(3) Aurora 5,6 0.6%
4 (8) LUMI 4,6 1.2%
5(7) Alps 3,7 0.8%
6 (9) Leonardo 3,1 1.3%
7 (19) Perlmutter 1,9 2.4%
8 (14) Sierra 1,8 1.9%
9 (23) Selene 1,6 2.6%

10 (33) JUWELS Booster Module 1,3 2.9%

—> Iterative sparse solvers: only appr. 1-4% of the available peak rates

Problem 3a: Lower precision hardware for Poisson problems?

- Splitthe error: u — 1, = u — uy, + uy — iy

Discr. Error: ||[u — u,|| = O(hp“)
= depending on FEM space and smoothness
- Here for simplicity: p = 1

Comp. Error: ||u;, — u;|| = cond,, - "data error”
—> data error at least of size TOLp, ..

- condj,(Poisson) = O(h™?)

Discr. Error = Comp. Error = h = TOLprecl/4

Problem 3a: Lower precision hardware for Poisson problems?

- Splitthe error: u — 1, = u — uy, + uy — iy

Discr. Error: ||[u — u,|| = O(hp“)
= depending on FEM space and smoothness
- Here for simplicity: p = 1

Comp. Error: ||u;, — u;|| = cond,, - "data error”

—> data error at least of size TOLp, ..
- condj,(Poisson) = O(h™?)

Discr. Error = Comp. Error = h = TOLprecl/4

Wish: cond;, = 0(1) = h = TOLPrecl/z
-> FP32/TF32 (and even FP16?)

\W—UMB

1074

1076

- [- - -DP (H)FEM

SP FEM
SP HFEM
HP FEM

' | ——HP HFEM

A5
S
S
S
S

8

9

10 11 12 13

Preliminary summary regarding recent hardware trends

— Parallelization in space is not enough....particularly for very many time steps

Global-in-time approaches using parallel-in-time, resp., simultaneous-in-time
Krylov-multigrid solvers

Summary regarding recent hardware trends

— Parallelization in space is not enough....particularly for very many time steps

Global-in-time approaches using parallel-in-time, resp., simultaneous-in-time
Krylov-multigrid solvers

— Standard sparse matrix-vector operations (in FP64) quite ,,slow“ on GPUs
— But: Lower precision (FP32, TF32, FP16) often not sufficiently accurate
— But: They do not exploit the Tensor Cores!

Lower precision & dense matrix operations on GPUs (with Tensor
Cores) via Prehandling and special Schur Complement solvers
with application to CFD

Starting point: Sparse, ill-conditioned linear system

Prehandling to lower condition number

2D: HFEM 2D /3D: Generating systems
Node renumbering exploiting similar cells + Schur Generating system
complement(s) multigrid

Direct method in 2D Semi-iterative method in 2D and 3D

The concept of Prehandling for linear systems of equations

Basic idea
* Apply preconditioner explicitly to Ax = b
* Equivalent system A% = b, where STAS, bT = STh, x = Sx

* Both yield same solution in exact arithmetic, but accuracy (and iteration numbers)
differ in practice because cond(4) # cond(4) 1

Central requirements for Prehandling \% | Z: | x

. cond(ﬁ) « cond(4) 0 0.25 05 0.75 1
e Ais still sparse
» Transformation to 4, b and x via § is fast (i.e., O(NlogN))

So far two candidates fulfill all requirements:

Hierarchical Finite Element Method (HFEM, Yserentant et al., 1980s)
in 2D and Generating Systems (GS, Griebel et al., 1990s) in 2D and 3D

Prehandling via HFEM or Generating Systems

Example: (Typical) L, errors for Poisson problem for different levels in 2D

. semi-iterative, 2D, Q, unit square,n =10 —> same FEM solution on lower
—Dr | precision hardware is possible

.] (in the range of 1% error as
——HP/SP |} typical for highly complex

applications)

(S
—
—

(S
—
—

e — wy| L2

Next: How to exploit Tensor
Cores via sparse-dense

\ Matrix operations?

39 64 128 256 512 1024 2048 4006
Bl

10"

10 L

Schur Complement (SC) solvers taylored for Tensor Core GPUs

* Construct solver consisting as much as possible on multiplications with dense matrices
* Same principle in 2D (HFEM) and 3D (GS): Subdivide nodes due to macro size h, into
a) nodes in the interior of the coarse mesh cells (cell by cell in same order)

b) "all remaining nodes" containing those on coarse mesh edges (+ repeated
nodes of GS)

. I\/Ijtrixl];orm:
(r =)

e C decomposes into
independent blocks C;

* Blocks are equal if corres-
ponding to similar cells

* Only C grows like N
(= #Dofs)

O coarse mesh nodes
* nodes on macro edges
e interior nodes of macro cells

Schur Complement (SC) solvers taylored for Tensor Core GPUs

. Al B u\ _ (b .
* Applying Schur Complement to <BT C) (v) = (b;) yields

1) Solve Au = b; — BC~'b,, where A = A; — BC~'BTwith CG method
2) v=C"1(b,— BT

e A can be computed explicitly in 2D (then direct
method) or used implicitly with iterative CG
(better option in 3D) & A well-conditioned

* C; are small, well-conditioned HFEM matrices
- O(N) storage for Ci_l
- €1 block diagonal matrix with dense blocks Ci_l

Storage requirement of the semi-iterative method

 Test problem: Poisson equation on unit square/cube, equidistant Q1 mesh, variable
coarse mesh size h,

» Relevant for storage: C;"*, Band Ain 2D/ A, in 3D

2D: HFEM 3D: Generating Systems
1 % = |A C¢' Blttal 3 & E| A4 ¢! B | total
1004 1.05 16 | 15 151 1.0 | 31 4 | 11.3 433.3 154 | 460
32125 09 16| 27 128 205 8 [221 56 166 | 44
32119 38 10| 24 16 | 37.1 0.1 153 | 52
204 4.1
vad > 64 | 40 02 16| 42 8 | 142 535 165 | 84
32 116 155 0.7 | 32 256 1658 16 | 249 07 177 | 43
4 16.
0% 16.77 64 |27 09 10| 29 321395 001 164 | 56

Moderate storage requirement for appropriate choice of h

Number of nonzero entries relative to NV

compared to 9N in 2D / 27N in 3D with standard FEM (in FP64)

Performance estimate (in FP32/TF32 on A100)

% hl_o #iter cond(C;) total Fk;p share dense | GFlop/s MDof/s
1024 16 30 24 16,400 94.4% 27,400 1,670
32 24 LT 4,900 75.4% 6,700 1,360
2D 2048 32 28 24 16,600 93.5% 21,600 1,300
64 23 17 5,600 66.4% 4,100 730
4096 32 31 32 64,700 98.4% 58,700 910
64 25 24 16,900 91.9% 15,600 920
}_111 % #iter cond(C;) total F}\?p share dense | GFlop/s MDof/s
4 8 54 555,300 99.9% 110,400 200
128 8 11 23 75,400 98.3% 50,800 670
3D: 16 | 18 9 12,500 79.3% 6,500 520
3 11 54 713,700 99.8% 107,500 150
256 16 18 2 114,900 98.0% 47,400 410
32 35 9 23,400 77.3% 6,100 260

Compare with results with optimized MG in C++-based FEM
software package (FEAT) on AMD CPU in FP64: 10-20 MDOF/s

Results on A100 vs. H100

Mdof/s results on H100 (= 3xpeak rates of A100 in SP/TF32 with TC)

2D 3D
5 7o | A100 H100 5 7o | A100 H100
lopq 16| 1670 2,860 4 | 200 480
32 | 1,360 2,430 128 8 | 670 1,160
~oag 32 | 1300 2,220 16 | 520 840
64 | 730 1,180 8 | 150 440
a006 32| 910 2020 256 16 | 410 680
64 | 920 1,540 32 | 260 400

Typical “Hardware-oriented Numerics” approach: "optimal"
configuration depends on problem(size) and hardware

IKindly provided for use on JURECA by Forschungszentrum Jillich https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca

A multigrid method based on generating systems

* Aim: Combine advantages of GS (enabling lower precision) and multigrid
(convergence properties & flexibility via different smoothers, cycles, ...)

Basic idea
e Construct multigrid-like algorithm to solve system w.r.t. GS: Ex? = bf (x = Sx¥)

Ao (P5)TAP? (P5)"A
* Level-wise structure (3-level example): E = | (P?)TAPZ Aq (PA)TA
AP¢ AP? A

* |n each iteration: Go through levels (block rows of E) according to V-, W- or F-cycle and
* Compute residual r; of current block row i
* If i = 0: coarse grid solver, else apply v smoothing steps w.r.t. A; and 7;

e Equivalent to standard multigrid but underlying system given by GS matrix E

* Open question: How to modify algorithms in order to exploit Tensor Cores?

A multigrid method based on generating systems

Lo~ n=>
: b h V-cycle F-cycle
v=2 v=4 v=8 v=106 v=2 v=4 v=8 v=16
1 Y21 5 4 3 3 4 4 3 3
] 64 1/32 4 4 3 3 4 4 3 3
12 — 116 5 4 3 3 4 3 3 3
ﬁ 1/32 4 4 3 3 4 3 3 3
N : | ; /64 — /128 4 3 3 3 4 3 3 3
5 E N\] 12 —1/16 5 4 4 3 3 3 3 2
| | [——DP FEM-MG/GS-MG N] 1 /3 5 4 3 3 3 3 3 2
S 0L SP FEM-MG hg = 1] ST o4 4 4 3 3 3 3 3 2
F SP FEM-MG hy = \/E 1/128 - 1/256 4 3 3 3 3 3 3 2
i SP GS-MG hg = } 1/512 3 3 3 2 3 3 3 2
' SP GS-MG ho = vh ~ ‘ 12 — 11 5 4 4 3 3 3 2 2
1075 |- - ~HP FEM-MG Ao = 1 \ Vi 504 33 503 2 9
E HP FEM-MG hy = vh ‘) Ve 1 4 3 3 3 3 2 2
L |——HP GS-MG hy = 5 : 4096 1/198 — 1/512 4 3 3 3 3 3 2 2
F[emenenens HP GS-MG hg = Vh] 1/1024 4 3 3 2 3 3 2 2
106 I I I I I I 1
3 . . o ; . 0 10 /2048 3 3 2 2 3 3 2 2
level
Comparison ot errors rFEVI-IVIG vs. G5-IVIG Tor Polisson’s lteration numbers of GS-MG for Poisson equation
equation in 2D with smooth exact solution (V-cycle, on unit square with GauR-Seidel smoothing steps

Gaul-Seidel preconditioned Richardson smoother with 4
smoothing steps)

Main questions:

How to exploit efficiently (,,that means with optimal computational
and numerical efficiency”) not only Massively Parallel, but also
Lower Precision Accelerator hardware for PDE problems?

Important components:

- Prehandling & semi-iterative sparse-dense solvers in lower precision
- Global-in-time Newton & Oseen (= linearized NSE) solvers
— Parallel-in-time / Simultaneous-in-time Multigrid approaches

Sequential time-stepping:

A;
BT

B\ [ul"tl) B
I"j(n—l—l) -

Treating K time steps simultaneously:

~

glntl) _ A

f(n+1)

>_

)

Ax Bg
K
B, 0
(A; B
A, A, B
L Ae A; B
L BT
BT
\ B'

Y

(n)
), n=0,....K

(g(l) _ Aeu(o)
§(2)

g(K)

f(l)
f(2)

\ f(io

Now: Apply Pressure Schur Complement (PSC) techniques

Ak Bk)\ [u\ (g
B, 0 /\p f
BiA 'Bxp = BjA g —f
U:AK(g_BKIN))

Corresponding iterative solver:
p — p+taq,
a=Cy'(Biii—f), &=Ag'(g— Bkp)

Using PSC preconditioner Cy ~ Py = BTA 1 B«

Preconditioners for Pressure Schur Complement iteration:

PCD preconditioner? LSC preconditioner
Co' (k@M HAk,(Ik®D,!) (Ik® (D, 'B'M,)Ak(Ixk ® (M, 'BD, 1))
Effort 1xPoisson & 1xmass 2 x Poisson & 2xmass

* Parallel-/Simultaneous-in-time Multigrid solvers for nonsteady
convection-diffusion-reaction equations

* Prehandling + Schur Complement Poisson solvers for K Poisson
problems, resp., 1 Poisson problem with K right hand sides

!Danieli et al. (2022) X
Pressure Poisson matrix D, = B'M;'B

Global-in-time Pressure Schur Complement Preconditioners

— Solve in EACH nonlinear iteration for ALL K time steps SIMULTANEOUSLY

St u
—]\/fl 52 U2
| | 0 0 .
_]wl Sn—|—1 un—}—l
St vl
—M, S v?
0 . . 0
—M,; gn+1 ptl
—+B —+ B3 C ol
LBl —pB] tBf 4By c P
Bl —1Bf By —1B3 c | ptt

* nonstationary convection-diffusion-reaction equations for velocities
= inner Parallel-/Simultaneous-in-time Multigrid solvers

* K x Pressure-Poisson-like problems Cp' = rhs’ with many right hand sides
= Prehandling + Schur Complement Poisson solver

(Almost) Final component: Global-in-time (Picard-)Newton solver

* Usual approach: apply a time discretization and solve a nonlinear equation
in each time step with solution from last time step on right hand side

* Problem: no solution for last time step available since global-in-time

» solve the nonlinear equation on the complete space-time domain
» use a global-in-time (g-i-t) Picard-Newton method
»Jacobian matrices correspond to nonstationary Oseen equations

Idea: Quadratic convergence may lead to K-independent
results

Proof of Concept: ,FAC“ Benchmarks: BEN§H3-Carreau Modell

1
t = 6.250e-03 10 ——k = 0(0,0)
e ——k = 1(7,28)

9.9359 10— 4 | —k = 2(5,20)

9.8719 —— k = 3(5,20)

9.6078 ——k = 4(4,16)

9.7437 109 | /\ k = 5(5,20)
N

—— k = 6(4,16)

0.2796
—k = 4,1
0.2097 10— 14 ; ; ; ; 7(4.,16)
0.1398 o 2 4 6 8 t —k = 8(4,16)
' —— k = 9(4,16)
:0599 ——k = 10(5,20)

—— k = 11(4,16)

10

_ ; 10! 4 ——i=0
ﬂj i = 1(4)
2 1074 ¢ B
k% E : i=3(4)
i= 4 (4)
- 11 g-i-t Newton steps (3200 time steps with dt=1/400) | o
- 4-7 g-i-t Oseen PSC steps per Newton step 10-14

- 4-20 SinT-MG steps for convection-diffusion-reaction
problems with space-time dependent viscosity

—H—i=4, At =1/25
—— =2, At =1/25
—B—1 =4, At = 1/100
—x—1 =2, At =1/100
—5—1 =4, A = 1/400
—se—1 =2, At = 1/400

“No problem” for time-dependent & high
viscosity problems with complex rheology
(“polymer extrusion”) to apply g-i-t CFD solver

avg. iterations

Proof of Concept: ,,FAC“ Benchmarks: BENCH3 — g-i-t Newton solver
W/ \\W 1072 | - 4 g-i-t undamped Newton iterations (2048
time steps with dt=1/256) on level 4 started

107 | from level 3
—Wvl=2—Ivl=3—1Ivl =4

\4

3 4 5 6 7 8t

— 24 g-i-t damped Newton iterations (2048 time
steps with dt=1/256) mainly due to “bad”
starting values (finally: quadratic convergence)

Alternative:
Adaptive Picard-Newton (Pollock, Rebholz et al.)

Proof of Concept: ,,FAC“ Benchmarks: BENCH3 — g-i-t Picard-Newton

W// \\W v mean min max

10 - At =4 _ —_ —
At =1 —

At =0.32 5.76
At = 0.08 4.41
At = 0.02 3.46
At = 0.005 3.17

ww s pbO

&~ B~ O O

mean min max

20 — At =4 17.00 15 19
At =1 9.63 I 13
10 At =0.32 7.56 5 9
At = 0.08 5.65 4 7
At =0.02 3.46 3 4
At = 0.005 3.68 3 5

At Q t —> Anderson Acceleration for Picard-Newton ?

Proof of Concept: ,,FAC” Benchmarks: BENCH3 — g-i-t Oseen solver

Tl

10-° o 106 \‘/;fjﬁf:;j:j/’ 10-6 ‘//
10—10 10—10 a“" 10—10 3 10—10 A
wl,
1014 1 1 1 10144 : 1 1 107144 1 1 1 10714 1 ; : >
0 0.5 1 1.5 2t 2 2.5 3 3.5 4t 4 45 5 5.5 6t 6 6.5 7 7.5 gt
1072 107 P —> g-i-t Oseen MG solver depends
F .
10-6 | 10-6 ’% on blocked time steps K
anv w\uwwwﬁ'\/ WNNM*M"“”'W’/—‘/l
10710 iy 10710 i i
&%ﬁm“«%w === How to improve the solution
_ ‘ AN ‘ 1014 ¢ : 1 1 1 . .
107 T + s 6 17 st behavior to be independent of K

In the case of higher Re???

- Augmented Lagrange (AL)
— Coupled Vanka
—> Discretely Div.-free (DDF)

I

Proof of Concept: ,FAC“ Benchmarks: BENCH3 g-i-t AL-Oseen solver

—>Very moderate number of g-i-t Oseen solver
steps per Newton step if AL stabilization
parameter is large enough since PSC
preconditioner gets exact

—~>No need for multigrid! > PGMRES

- But: Special MG solvers for “velocity problems”
required!

Augmented momentum equation
At 4 Bp(ntl) = g+l 5w () — g Ty (1)

Using W =M, and 7>0

Stabilized system of equations:

A+ 751‘BM;1BT B u(n+1) B g(n—l—l) _ Aeu(”) 4 75tBM;1f(”+1)
BT fj(’”‘l) - f(n+1)

Sherman-Morrison-Woodbury identity guarantees’
—-1 -1 —1 . 1 -1

!Benzi and Olshanskii (2006) and Wechsung (2019)

~

(AK+75tBKMK}pB} BK> (u) _ <§+75tBKMK}pf>

T
B 0 /1\p f

/ Ay B \ (u'® (g — A 4 qotBM, Y

Ae Ai,’Y B u(2) g(2) s 75tBM;1f(2)

s Ae Ay Bl [u™] | &9 4 eeBM Y
. BT ﬁ(l) — f(l)
B' 5(2) (2)
\ BT) s/ \

Using Aj, = Aj +~6tBM;'B'

Pl =Pyl +76tML ~ Cl +70tM

(

Aj+v5tBM,'B' B
BT

)(

b) Prolongation.

U_(n—|—1)
~(n+1)

(

"~y

g

(1) — Agu™ + ystBM H (D)

f(n+1)

Standard multigrid using Jacobi smoother:

LY/ AN 10*2 10* ' 100 102 104
1 50 2 4 11 79 # #
2 100 2 6 23 204 # #

3 200 3 8 38 380 # #

4 400 3 0 56 # # #

Specialized multigrid:

vl 7t~ “ o0 102 10*' 10° 102 10?
1 50 2 2 3 4 5 5
2 100 2 3 4 4 6 5
3 200 2 3 5 5 6 6
4 400 2 4 5 6 6 6

Wechsung (2019)

)

Proof of Concept: ,FAC“ Benchmarks: BENCH3 — PinT-MG solvers for
nonstationary convection-diffusion-reaction problems

I

N

avg. iterations

avg. iterations

30

20

10

o | e BTV - B e |
T "

100 101 102 103K

——BE,1=2, At =1/64 —8—BE, =4, At=1/64

——BE, 1 =2, At =1/256 —&— BE, | =4, At =1/256
—%—DG1, 1 =2, At =1/64 —5—DC1, 1 =4, At = 1/64
——DG1, 1 =2, At =1/256 —5— DG1, [= 4, At = 1/256

100 10t 102 K

—w— 7 =0,np =2 —HB—v=0,n5p=14
—x—g=1ngy =2 —H-g=1n. =4
—— 7 =10, n5p =2 —F—7=10, nsp =4
—— 7 =100, nyy =2 —5— v =100, nsy, =4

30 —— Jacobi
—~5=0
—y = 10—2
20 | ——y =10°
— = 102
10////////7//////////(—y=10*
O !

103 1072 101 100 Ot

Robust behavior with special Patch-
Jacobi Smoother

—>our recent candidate for HPC
realization

Proof of Concept: ,,FAC” Benchmarks: BENCH3 - SinT-MG solvers for
nonstationary convection-diffusion-reaction problems

I

i

iterations

avg.

50 4
40 |
30 |
20 |

U S

10° 10t 10 103K
-=-CN, nostab. -3-CN,v=0-5-CN,vy=1-5-CN,vy=2
—x— BE, no stab. —x—BE, v =0-—x%—BE,vy=1-—»—-BE, vy=2

1- a=0
—a=10"1
0 —a=10"2
—a=10"3
-1 ; —a=10""

0

01 02 03 04 05 06 07 08 09 1 Looq_1g®

Robust behavior ONLY with appropriate
stabilization as usual for SinT-MG with
block-Jacobi smoothers, otherwise only for
moderate K

—> Stabilization (here: VMS type) necessary
for solver AND for accuracy & robustness

- Similar behavior for AL

Proof of Concept: ,,FAC“ Benchmarks: BENCH3 - SinT Vanka MG solver

I

40 A

Avqg. lterations

w
o
1

N
o
1

10

-»- F-Cycle 10

- V-Cycle 10
—e- F-Cycle 30
-@- V-Cycle 30

,X_..-x-——>(-———x———-x———><--——x-—--'><"
P . é
o--0-—~-0 -0 —@-——-——- -0 -0 —-— ;
_‘_____..-‘———.-———.———-.———.-———l———-.—- ----- é
-———
T T T L | T T LI | T T L L |
10° 10! 102 103
Blocksize

Comparison of different smoothing steps to reach
tolerance of 10710 for Re,,4,=100.

Time[s]

103 4

: I K
’:'\.\\ —)(1 —-) = 24
Mo | +- 2 32
Q'u;\\ | —e= 4 —-e=- 64
RN —e- 8 128
LN
Yo ’ \Z\\” —-%*- 16
N, F O
N \\\\&
~ B~
AN BN
H=m e S0
I L TV
o \-:-.)(_____
] I ‘.*;.“(. = S -
S K.
=2 | \:\\ ‘
x [™
A TS
— \:F:\
| \»\g‘
| W
]
T T T T T T L |
102 103
#CPUs

Time to solve last Newton step for Re;;,4,=100.

(Also) Very interesting candidate for nonstationary
problems with larger time step sizes

—Optimal realization!

—>Complex meshes?

Proof of Concept: ,,FAC“ Benchmarks: BENCH3 — g-i-t DDF-Oseen solver

I

N

Ly
>

10° 10° K 102 103 K

Final Newton iteration, Remax = 100.

Final Newton iteration, Remax = 100.

Final Newton iteration, Remax = 20.

Very interesting candidate for special FEM

spaces and for large number of time steps K

— 3D realization by Chr. Lohmann (first since
Thomasset and Hecht in 80s?......)

Can we use Massively Parallel & Lower Precision
Accelerator Hardware for Extreme Scale
High Performance Computing for Flow Problems
of Industrial Relevance?

Yes, it seems to be possible!

Can we use Massively Parallel & Lower Precision
Accelerator Hardware for Extreme Scale
High Performance Computing for Flow Problems
of Industrial Relevance?

Or: Yes, it must be possible!

Problem 3b: Lower precision hardware for Poisson problems?

—>Standard approach: Mixed Precision Defect Correction

Mixed Precision Richardson

109 T
——h =271 error
-« -h = 2710 regidual
h =27 error
10-2 h = 2712 residual
——h = 27 error
- - —h = 2" residual
——h =27 error
10— - = -h = 2"'% residual
—h = % error
_ } 2—[%
E - - —h = 2718 residual
;:FJ 1
= kY
~ 10 '.
g 1
= 1
3] As
—_ 1
= ¥
DO
10-%

10—'“] I T R N R B S
1012 . : C ‘
10° 101 10° 10° 10*

iterations

Wish: Directly solve in FP32/TF32

rel. error / residual

107

Mixed Precision CG

100

102

10-#

106

109

10~

—h=2D0

e _p—ol0
h=21
h=2"1

—h=2MH
——-h=2H
—h=210
e _h—916
—h=215

|

error
residual
error
residual
error
residual
error
residual
error
residual

10712
10°

PR
10!
iterations

._
=

Complexity and performance estimate (in detail, on A100)

* Exemplary case: 3D unit cube, h = 1/, (N = 16.6 X 10°), hy € {1/1¢,/32}

1/16 1/32
Total number of Flop relative to IV 115,000 23,400
Multiplications with C 1 98% 77%
GFlop/s 116,000 57,000
Multiplications with A; 0.8% 11.8%
GFlop/s 1,700 1,730
Multiplications with B and BT 1.2% 10.1%
GFlop/s 1,600 / 2,600 1,500 / 2,600
BLAS1 (axpy, dot products, additions) 0.05% 0.8%
GFlop/s 130 — 380 130 - 380
Total GFlop/s 47,000 6,000
Total MDof/s 412 260

