Hardware-oriented Numerics for Massively Parallel & Low Precision Accelerator Hardware and Application to "large scale" CFD Problems <u>Faster</u> & <u>more reliable</u> predictions are needed... S. Turek & <u>FeatFlow</u> Team Institute for Applied Mathematics (Chair LS III) TU Dortmund University https://wwwold.mathematik.tu-dortmund.de/lsiii ### nature <u>nature</u> > <u>news</u> > article **NEWS** 04 June 2024 ## Superfast Microsoft AI is first to predict air pollution for the whole world The model, called Aurora, also forecasts global weather for ten days — all in less than a minute. By Carissa Wong Weather forecasting is benefitting from the boom in artificial intelligence. Credit: NESDIS/STAR/NOAA/Alamy An artificial intelligence (AI) model developed by Microsoft can accurately forecast weather and air pollution for the whole world —and it does it in less than a minute. The model, called Aurora, is one of a <u>slew of Al weather-forecasting tools</u> being developed by tech giants, including <u>GraphCast</u> from Google DeepMind in London and FourCastNet from Nvidia, based in Santa Clara, California. But Aurora's ability to quickly predict air pollution globally is pioneering, say researchers. "This, for me, is the first big step in a journey of atmospheric chemistry and machine learning," says machine-learning researcher Matthew Chantry at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, UK. <u>DeepMind AI accurately</u> <u>forecasts weather – on a</u> <u>desktop computer</u> Conventional weather forecasting uses mathematical models of physical processes in the atmosphere, land and sea. To predict air-pollution levels, researchers have previously used machine learning along with conventional mathematical models, says Chantry. Aurora seems to be the first entirely AI model to generate a global pollution forecast — which is a much more complex task than weather forecasting, says Chantry. "That was the thing where I went: wow, that's a really cool result," he says. The benefit of AI models is that they often require less computational power to make predictions than do conventional models, says Chantry. Al researcher Paris Perdikaris at Microsoft Research Al for Science in Amsterdam and his colleagues found that Aurora could in less than a minute predict the levels of six major air pollutants worldwide: carbon monoxide, nitrogen oxide, nitrogen dioxide, sulfur dioxide, ozone and particulate matter. Its predictions span five days. It can do it "at orders of magnitude smaller computational cost" than a conventional model used by the Copernicus Atmosphere Monitoring Service at the ECMWF, which predicts global air-pollution levels, the team wrote in a preprint¹ published on arXiv on 20 May. ← !!! ← !!! ← !!! How Al is improving climate Aurora's predictions were of a similar quality to those of the conventional model. Policymakers use such predictions to track air pollution and protect against the related health harms. Air pollution has been linked to an increased risk of asthma, heart disease and dementia. The researchers trained Aurora of that a million hours of data from six weather and climate models. After training the model, the team tweaked it to predict pollution 4 von 5 #### **forecasts** and weather globally. The model generates a ten-day global weather forecast alongside the air-pollution prediction. The team says that, on some tasks, Aurora could outperform other AI weather-forecasting models, such as GraphCast —which can outperform conventional models and make global weather predictions in minutes. But it is too early to make a definitive comparison, says Chantry. "You'd have to spend a lot of time, and probably have access to the models themselves, to be able to really go into detail and say with some certainty that model A is better than model B," he says. Further research will reveal whether 'foundational' AI models trained on diverse data sets, such as Aurora, perform better than those trained on a single data set, such as GraphCast. "There's lots of cool science to be done," he says. doi: https://doi.org/10.1038/d41586-024-01677-2 ### References 1. Bodnar, C. et al. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.13063 (2024). ## My personal view: We, the **MFM** (*Mathematical Fluid Mechanics*) & **CFD** (*Computational Fluid Dynamics*) **community**, have to work "harder", or differently, if we don't want to be displaced by **AI** (*Artifical Intelligence*)....because this could lead to (political) problems in research, teaching and industrial applications in the future (especially with regard to the associated budgets, human and computer ressources)and it is bad for AI without accurate training data Because, I am (still) convinced that the combination of modern and powerful MFM & CFD tools can (and must) provide: - more accurate simulations results, for instance via user-specific & goal-oriented a posteriori error control - Theory: **OK** Practical realization in "real life" cases: **Not yet** - → My personal experience: appr. 10 100 more effort needed than for one (1) simulation (which is in most cases fully nonstationary & 3D!) - more efficient results due to numerical, computational & algorithmic improvement and exploitation of much faster supercomputing power Here: I will mainly concentrate onto efficiency aspects! Because, I am (still) convinced that the combination of modern and powerful MFM & CFD tools can (and must) provide: - more accurate simulations results, for instance via user-specific & goal-oriented a posteriori error control - Theory: **OK** Practical realization in "real life" cases: **Not yet** - → My personal experience: appr. 10 100 more effort needed than for one (1) simulation (which is in most cases fully nonstationary & 3D!) - more efficient results due to numerical, computational & algorithmic improvement and exploitation of much faster supercomputing power Here: I will mainly concentrate onto efficiency aspects! However: Accuracy might be more important w.r.t. Al | No. 1 in year | System | Cores | Rmax (PFlop/s) | Rpeak (PFlop/s) | Power (kW) | |------------------|--|------------|-------------------------|------------------------|---------------------------------| | Nov 2024 | El Capitan - HPE Cray EX255a, AMD 4th Generation EPYC 24C 1.8GHz, AMD Instinct MI300A, DOE/NNSA/LLNL | 11,039,616 | 1,742.00 | 2,746.38 | 29,581 | | | USA | | - | re 2024 v
(more tha | <u>rs. 1996:</u>
an) 1.000.0 | | No. 1 in year | System | Cores | Rmax (GFlop/s) | Rpeak (GFlop/s) | Power (kW) | | June 1996 | SR2201/1024, Hitachi University of Tokyo Japan | 1,024 | 220.40 | 307.20 | ??? | | No. 1 in year | System | Cores | Rmax (PFlop/s) R | Rpeak (PFlop/s) | Power (kW) | |-----------------|---|------------|------------------|-----------------------|-----------------------------------| | | El Capitan - HPE Cray EX255a, AMD 4th Generation EPYC | | • | re 2024 v
more tha | <u>rs. 1996:</u>
an) 1.000.000 | | Nov 2024 | 24C 1.8GHz, AMD Instinct MI300A, DOE/NNSA/LLNL | 11,039,616 | 1,742.00 | 2,746.38 | 29,581 | | | | Colossus | (Elon Mus | sk, 3-4 Bi | ll. Dollar): | | | 1 | .00,000 | k H100 (15 | 0 MW) | | | | 3 | .4 EFlop | /s in FP64 | (49.5 EF | lop/s in TF32) | | No. 1 in year | System | Cores | Rmax (GFlop/s) | Rpeak (GFlop/s) | Power (kW) | |------------------|--|-------|-------------------------|-----------------|------------| | June 1996 | SR2201/1024, Hitachi University of Tokyo Japan | 1,024 | 220.40 | 307.20 | ??? | ### **Projected Performance Development** Sum Performance ## Start for 3 "successful" Benchmark Initiatives - FAC: Flow Around Cylinder (2D + 3D) → 1996 - FSI: Fluid-Structure-Interaction (2D......and 3D) → 2006 - RISING BUBBLE: Multiphase Flow (2D....and later also 3D) → 2009 and 2019 http://www.featflow.de/en/benchmarks/cfdbenchmarking.html Important since <u>well-accepted</u> tools to evaluate the "realistic" quality of AI, ML (PINN) or "unconventional" tools (LBM, SPH) ## FAC Benchmarks (1996): M. Schäfer, S. Turek, R. Rannacher et al Stefan Turek - Google Scholar https://scholar.google.de/citations?user=ug5O0oMAAAAJ&hl=de&cstart=0&pagesize=20 ## Stefan Turek TU Dortmund Mathematik #### **EIGENES PROFIL ERSTELLEN** | | Alle | Seit 2019 | |-----------------|-------|------------| | Zitate | 14402 | 4812 | | h-index | 54 | 30 | | i10-index | 147 | 81 | | 13 Artikel | | 95 Artikel | | nicht verfügbar | | verfügbar | 71715571001 #### Basierend auf Fördermandaten | TITEL | ZITIERT VON | JAHR | |--|-------------|------| | Benchmark computations of laminar flow around a cylinder M Schäfer, S Turek, F Durst, E Krause, R Rannacher Flow simulation with high-performance computers II: DFG priority research | 1142 | 1996 | | Efficient solvers for incompressible flow problems: An algorithmic and computational approache S Turek
Springer Science & Business Media | 890 | 1999 | | Simple nonconforming quadrilateral Stokes element R Rannacher, S Turek Numerical Methods for Partial Differential Equations 8 (2), 97-111 | 889 | 1992 | | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow S Turek, J Hron Fluid-Structure Interaction: modelling, simulation, optimisation, 371-385 | 829 | 2006 | | Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations JG Heywood, R Rannacher, S Turek International Journal for numerical methods in fluids 22 (5), 325-352 | 793 | 1996 | | Quantitative benchmark computations of two-dimensional bubble dynamics
S Hysing, S Turek, D Kuzmin, N Parolini, E Burman, S Ganesan,
International Journal for Numerical Methods in Fluids 60 (11), 1259-1288 | 677 | 2009 | ## The "Flow around a Cylinder" Benchmarks (1996) Simulations on IBM SP2 in 1996: 6 million (6e6) unknowns (in 3D) (in hours, resp., 1 day) Today: More than 1e13, that means 10 trillion unknowns should be possible??? ## FAC Benchmarks (1996): M. Schäfer, S. Turek et al. **BENCH1: Re=20** → most recent calculations with more than 1 Billion unkowns (in 2D and 3D) ### 2D FAC: Drag: 5.5795352338440[35:59] Lift: 0.01061894814606[80:91] P-Diff: 0.1175201[65:70] ### 2D FAS: Drag: 6.940[64:71] Lift: 0.08619[00:32] P-Diff: 0.12622[75:81] ### 3D FAC: Drag: 6.18532[04:86] Lift: 0.0094010[27:65] P-Diff: 0.17[0999:1010] ### 3D FAS: Drag: 7.7[69:72] Lift: 0.069[05:16] P-Diff: 0.1757[06:29] ## FAC Benchmarks (1996): M. Schäfer, S. Turek et al. **BENCH1: Re=20** → most recent calculations with more than 1 Billion unkowns (in 2D and 3D) ### 2D FAC: Drag: 5.5795352338440[35:59] Lift: 0.01061894814606[80:91] P-Diff: 0.1175201[65:70] ### 2D FAS: Drag: 6.940[64:71] Lift: 0.08619[00:32] P-Diff: 0.12622[75:81] ### 3D FAC: Drag: 6.18532[04:86] Lift: 0.0094010[27:65] P-Diff: 0.17[0999:1010] ### 3D FAS: Drag: 7.7[69:72] Lift: 0.069[05:16] P-Diff: 0.1757[06:29] ## 10 Billion unkowns are feasible # Why do our MFM & CFD techniques not scale appropriately with the obviously increasing compute power??? And what can we do from a numerical, computational & algorithmic perspective to realize much more efficient CFD simulation tools? ## 2 trends for HPC Hardware → TOP500 November 24 (LINPACK) | Rank | System | #Cores | R _{max} (PFlop/s) | Accelerator | |------|------------|------------|----------------------------|---------------------| | 1 | El Capitan | 11,039,616 | 1,742 | AMD MI300A | | 2 | Frontier | 9,066,176 | 1,353 | AMD MI250X | | 3 | Aurora | 9,264,128 | 1,012 | Intel Ponte Vecchio | | 4 | Eagle | 2,073,600 | 561 | NVIDIA H100 | | 5 | HPC6 | 3,143,520 | 478 | AMD MI250X | | 6 | Fugaku | 7,630,848 | 442 | (A64FX) | | 7 | Alps | 2,121,600 | 435 | NVIDIA GH200 | | 8 | LUMI | 2,752,704 | 380 | AMD MI250X | | 9 | Leonardo | 1,824,768 | 241 | NVIDIA A100 | | 10 | Tuolumne | 1,161,216 | 208 | AMD MI300A | Exploiting massive parallelism: more than 1 million cores Exploiting single node performance: special accelerators (NVIDIA, AMD) → HPC compute power = #nodes x #TFLOP/s per node ### Frontier supercomputer (8 881 152 cores) - 9408 AMD Epyc 7713 (64 cores) - 9408 · 4 AMD Instinct MI250X (220 cores) - Leading TOP500 supercomputer (June 2024) $(R_{\text{max}} = 1.2 \text{ EFlop/s})$ Theoretical performance of Frontier in double precision Without tensor cores (Nvidia) and matrix cores (AMD) ### Frontier supercomputer (8 881 152 cores) - 9408 AMD Epyc 7713 (64 cores) - 9408 · 4 AMD Instinct MI250X (220 cores) - Leading TOP500 supercomputer (June 2024) $(R_{\text{max}} = 1.2 \text{ EFlop/s})$ Theoretical performance of Frontier in double precision Using tensor cores (Nvidia) and matrix cores (AMD) ### Eagle supercomputer (2073600 cores) - 1800 x 2 INTEL XEON (48 cores) - 1800 x 8 NVIDIA H100 (132 cores) - Nr.3 TOP500 supercomputer (June 2024) $(R_{\text{max}} = 0.56 \text{ EFlop/s})$ Theoretical performance of Eagle in **single** precision Using tensor cores (Nvidia) and matrix cores (AMD) ### To be more precise: How to exploit <u>efficiently</u> ("that means with optimal computational <u>and</u> numerical efficiency") not only <u>Massively Parallel</u> hardware, but also <u>Lower Precision Accelerator</u> hardware as major trends? ## **Important components:** - → Prehandling & semi-iterative sparse-dense solvers in lower precision - → Global-in-time Newton & Oseen (= linearized NSE) solvers - → Parallel-in-time / Simultaneous-in-time Multigrid approaches ### To be more precise: How to exploit <u>efficiently</u> ("that means with optimal computational <u>and</u> numerical efficiency") not only <u>Massively Parallel</u> hardware, but also <u>Lower Precision Accelerator</u> hardware as major trends? How to realize for "large scale" CFD problems? ## **Important components:** - → Prehandling & semi-iterative sparse-dense solvers in lower precision - → Global-in-time Newton & Oseen (= linearized NSE) solvers - → Parallel-in-time / Simultaneous-in-time Multigrid approaches ## Prototypical "large scale" CFD simulations (I) ### **Navier-Stokes equations** $$\varrho(u_t + u \cdot \nabla u) - \nu \Delta u + \nabla p = g, \quad \nabla \cdot u = 0$$ - → (many) Oseen-type Problems - → (very many) Poisson Problems - → (very many) Convection-Diffusion Problems Particularly on (almost) arbitrarily complex geometries in realistic applications → Twin screws... ## Prototypical "large scale" CFD simulations (II) ### **Navier-Stokes equations** $$\varrho(u_t + u \cdot \nabla u) - \nu \Delta u + \nabla p = g, \quad \nabla \cdot u = 0$$ - → (many) Oseen-type Problems - → (very many) Poisson Problems - → (very many) Convection-Diffusion Problems Particularly on (almost) arbitrarily complex geometries in realistic applications (software together with IANUS Simulation) ### AIM: AUTOMATIC EXTRUSION SIMULATIONS IN STRÖMUNGSRAUM 3 **AUTOMATIC SIMULATION ON HPC** **HARDWARE** AUTOMATIC REPORTING OF RESULTS AND RECOMMENDATIONS (1) ### PARAMETRIC GENERATION OF DIGITAL TWINS ### SUBMISSION AND LOGGING OF THE AUTOMATED SIMULATION SCRIPT | | og | | | | |--------|----------------------------|--------------|--------|--------------------------------------| | Log Id | Datum | Benutzer | Тур | Nachricht | | 268709 | 2024 Apr 8 - 13:16:47 CEST | Cluster Hawk | STATUS | processing -> complete | | 268708 | 2024 Apr 8 - 13:16:13 CEST | Cluster Hawk | RESULT | Cluster added result. job_id = 15702 | | 268707 | 2024 Apr 8 - 13:15:55 CEST | Cluster Hawk | RESULT | Cluster added result, job_id = 15700 | | 268706 | 2024 Apr 8 - 13:15:55 CEST | Cluster Hawk | RESULT | Cluster added result, job_id = 15702 | | 268705 | 2024 Apr 8 - 13:15:55 CEST | Cluster Hawk | RESULT | Cluster added result. job_id = 15700 | | 268704 | 2024 Apr 8 - 13:15:37 CEST | Cluster Hawk | RESULT | Cluster added result, job_id = 15703 | | 268703 | 2024 Apr 8 - 13:00:33 CEST | Cluster Hawk | STATUS | enqueued -> processing | | 268702 | 2024 Apr 8 - 13:06:50 CEST | Cluster Hawk | STATUS | processing -> enqueued | | 268701 | 2024 Apr 8 - 13:05:54 CEST | Cluster Hawk | RESULT | Cluster added result. job_id = 15702 | | 268693 | 2024 Apr 8 - 10:45:09 CEST | Cluster Hawk | STATUS | enqueued -> processing | | 268692 | 2024 Apr 8 - 10:44:25 CEST | Cluster Hawk | STATUS | processing -> enqueued | | 268691 | 2024 Apr 8 - 1043:28 CEST | Cluster Hawk | RESULT | Cluster added result, job_id = 15702 | | 268684 | 2024 Apr 8 - 10:32:11 CEST | Cluster Hawk | STATUS | enqueued -> processing | ### **EXAMPLE: OPTIMIZATION OF EXTRUSION DIES** **L1:68K elems** L2 : 544K elems L3: 4.35M elems L4: 34.8M elems ~2M dofs ~15M dofs ~117M dofs ~940M dofs ### **Problems:** Highly resolved + very large coarse meshes Many highly dimensional problems (→ L5!) Mesh **Prototype 1** **Prototype 2** **Prototype 3** **Prototype 4** Requires "large scale" Methods & "large scale" HPC Hardware ## 2 trends for HPC Hardware → TOP500 November 24 (LINPACK) | Rank | System | #Cores | R _{max} (PFlop/s) | Accelerator | |------|------------|------------|----------------------------|---------------------| | 1 | El Capitan | 11,039,616 | 1,742 | AMD MI300A | | 2 | Frontier | 9,066,176 | 1,353 | AMD MI250X | | 3 | Aurora | 9,264,128 | 1,012 | Intel Ponte Vecchio | | 4 | Eagle | 2,073,600 | 561 | NVIDIA H100 | | 5 | HPC6 | 3,143,520 | 478 | AMD MI250X | | 6 | Fugaku | 7,630,848 | 442 | (A64FX) | | 7 | Alps | 2,121,600 | 435 | NVIDIA GH200 | | 8 | LUMI | 2,752,704 | 380 | AMD MI250X | | 9 | Leonardo | 1,824,768 | 241 | NVIDIA A100 | | 10 | Tuolumne | 1,161,216 | 208 | AMD MI300A | Exploiting massive parallelism: more than 1 million cores Exploiting single node performance: special accelerators (NVIDIA, AMD) → HPC compute power = #nodes x #TFLOP/s per node ## Problem 1: More cores → (Spatially) discretized problems "too small" > Example: Heat equation with multigrid LiDO3 (2x Intel Xeon E5-2640v4 and 64GB memory per node, Infiniband QDR interconnect (40Gbps)) 4 BiCGSTAB pre- and post-smoothing steps, V-cycle level 5 in space, 2048 total time steps → more and more cores (#CPUs) for parallelization "only" in space do not help! Solver time per iteration ## Problem 1: More cores → (Spatially) discretized problems "too small" → Example: Heat equation with multigrid LiDO3 (2x Intel Xeon E5-2640v4 and 64GB memory per node, Infiniband QDR interconnect (40Gbps)) 4 BiCGSTAB pre- and post-smoothing steps, V-cycle level 5 in space, 2048 total time steps - → more and more cores (#CPUs) for parallelization "only" in space do not help! - → Better scaling (for K blocked time steps) via Parallel/Simultaneous-in-Time Krylov-Multigrid Solver time per iteration ## <u>Trends for Accelerator Hardware</u> → NVIDIA, AMD, Amazon - → Tensor Cores (TC) by NVIDIA - Originally developed to accelerate AI applications - Perform (dense) matrix operations at very high speed - → V100 (2017), A100 (2020), **H100** (2023), **B200** (2024) - Alternatives: A64FX ARM, AMD MI250X, Trainium2 | | FP64 | FP64 TC | FP32 | TF32 | FP16 | FP16 TC | |-----------|------|---------|------|-------|------|---------| | V100 | 7.8 | - | 15.7 | - | 31.4 | 125 | | A100 | 9.7 | 19.5 | 19.5 | 156 | 78 | 312 | | H100 | 34 | 67 | 67 | 495 | n/a | 990 | | B200 | 40 | - | 80 | 2,200 | n/a | 4,500 | | MI300A | 61 | - | 122 | 490 | n/a | 981 | | A64FX | 3.4 | - | 6.8 | - | 13.5 | - | | Trainium2 | - | - | 181 | 667 | 667 | - | (Hundreds of) TFlop/s peak rates (in FP32/TF32) → is it realistic.....for PDEs? ## Metric for single node performance for PDEs? Consider (optimal) geometrical multigrid for Poisson problems with appr. 10^9 grid points \rightarrow "1000 FLOPs per grid point" → Full performance of 100 TF/s: 0.01s on 1(!) node \rightarrow If only 1% available = 1 TF/s: 1s on 1(!) node Or: "Solution speed" 1000 MDOF/s Let's be self-critical: How far are we away from exploiting the high single-node performance for such ("optimal") fast solvers??? #### **SPECIFICATIONS** Tesla V10 PCle Tesla V10 SXM2 | PCle | SXM2 | | | | | |--|---|--|--|--|--| | NVIDIA | A Volta | | | | | | 64 | 40 | | | | | | 5,1 | 20 | | | | | | 7 TFLOPS | 7.8 TFLOPS | | | | | | 14 TFLOPS | 15.7 TFLOPS | | | | | | 112 TFLOPS | 125 TFLOPS | | | | | | 32GB /16GB HBM2 | | | | | | | 900G | B/sec | | | | | | Ye | es | | | | | | 32GB/sec | 300GB/sec | | | | | | PCIe Gen3 | NVIDIA NVLink | | | | | | PCIe Full
Height/Length | SXM2 | | | | | | 250 W | 300 W | | | | | | Pas | sive | | | | | | CUDA, DirectCompute,
OpenCL™, OpenACC | | | | | | | | NVIDIA 64 5,1 7 TFLOPS 14 TFLOPS 112 TFLOPS 32GB /16 900Gl Ye 32GB/sec PCIe Gen3 PCIe Full Height/Length 250 W Pas CUDA, Direct | | | | | ## Problem 2: Sparse & multigrid vs. dense matrix operations (GEMM) Only 300 GFLOP/s for sparse MV vs. dense MM (300 TFLOP/s) on A100 Only 10-20 MDOF/s on recent architectures (in FEAT3) with gMG ## 2 Trends for HPC Hardware → TOP500 November 24 (HPCG) | Rank HPCG (HPL) | System | R _{max} (PFlop/s) | HPCG/HPL | |-----------------|-----------------------|----------------------------|----------| | 1 (6) | Fugaku | 16.0 | 3.6% | | 2 (2) | Frontier | 14,1 | 1.0% | | 3 (3) | Aurora | 5,6 | 0.6% | | 4 (8) | LUMI | 4,6 | 1.2% | | 5 (7) | Alps | 3,7 | 0.8% | | 6 (9) | Leonardo | 3,1 | 1.3% | | 7 (19) | Perlmutter | 1,9 | 2.4% | | 8 (14) | Sierra | 1,8 | 1.9% | | 9 (23) | Selene | 1,6 | 2.6% | | 10 (33) | JUWELS Booster Module | 1,3 | 2.9% | → Iterative sparse solvers: only appr. 1-4% of the available peak rates ## **Problem 3a:** Lower precision hardware for Poisson problems? $$\rightarrow$$ Split the error: $u - \tilde{u}_h = u - u_h + u_h - \tilde{u}_h$ Discr. Error: $$||u - u_h|| = \mathcal{O}(h^{p+1})$$ - → depending on **FEM space** and **smoothness** - \rightarrow Here for simplicity: p=1 Comp. Error: $\|\widetilde{u}_h - u_h\| \approx cond_h \cdot$ "data error" - → data error at least of size TOL_{Prec} - $\rightarrow cond_h(Poisson) = \mathcal{O}(h^{-2})$ Discr. Error \approx Comp. Error $\Rightarrow h \approx \text{TOL}_{\text{Prec}}^{1/4}$ ## **Problem 3a:** Lower precision hardware for Poisson problems? $$\rightarrow$$ Split the error: $u - \tilde{u}_h = u - u_h + u_h - \tilde{u}_h$ Discr. Error: $$||u - u_h|| = \mathcal{O}(h^{p+1})$$ - → depending on **FEM space** and **smoothness** - \rightarrow Here for simplicity: p=1 Comp. Error: $$\|\widetilde{u}_h - u_h\| \approx cond_h \cdot$$ "data error" - → data error at least of size TOL_{Prec} - $\rightarrow cond_h(Poisson) = \mathcal{O}(h^{-2})$ Discr. Error $$\approx$$ Comp. Error $\Rightarrow h \approx \text{TOL}_{\text{Prec}}^{1/4}$ Wish: $$cond_h = \mathcal{O}(1) \Rightarrow h \approx \text{TOL}_{\text{Prec}}^{1/2}$$ \Rightarrow FP32/TF32 (and even FP16?) ## Preliminary summary regarding recent hardware trends → Parallelization in space is not enough....particularly for very many time steps Global-in-time approaches using parallel-in-time, resp., simultaneous-in-time Krylov-multigrid solvers ## Summary regarding recent hardware trends → Parallelization in space is not enough....particularly for very many time steps Global-in-time approaches using parallel-in-time, resp., simultaneous-in-time Krylov-multigrid solvers - > Standard sparse matrix-vector operations (in FP64) quite "slow" on GPUs - → But: Lower precision (FP32, TF32, FP16) often not sufficiently accurate - → But: They do not exploit the Tensor Cores! Lower precision & dense matrix operations on GPUs (with Tensor Cores) via Prehandling and special Schur Complement solvers with application to CFD Starting point: Sparse, ill-conditioned linear system **Prehandling** to lower condition number 2D: HFEM **2D/3D:** Generating systems Node **renumbering** exploiting similar cells + **Schur complement(s)** Semi-iterative method in 2D and 3D Direct method in 2D ## The concept of **Prehandling** for linear systems of equations #### Basic idea - Apply preconditioner **explicitly** to Ax = b - Equivalent system $\tilde{A}\tilde{x}=\tilde{b}$, where S^TAS , $b^T=S^Tb$, $x=S\tilde{x}$ - Both yield same solution in exact arithmetic, but accuracy (and iteration numbers) differ in practice because $cond(A) \neq cond(\widetilde{A})$ differ in practice because $cond(A) \neq cond(\widetilde{A})$ ### **Central requirements for Prehandling** - $\operatorname{cond}(\widetilde{A}) \ll \operatorname{cond}(A)$ - \widetilde{A} is still sparse - Transformation to \widetilde{A} , \widetilde{b} and x via S is fast (i.e., $\mathcal{O}(N\log N)$) So far two candidates fulfill all requirements: Hierarchical Finite Element Method (HFEM, Yserentant et al., 1980s) in 2D and Generating Systems (GS, Griebel et al., 1990s) in 2D and 3D ## **Prehandling via HFEM or Generating Systems** Example: (Typical) L₂ errors for Poisson problem for different levels in 2D → same FEM solution on lower precision hardware is possible (in the range of 1% error as typical for highly complex applications) Next: How to exploit Tensor Cores via sparse-dense Matrix operations? ## **Schur Complement (SC) solvers taylored for Tensor Core GPUs** - Construct solver consisting as much as possible on multiplications with dense matrices - Same principle in 2D (HFEM) and 3D (GS): Subdivide nodes due to macro size h_0 into - a) nodes in the interior of the coarse mesh cells (cell by cell in same order) - b) "all remaining nodes" containing those on coarse mesh edges (+ repeated nodes of GS) - Matrix form: $\begin{pmatrix} A_1 & B \\ B^T & C \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ - C decomposes into independent blocks C_i - Blocks are equal if corresponding to similar cells - Only C grows like N (= #Dofs) ## **Schur Complement (SC) solvers taylored for Tensor Core GPUs** • Applying Schur Complement to $\begin{pmatrix} A_1 & B \\ B^T & C \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ yields #### **Semi-iterative Method** - 1) Solve $\hat{A}u = b_1 BC^{-1}b_2$, where $\hat{A} = A_1 BC^{-1}B^T$ with CG method - 2) $v = C^{-1}(b_2 B^T u)$ - \widehat{A} can be computed **explicitly in 2D** (then **direct** method) or used **implicitly** with **iterative** CG (better option in **3D**) & \widehat{A} well-conditioned - C_i are small, well-conditioned HFEM matrices - $\rightarrow \mathcal{O}(N)$ storage for C_i^{-1} - $\rightarrow C^{-1}$ block diagonal matrix with dense blocks C_i^{-1} ## Storage requirement of the semi-iterative method - Test problem: Poisson equation on unit square/cube, equidistant Q1 mesh, variable coarse mesh size h_0 - Relevant for storage: C_i^{-1} , B and \hat{A} in 2D / A_1 in 3D 2D: HFEM **3D: Generating Systems** | $\frac{1}{h}$ | $\frac{N}{10^6}$ | $\frac{1}{h_0}$ | \hat{A} | C_i^{-1} | B | total | $\frac{1}{h}$ | $\frac{N}{10^6}$ | $\frac{1}{h_0}$ | A_1 | C_i^{-1} | B | total | |---------------|------------------|-----------------|-----------|------------|-----|-------|---------------|------------------|-----------------|-------|------------|------|-------| | 1024 | 1.05 | 16 | 15 | 15.1 | 1.0 | 31 | | | 4 | 11.3 | 433.3 | 15.4 | 460 | | 1024 | 1.05 | 32 | 25 | 0.9 | 1.6 | 27 | 128 | 2.05 | 8 | 22,1 | 5.6 | 16.6 | 44 | | 2048 | 4.19 | 32 | 19 | 3.8 | 1.0 | 1 | | | 16 | 37.1 | 0.1 | 15.3 | 52 | | 2040 | 4.19 | 64 | 40 | 0.2 | 1.6 | 42 | | | 8 | 14.2 | 53.5 | 16.5 | 84 | | 4096 | 16.77 | 32 | 16 | 15.5 | 0.7 | 32 | 256 | 16.58 | 16 | 24.9 | 0.7 | 17.7 | 43 | | 4090 | 10.77 | 64 | 27 | 0.9 | 1.0 | 29 | | | 32 | 39.5 | 0.01 | 16.4 | 56 | Number of nonzero entries relative to N Moderate storage requirement for appropriate choice of h_0 compared to 9N in 2D / 27N in 3D with standard FEM (in FP64) ## Performance estimate (in FP32/TF32 on A100) | | $\frac{1}{h}$ | $\frac{1}{h_0}$ | #iter | $cond(C_i)$ | total $ rac{\mathrm{Flop}}{N}$ | share dense | GFlop/s | MDof/s | |-----|---------------|-----------------|-------|----------------------------|--------------------------------|-------------|---------|--------| | 2D: | 1024 | 16 | 30 | 24 | 16,400 | 94.4% | 27,400 | 1,670 | | | 1024 | 32 | 24 | 17 | 4,900 | 75.4% | 6,700 | 1,360 | | | 2048 | 32 | 28 | 24 | 16,600 | 93.5% | 21,600 | 1,300 | | | | 64 | 23 | 17 | 5,600 | 66.4% | 4,100 | 730 | | | 4096 | 32 | 31 | 32 | 64,700 | 98.4% | 58,700 | 910 | | | 4090 | 64 | 25 | 24 | 16,900 | 91.9% | 15,600 | 920 | | | | , | • | · | • | , | • | | | | <u>1</u> | 1 | #iter | $\operatorname{cond}(C_i)$ | total Flop | share dense | GFlon/s | MDof/s | 3D: | h | h_0 | #-ILCI | $cond(C_i)$ | N | Silare delise | Of TOP/3 | WIDOI/3 | |-----|-------|--------|-------------|---------|---------------|----------|---------| | | 4 | 8 | 54 | 555,300 | 99.9% | 110,400 | 200 | | 128 | 8 | 11 | 23 | 75,400 | 98.3% | 50,800 | 670 | | | 16 | 18 | 9 | 12,500 | 79.3% | 6,500 | 520 | | | 8 | 11 | 54 | 713,700 | 99.8% | 107,500 | 150 | | 256 | 16 | 18 | 23 | 114,900 | 98.0% | 47,400 | 410 | | | 32 | 35 | 9 | 23,400 | 77.3% | 6,100 | 260 | Compare with results with optimized MG in C++-based FEM software package (FEAT) on AMD CPU in FP64: 10-20 MDOF/s ### Results on A100 vs. H100 Mdof/s results on H100 (≈ 3×peak rates of A100 in **SP/TF32** with TC) | | | 2D | | 3D | | | | | |---------------|-----------------|-------|-------|---------------|-----------------|------|-------|--| | $\frac{1}{h}$ | $\frac{1}{h_0}$ | A100 | H100 | $\frac{1}{h}$ | $\frac{1}{h_0}$ | A100 | H100 | | | 1024 | 16 | 1,670 | 2,860 | | 4 | 200 | 480 | | | 1024 | 32 | 1,360 | 2,430 | 128 | 8 | 670 | 1,160 | | | 2048 | 32 | 1,300 | 2,220 | | 16 | 520 | 840 | | | 2040 | 64 | 730 | 1,180 | | 8 | 150 | 440 | | | 4006 | 32 | 910 | 2,020 | 256 | 16 | 410 | 680 | | | 4096 | 64 | 920 | 1,540 | | 32 | 260 | 400 | | Typical "Hardware-oriented Numerics" approach: "optimal" configuration depends on problem(size) and hardware ¹Kindly provided for use on JURECA by Forschungszentrum Jülich https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca ## A multigrid method based on generating systems • Aim: Combine advantages of GS (enabling lower precision) and multigrid (convergence properties & flexibility via different smoothers, cycles, ...) #### Basic idea • Construct multigrid-like algorithm to solve system w.r.t. GS: $Ex^E = b^E$ ($x = Sx^E$) • Level-wise structure (3-level example): $$E = \begin{pmatrix} A_0 & (P_0^2)^T A P_1^2 & (P_0^2)^T A \\ (P_1^2)^T A P_0^2 & A_1 & (P_1^2)^T A \\ A P_0^2 & A P_1^2 & A \end{pmatrix}$$ - In each iteration: Go through levels (block rows of E) according to V-, W- or F-cycle and - Compute residual r_i of current block row i - If i=0: coarse grid solver, else apply v smoothing steps w.r.t. A_i and r_i - Equivalent to standard multigrid but underlying system given by GS matrix E - Open question: How to modify algorithms in order to exploit Tensor Cores? ## A multigrid method based on generating systems Comparison of errors FEMI-ING vs. GS-ING for Poisson's equation in 2D with smooth exact solution (V-cycle, Gauß-Seidel preconditioned Richardson smoother with 4 smoothing steps) Iteration numbers of GS-MG for Poisson equation on unit square with Gauß-Seidel smoothing steps ## **Main questions:** How to exploit <u>efficiently</u> ("that means with optimal computational <u>and</u> numerical efficiency") not only Massively Parallel, but also Lower Precision Accelerator hardware for PDE problems? ## **Important components:** - → Prehandling & semi-iterative sparse-dense solvers in lower precision - → Global-in-time Newton & Oseen (= linearized NSE) solvers - → Parallel-in-time / Simultaneous-in-time Multigrid approaches #### **Sequential** time-stepping: $$\begin{pmatrix} \mathbf{A}_{i} & \mathbf{B} \\ \mathbf{B}^{\top} & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \mathbf{\tilde{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{\tilde{g}}^{(n+1)} - \mathbf{A}_{e} \mathbf{u}^{(n)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}, \quad n = 0, \dots, K$$ ### Treating K time steps simultaneously: $$\begin{pmatrix} \mathbf{A}_{K} & \mathbf{B}_{K} \\ \mathbf{B}_{K}^{\top} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \tilde{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}} \\ \mathbf{f} \end{pmatrix}$$ $$\begin{pmatrix} A_{i} & & & B \\ A_{e} & A_{i} & & B \\ & \ddots & \ddots & & & \\ & & A_{e} & A_{i} & & B \\ & & B^{\top} & & & \\ & & & B^{\top} & & & \\ & & & B^{\top} & & & \\ & & & & B^{\top} \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(1)} \\ \mathbf{u}^{(2)} \\ \vdots \\ \mathbf{u}^{(K)} \\ \tilde{p}^{(1)} \\ \tilde{p}^{(2)} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}}^{(1)} - A_{e}\mathbf{u}^{(0)} \\ \tilde{\mathbf{g}}^{(2)} \\ \vdots \\ \tilde{\mathbf{g}}^{(K)} \\ \tilde{\mathbf{f}}^{(1)} \\ f^{(2)} \\ \vdots \\ \tilde{\mathbf{f}}^{(K)} \end{pmatrix}$$ #### Now: Apply Pressure Schur Complement (PSC) techniques $$\begin{pmatrix} \mathbf{A}_{\mathcal{K}} & \mathbf{B}_{\mathcal{K}} \\ \mathbf{B}_{\mathcal{K}}^{\top} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \tilde{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}} \\ \mathbf{f} \end{pmatrix}$$ $$\begin{array}{c|c} \mathbf{B}_{\mathcal{K}}^{\top} \mathbf{A}_{\mathcal{K}}^{-1} \mathbf{B}_{\mathcal{K}} \tilde{\mathbf{p}} = \mathbf{B}_{\mathcal{K}}^{\top} \mathbf{A}_{\mathcal{K}}^{-1} \tilde{\mathbf{g}} - \mathbf{f} \\ \mathbf{u} = \mathbf{A}_{\mathcal{K}}^{-1} (\tilde{\mathbf{g}} - \mathbf{B}_{\mathcal{K}} \tilde{\mathbf{p}}) \end{array}$$ #### **Corresponding iterative solver:** $$egin{aligned} & ilde{\mathbf{p}} & \mapsto & ilde{\mathbf{p}} + \mathbf{q}, \ & \mathbf{q} & = \mathbf{C}_K^{-1} (\mathbf{B}_K^ op ilde{\mathbf{u}} - \mathbf{f}), & ilde{\mathbf{u}} & = \mathbf{A}_K^{-1} (ilde{\mathbf{g}} - \mathbf{B}_K ilde{\mathbf{p}}) \end{aligned}$$ Using PSC preconditioner $\mathbf{C}_{K} pprox \mathbf{P}_{K} = \mathbf{B}_{K}^{ op} \mathbf{A}_{K}^{-1} \mathbf{B}_{K}$ ### **Preconditioners for Pressure Schur Complement iteration:** | PCD preconditioner ¹ | LSC preconditioner | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $(\mathrm{I}_{\mathcal{K}}\otimes\mathrm{M}_{p}^{-1})\mathbf{A}_{\mathcal{K},p}(\mathrm{I}_{\mathcal{K}}\otimes\hat{\mathrm{D}}_{p}^{-1}) \ 1 imes$ Poisson & $1 imes$ mass | $\left(\mathrm{I}_{\mathcal{K}}\otimes(\hat{\mathrm{D}}_{p}^{-1}\mathrm{B}^{\top}\mathrm{M}_{u}^{-1})\right)\mathbf{A}_{\mathcal{K}}\left(\mathrm{I}_{\mathcal{K}}\otimes(\mathrm{M}_{u}^{-1}\mathrm{B}\hat{\mathrm{D}}_{p}^{-1})\right)$ 2×Poisson & 2×mass | - Parallel-/Simultaneous-in-time Multigrid solvers for nonsteady convection-diffusion-reaction equations - Prehandling + Schur Complement Poisson solvers for K Poisson problems, resp., 1 Poisson problem with K right hand sides Pressure Poisson matrix $\hat{\mathbf{D}}_p = \mathbf{B}^{\top} \mathbf{M}_u^{-1} \mathbf{B}$ ¹Danieli et al. (2022) ## Global-in-time Pressure Schur Complement Preconditioners → Solve in EACH nonlinear iteration for ALL K time steps SIMULTANEOUSLY | S^1 $-M_l$ | S^2 \cdot . | M_l | S^{n+1} | | 0 | | | 0 | $\begin{bmatrix} u^1 \\ u^2 \\ \vdots \\ u^{n+1} \end{bmatrix}$ | |----------------------------------------------|-----------------------------------------|--------------------|--------------------|----------------------------------------|-------------------------------------|--------------------|---------------------|-----|-----------------------------------------------------------------| | | 0 | | | S^1 $-M_l$ | S^2 $\cdot \cdot \cdot$ | M_l | S^{n+1} | 0 | $\begin{bmatrix} v^1 \\ v^2 \\ \vdots \\ v^{n+1} \end{bmatrix}$ | | $\frac{-\frac{1}{k}B_1^T}{\frac{1}{k}B_1^T}$ | $-\frac{1}{k}B_1^T$ $\cdot \cdot \cdot$ | $\frac{1}{k}B_1^T$ | $- rac{1}{k}B_1^T$ | $-\frac{1}{k}B_2^T$ $\frac{1}{k}B_2^T$ | $-\frac{1}{k}B_2^T$ $\cdot \cdot .$ | $\frac{1}{k}B_2^T$ | $-\frac{1}{k}B_2^T$ | C C | $\begin{bmatrix} p^1 \\ p^2 \\ \vdots \\ p^{n+1} \end{bmatrix}$ | - nonstationary convection-diffusion-reaction equations for velocities - ⇒ inner Parallel-/Simultaneous-in-time Multigrid solvers - K x Pressure-Poisson-like problems $Cp^i=rhs^i$ with many right hand sides - ⇒ Prehandling + Schur Complement Poisson solver ## (Almost) Final component: Global-in-time (Picard-)Newton solver - Usual approach: apply a time discretization and solve a nonlinear equation in each time step with solution from last time step on right hand side - Problem: no solution for last time step available since global-in-time - > solve the nonlinear equation on the complete space-time domain - > use a global-in-time (g-i-t) Picard-Newton method - > Jacobian matrices correspond to nonstationary Oseen equations Idea: Quadratic convergence may lead to K-independent results ## Proof of Concept: "FAC" Benchmarks: BENCH3-Carreau Modell - \rightarrow 11 g-i-t Newton steps (3200 time steps with dt=1/400) - → 4-7 g-i-t Oseen PSC steps per Newton step - → 4-20 SinT-MG steps for convection-diffusion-reaction problems with space-time dependent viscosity "No problem" for time-dependent & high viscosity problems with complex rheology ("polymer extrusion") to apply g-i-t CFD solver ## Proof of Concept: "FAC" Benchmarks: BENCH3 – g-i-t Newton solver → 4 g-i-t undamped Newton iterations (2048 time steps with dt=1/256) on level 4 started from level 3 → 24 g-i-t damped Newton iterations (2048 time steps with dt=1/256) mainly due to "bad" starting values (finally: quadratic convergence) #### **Alternative:** Adaptive **Picard-Newton** (Pollock, Rebholz et al.) ## **Proof of Concept: "FAC" Benchmarks: BENCH3 – g-i-t Picard-Newton** | | mean | min | max | |--------------------|------|-----|-----| | $\Delta t = 4$ | _ | _ | _ | | $\Delta t = 1$ | _ | 5 | _ | | $\Delta t = 0.32$ | 5.76 | 4 | 9 | | $\Delta t = 0.08$ | 4.41 | 4 | 6 | | $\Delta t = 0.02$ | 3.46 | 3 | 4 | | $\Delta t = 0.005$ | 3.17 | 3 | 4 | | | mean | min | max | |--------------------|-------|-----|-----| | $\Delta t = 4$ | 17.00 | 15 | 19 | | $\Delta t = 1$ | 9.63 | 7 | 13 | | $\Delta t = 0.32$ | 7.56 | 5 | 9 | | $\Delta t = 0.08$ | 5.65 | 4 | 7 | | $\Delta t = 0.02$ | 3.46 | 3 | 4 | | $\Delta t = 0.005$ | 3.68 | 3 | 5 | → Anderson Acceleration for **Picard-Newton**? ## **Proof of Concept: "FAC" Benchmarks: BENCH3 – g-i-t Oseen solver** ## Proof of Concept: "FAC" Benchmarks: BENCH3 – g-i-t AL-Oseen solver - → Very moderate number of g-i-t Oseen solver steps per Newton step if AL stabilization parameter is large enough since PSC preconditioner gets exact - →No need for multigrid! → PGMRES - → But: Special MG solvers for "velocity problems" required! #### **Augmented momentum equation** $$A_i u^{(n+1)} + B \tilde{p}^{(n+1)} = \tilde{g}^{(n+1)} + \gamma \delta t B W^{-1} (f^{(n+1)} - B^{\top} u^{(n+1)})$$ Using $W=M_{\it p}$ and $\gamma>0$ #### Stabilized system of equations: $$\begin{pmatrix} \mathbf{A}_i + \gamma \delta t \mathbf{B} \mathbf{M}_p^{-1} \mathbf{B}^\top & \mathbf{B} \\ \mathbf{B}^\top & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \tilde{\mathbf{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} + \gamma \delta t \mathbf{B} \mathbf{M}_p^{-1} \mathbf{f}^{(n+1)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}$$ ### Sherman-Morrison-Woodbury identity guarantees¹ $$P_{i,\gamma}^{-1} = P_i^{-1} + \gamma \delta t M_p^{-1} \approx C_i^{-1} + \gamma \delta t M_p^{-1}$$ ¹Benzi and Olshanskii (2006) and Wechsung (2019) $$\begin{pmatrix} \mathbf{A}_{\mathcal{K}} + \gamma \delta t \mathbf{B}_{\mathcal{K}} \mathbf{M}_{\mathcal{K},p}^{-1} \mathbf{B}_{\mathcal{K}}^{\top} & \mathbf{B}_{\mathcal{K}} \\ \mathbf{B}_{\mathcal{K}}^{\top} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \tilde{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}} + \gamma \delta t \mathbf{B}_{\mathcal{K}} \mathbf{M}_{\mathcal{K},p}^{-1} \mathbf{f} \\ \mathbf{f} \end{pmatrix}$$ $$\vdots \iff \begin{pmatrix} A_{i,\gamma} & & & B \\ A_{e} & A_{i,\gamma} & & & B \\ & \ddots & \ddots & & & \ddots \\ & & A_{e} & A_{i,\gamma} & & & B \\ & & B^{\top} & & & & \\ & & B^{\top} & & & & \\ & & & B^{\top} & & & \\ & & & B^{\top} & & & \\ & & & B^{\top} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix} \begin{pmatrix} u^{(1)} \\ u^{(2)} \\ \vdots \\ u^{(K)} \\ \tilde{p}^{(1)} \\ \tilde{p}^{(2)} \\ \vdots \\ \tilde{p}^{(K)} \end{pmatrix} = \begin{pmatrix} \tilde{g}^{(1)} - A_{e}u^{(0)} + \gamma \delta t BM_{p}^{-1}f^{(1)} \\ \tilde{g}^{(2)} & + \gamma \delta t BM_{p}^{-1}f^{(2)} \\ \vdots \\ \tilde{g}^{(K)} & + \gamma \delta t BM_{p}^{-1}f^{(K)} \\ f^{(2)} & \vdots \\ \vdots \\ f^{(K)} \end{pmatrix}$$ Using $$A_{i,\gamma} = A_i + \gamma \delta t B M_p^{-1} B^{\top}$$ $$\mathbf{P}_{K,\gamma}^{-1} = \mathbf{P}_K^{-1} + \gamma \delta t \mathbf{M}_{K,p}^{-1} \approx \mathbf{C}_K^{-1} + \gamma \delta t \mathbf{M}_{K,p}^{-1}$$ $$\begin{pmatrix} \mathbf{A}_i + \gamma \delta t \mathbf{B} \mathbf{M}_p^{-1} \mathbf{B}^\top & \mathbf{B} \\ \mathbf{B}^\top & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \mathbf{\tilde{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{\tilde{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} + \gamma \delta t \mathbf{B} \mathbf{M}_p^{-1} \mathbf{f}^{(n+1)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}$$ #### **Specialized multigrid algorithm:** a) Smoother. b) Prolongation. #### Standard multigrid using Jacobi smoother: | lvl | " $t^{\neq 1} \setminus$ " | 0 | 10 ^{≠ 2} | 10 ^{≠ 1} | 10 ⁰ | 10 ² | 10 ⁴ | |-----|----------------------------|---|-------------------|-------------------|-----------------|-----------------|-----------------| | 1 | 50 | 2 | 4 | 11 | 79 | ≠ | ¥ | | 2 | 100 | 2 | 6 | 23 | 204 | ≠ | ≠ | | 3 | 200 | 3 | 8 | 38 | 380 | ≠ | ≠ | | 4 | 400 | 3 | 10 | 56 | ≠ | ≠ | ≠ | #### Specialized multigrid: | lvl | " $t^{\neq 1} \setminus$ " | 0 | 10 ^{≠ 2} | 10 ^{≠ 1} | 10 ⁰ | 10 ² | 10 ⁴ | |-----|----------------------------|---|-------------------|-------------------|-----------------|-----------------|-----------------| | 1 | 50 | 2 | 2 | 3 | 4 | 5 | 5 | | 2 | 100 | 2 | 3 | 4 | 4 | 6 | 5 | | 3 | 200 | 2 | 3 | 5 | 5 | 6 | 6 | | 4 | 400 | 2 | 4 | 5 | 6 | 6 | 6 | ¹Wechsung (2019) # **Proof of Concept: "FAC" Benchmarks: BENCH3 – PinT-MG solvers** for nonstationary convection-diffusion-reaction problems Robust behavior with special Patch-Jacobi Smoother →our recent candidate for HPC realization # **Proof of Concept: "FAC" Benchmarks: BENCH3 – SinT-MG solvers** for nonstationary convection-diffusion-reaction problems Robust behavior ONLY with appropriate stabilization as usual for SinT-MG with block-Jacobi smoothers, otherwise only for moderate K - → **Stabilization** (here: VMS type) necessary for solver AND for accuracy & robustness - → Similar behavior for **AL** ## **Proof of Concept: "FAC" Benchmarks: BENCH3 – SinT Vanka MG solver** ## (Also) Very interesting candidate for nonstationary problems with larger time step sizes - →Optimal realization! - → Complex meshes? ## Proof of Concept: "FAC" Benchmarks: BENCH3 – g-i-t DDF-Oseen solver spaces and for large number of time steps K →3D realization by Chr. Lohmann (first since Thomasset and Hecht in 80s?.....) Can we use Massively Parallel & Lower Precision Accelerator Hardware for Extreme Scale High Performance Computing for Flow Problems of Industrial Relevance? ## Yes, it seems to be possible! Can we use Massively Parallel & Lower Precision Accelerator Hardware for Extreme Scale High Performance Computing for Flow Problems of Industrial Relevance? ## Or: Yes, it must be possible! ## **Problem 3b:** Lower precision hardware for Poisson problems? ### → Standard approach: Mixed Precision Defect Correction Wish: Directly solve in FP32/TF32 ## Complexity and performance estimate (in detail, on A100) • Exemplary case: 3D unit cube, $h={}^1\!/_{256}$ ($N\approx 16.6\times 10^6$), $h_0\in \{{}^1\!/_{16}$, ${}^1\!/_{32}\}$ | | 1/16 | 1/32 | | |---------------------------------------------|---------------|---------------|--| | Total number of Flop relative to ${\cal N}$ | 115,000 | 23,400 | | | Multiplications with C^{-1} | 98% | 77% | | | GFlop/s | 116,000 | 57,000 | | | Multiplications with A_1 | 0.8% | 11.8% | | | GFlop/s | 1,700 | 1,730 | | | Multiplications with B and B^{T} | 1.2% | 10.1% | | | GFlop/s | 1,600 / 2,600 | 1,500 / 2,600 | | | BLAS1 (axpy, dot products, additions) | 0.05% | 0.8% | | | GFlop/s | 130 – 380 | 130 – 380 | | | Total GFlop/s | 47,000 | 6,000 | | | Total MDof/s | 412 | 260 | |