FEniCSx: Design of the next generation FEniCS libraries for finite element methods

Garth N. Wells

FEM@LLNL

8th November 2022
Part I: Design and development of FEniCSx libraries

Part II: High-performance finite element kernels
Design and development of FEniCSx libraries

Garth Wells, Jorgen Dokken, Michal Habera, Jack Hale, Chris Richardson, Marie Rognes, Matthew Scroggs, Nathan Sime and the FEniCS Project contributors

https://fenicsproject.org
Quiz 1: what does this function do?
SUBROUTINE XXXXXX(N,DX,INCX,DY,INCY,C,S)
DOUBLE PRECISION C,S
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(*),DY(*)
DOUBLE PRECISION DTEMP
INTEGER I,IX,IY

IF (n.LE.0) RETURN
IF (incx.EQ.1 .AND. incy.EQ.1) THEN
 DO i = 1,n
 dtemp = c*dx(i) + s*dy(i)
 dy(i) = c*dy(i) - s*dx(i)
 dx(i) = dtemp
 END DO
ELSE
 ix = 1
 iy = 1
 IF (incx.LT.0) ix = (-n+1)*incx + 1
 IF (incy.LT.0) iy = (-n+1)*incy + 1
 DO i = 1,n
 dtemp = c*dx(ix) + s*dy(iy)
 dy(iy) = c*dy(iy) - s*dx(ix)
 dx(ix) = dtemp
 ix = ix + incx
 iy = iy + incy
 END DO
END IF
RETURN
END
Quiz 1: answer

Plane rotation from reference BLAS (DRot)
Quiz 2: What does this mean?

\[-\nabla^2 u = f \quad \text{in } \Omega \subset \mathbb{R}^3\]

\[u = 0 \quad \text{on } \partial \Omega\]
Overview

• A domain-specific language (DSL) for variational forms
• Legacy FEniCS 1.0
• What has worked, and hasn’t
• FEniCSx design and development
Poisson equation

Find $u \in H^1_0(\Omega)$ such that

$$a(u, v) = L(v) \quad \forall v \in H^1_0(\Omega)$$

where

$$a(u, v) := \int_\Omega \nabla u \cdot \nabla v \, dx$$

$$L(v) := \int_\Omega f v \, dx$$
Poisson equation in a DSL (UFL)

```python
gameometry = VectorElement("Lagrange", triangle, 2)
mesh = Mesh(geometry)
eltement = FiniteElement("Lagrange", triangle, 3)
V = FunctionSpace(mesh, element)

u, v = TrialFunction(V), TestFunction(V)
f = Coefficient(V)
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx
```
Hyperelasticity (1)

```python
element = VectorElement("Lagrange", tetrahedron, 1)
du = TrialFunction(element)  # Incremental displacement
v = TestFunction(element)    # Test function
u = Coefficient(element)     # Displacement from previous # iteration

# Kinematics
D, I = len(u), Identity(d)
F = I + grad(u)              # Deformation gradient
C = F.T * F                 # Right Cauchy-Green tensor

# Invariants of deformation tensors
Ic, J = tr(C), det(F)

E, nu = 10.0, 0.3
mu, lmbda = E/(2*(1 + nu)), E*nu/((1 + nu)*(1 - 2*nu))
```
Stored strain energy density (compressible neo-Hookean model)
\[
\psi = \frac{\mu}{2} (I_2 - 3) - \mu \ln(J) + \left(\frac{\lambda}{2}\right) (\ln(J))^2
\]

Total potential energy
\[
\Pi = \psi \, dx
\]

First variation of \(\Pi\) (directional derivative about \(u\) in
the direction of \(v\)). Newton solver will drive this to zero
\[
F = \text{derivative}(\Pi, u, v)
\]

Compute Jacobian of \(F\). Matrix operator in Newton’s method
\[
J = \text{derivative}(F, u, du)\]
A Poisson solver (FEniCS 1.0)

...

\[u, v = \text{TrialFunction}(V), \text{TestFunction}(V) \]

\[f = \text{Expression}("10*exp(-(\text{pow}(x[0] - 0.5, 2) \ \\
+ \text{pow}(x[1] - 0.5, 2)) / 0.02)"", \text{degree}=2) \]

\[g = \text{Expression}("\sin(5*x[0])"", \text{degree}=2) \]

\[a = \text{inner} (\text{grad}(u), \text{grad}(v)) * dx \]

\[L = f*v*dx + g*v*ds \]

\[u = \text{Function}(V) \]

\[\text{solve}(a == L, u, bc) \]
Unified Form Language (UFL)

- A domain-specific embedded language for variational forms
- Embedded in Python
- Highly expressive
- Implements various form manipulations
- Generates abstract representation (DAG) of variational problems
- Requires a backend to generate concrete code

Distinguishing technologies for FEniCS 1.0: domain specific languages and code generation

- FInite Element Automatic Tabulator (FIAT) 2002-
- Unified Form Language (UFL), 2008 -
- FEniCS Form Compiler (FFC), 2004 -

\[\text{inner}(\text{grad}(u), \text{grad}(v)) \ast dx \]

FIAT, FE oracle

u, v in (Lagrange, 1st order)

UFL, FE symbolic language

FFC, UFL->C compiler
Weighted Poisson equation in UFL

\[
V = \text{FiniteElement}(\text{"Lagrange"}, \text{triangle}, 1)
\]

\[
u = \text{TrialFunction}(V)
\]

\[
v = \text{TestFunction}(V)
\]

\[
k = \text{Coefficient}(V)
\]

\[
f = \text{Coefficient}(V)
\]

\[
g = \text{Coefficient}(V)
\]

\[
a = k*\text{inner}(\text{grad}(u), \text{grad}(v))*dx
\]

\[
L = \text{inner}(f, v)*dx - \text{inner}(g, v)*ds
\]
Directed acyclic graph
Mathematical intent vs algorithm vs implementation

- UFL expresses and preserves mathematical intent
- It does not encode algorithmic details
- It does not encode implementation details, e.g. assembly, strategy, linear solver, target architecture/system, etc
FEniCS Form Compiler (FFC)

Code generator (FFC) takes UFL abstract representation and generates code in target language

Kirby, Logg (2005) ACM TOMS; Logg, Ølgaard, Rognes, Wells (2012)
Generated code

```c
void tabulate_tensor_integral_cell_otherwise_17e5(ufc_scalar_t* restrict A, const ufc_scalar_t* restrict w, const ufc_scalar_t* restrict c, const double* restrict coordinate_dofs, const int* restrict unused_local_index, const uint8_t* restrict quadrature_permutation, const uint32_t* cell_permutation)
{
    alignas(32) static const double weights_39d[6] = { 0.054975871827661, 0.054975871827661, 0.0, 0.0, 0.0, 0.0 },
    // Precomputed values of basis functions and precomputations
    // FE* dimensions: [permutation][entities][points][dofs]
    alignas(32) static const double FE4_C0_D01_Q39d[1][1][6][10] =
        { { { -0.2890278173026988, 0.0, 0.2890278173026942, 5.331925347622843, -1.656111269210752, -5.331925347622805, 0.0 },
            { -0.2890278173026957, 0.0, 2.656111269210756, -0.2988792219033607, 1.607609848407356, -1.79327533142008 },
            { -0.2890278173026952, 0.0, 1.607609848407356, 1.357232047307428, -3.724315499215482, 0.1856654830127168, 0.298879221903352, -1.79327533142008 } } } },
    alignas(32) static const double FE8_C0_D01_Q39d[1][1][1][3] = { { { -1.0, 0.0, 1.0 } } } },
    alignas(32) static const double FE8_C0_D10_Q39d[1][1][1][2] = { { { -1.0, 1.0 } } }
    for (int iq = 0; iq < 6; ++iq)
        ...
```
Compiler optimisations and representations circa 2009

Ølgaard & Wells (2010), ACM TOMS
DOLFIN: problem solving environment

- DOLFIN is the FEniCS Project 1.0 problem solving environment
- Synthesises domain-specific language, code generation, linear algebra, domain representation (mesh), . . .
- C++ and Python interfaces
- Design reflects mathematical abstractions
- Manages parallel aspects of a simulation

Logg and Wells (2010), ACM TOMS
Issues and criticisms of FEniCS 1.0 libraries

Works well from user-perspective if remaining within the supported abstractions

Design limitations
• Hard to break out from supported abstractions
• Difficult to extend/build upon, especially from Python interface

Consequences and implementation issues
• Difficult/impossible to experiment with new methods, especially at a low level
• Mixture of mature and immature/niche technologies in core library
• Inconsistent behaviour in parallel
• Slowed development progress
Performance and other issues

- Performance had slipped
- Hard to ‘see through’ the code to understand performance
- Too much unnecessary code generation and JIT (complexity, slow pre-compilation, hard to extend)
- Easy for users to write slow code

- More than one way to do the same thing without good reason
- Too implicit, excessive caching of objects, hidden expensive steps in the interests of ‘expressiveness’
- Single type only support
Start again . . .
(not quite):
FEniCS-X

- Keep the demonstrated strengths with high level abstractions
- Allow all operations to be computed/implemented ‘manually’
- Highly efficient implementations implemented at a high level
- Consistent parallel behaviour
- Hardware-friendly
The supporting tools have all changed

Remarkable progress in supporting software tools since early FEniCS developments in mid-2000s

Example 1: NumPy didn’t exist
numeric and numarray

Example 2: C++/Python interfacing
SWIG: Automated wrapping of C++ interface to Python.
We had 18k lines of ‘SWIG language’ code to guide the automation
pybind11: Manual wrapping of C++ interface
1,500 lines of C++, faster and more flexible

Example 3: C++ complexity
Object oriented designs and templating became gratuitous in 2000s
New tools became available...

Numba
Python and NumPy/LLVM
JIT compiler

pybind11
C++14/Python bindings

SYCL

Auto-vectorization

remark: vectorized loop (vectorization width: 4, interleaved count: 4)

C++20
Unified Form Language (UFL)

Largely unchanged, some extensions
A revision underway
FEniCSx: modular

Python

Generates kernels (C code)

Abstract

Transform

Orchestrates/execute

UFL (Python)

Basix (C++, C, Python)

FFCx (Python)

DOLFINx (C++ and Python)
FEniCSx: extensible

FEniCSx is designed to be extensible
- Use automated tools when suitable
- Allows fully custom implementations, e.g.:
 - Finite element kernels
 - Assemblers
 - Input/output
 - Linear algebra backends
Solver interface

DOLFINx

Functional and data-centric design

Pure functions - stateless

Less object-oriented design and less data encapsulation

More explicit behaviour

Everything should be possible ‘by hand’
<table>
<thead>
<tr>
<th>Package (without deps)</th>
<th>C++/C lines</th>
<th>Python lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOLFIN</td>
<td>90,000</td>
<td>22,000</td>
</tr>
<tr>
<td>DOLFINx</td>
<td>28,000</td>
<td>12,269</td>
</tr>
<tr>
<td>deal.ii</td>
<td>830,000</td>
<td></td>
</tr>
<tr>
<td>PETSc</td>
<td>580,000</td>
<td></td>
</tr>
<tr>
<td>Firedrake</td>
<td></td>
<td>37,000</td>
</tr>
<tr>
<td>Eigen</td>
<td>125,000</td>
<td></td>
</tr>
</tbody>
</table>

generated SLOCCount
Working on data: expression evaluation

Old (uses JIT of C strings)

\[
f = \text{Expression}(\text{"exp(-}(\text{pow}(x[0] - 0.5, 2) + \text{pow}(x[1] - 0.5, 2))\text{)"), degree=2}
\]

New (NumPy-based)

```python
def f(x):
    return np.exp(-(x[0]-0.5)**2) + (x[1]-0.5)**2
f0,f1,f2 = Function(V0), Function(V1), Function(V1)
f0.interpolate(f)
f1.interpolate(f)
f2.interpolate(lambda x: np.exp(-(x[0]-0.5)**2) + (x[1]-0.5)**2)
```
(not) Working on data: expression evaluation

class Source : public Expression
{
 void eval(Array<double>& values, const Array<double>& x) const
 {
 double dx = x[0] - 0.5;
 double dy = x[1] - 0.5;
 values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02);
 }
};

auto f = std::make_shared<Source>();
L.f = f;
Function f(V);

f.interpolate(
 [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
 {
 std::vector<T> f(x.extent(1));
 for (std::size_t p = 0; p < x.extent(1); ++p)
 f[p] = std::sin(2 * std::numbers::pi * x(0, p));
 return {f, {f.size()}};
 });

Function g(W);

g.interpolate(f)
Functions and data

```python
facets = locate_entities(msh, dim=1,
                        marker=lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                        np.isclose(x[0], 2.0)))
```
Supporting linear algebra backends

Old approach
- Nightmare of class hierarchies and boilerplate
- Attempts to shoehorn different backends into common interfaces

New approach
- Functional with captures, no classes
- Trivial to support new backends without modifying the library
Functional approach: assembly into linear algebra backends

PETSc

// Matrix insertion function, captures PETSc matrix pointer
auto mat_add = [A](std::span<const std::int32_t> rows,
 std::span<const std::int32_t> cols,
 std::span<const PetscScalar> vals) -> int
{
 PetscErrorCode ierr;
 ierr = MatSetValuesLocal(A, rows.size(), rows.data(), cols.size(),
 cols.data(), vals.data(), ADD_VALUES);
 return ierr;
};

// Assemble bilinear form into a matrix
template <typename T>
void assemble_matrix(auto mat_add, const Form<T>& a);
Functional approach: assembly into linear algebra backends Tpetra

// Matrix insertion function, captures Tpetra matrix reference
auto mat_add = [&A](auto rows, auto cols, auto vals) -> int
{
 ...
 A->sumIntoLocalValues(. . .);
 return 0;
};

// Assemble bilinear form into a matrix
template <typename T>
void assemble_matrix(auto mat_add, const Form<T>& a);
Functional approach: custom mesh partitioners

using CellPartitionFn
 = std::function<
 graph::AdjacencyList<std::int32_t>(
 MPI_Comm comm, int nparts, int tdim,
 const graph::AdjacencyList<std::int64_t>& cells)
 >;

// Create a mesh using a provided parallel partitioning function
Mesh create_mesh(MPI_Comm comm, const
 graph::AdjacencyList<std::int64_t>& cells,
 const fem::CoordinateElement & element,
 std::span<const double> x,
 std::array<std::size_t, 2> xshape,
 CellPartitionFn partitioner);
Example: JIT kernel and built-in assembler, Stokes flow

P2 = ufl.VectorElement("Lagrange", msh.ufl_cell(), 2)
P1 = uflFINITEElement("Lagrange", msh.ufl_cell(), 1)
V, Q = FunctionSpace(msh, P2), FunctionSpace(msh, P1)

(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)

a = form([[inner(grad(u), grad(v)) * dx, inner(p, div(v)) * dx],
 [inner(div(u), q) * dx, None]])

Assemble into a block-nested matrix
A = fem.petsc.assemble_matrix_nest(a, bcs=bcs)
A.assemble()
Example: static condensation kernel (1)

@numba.cfunc(c_signature, nopython=True)
def kernel(A_, w_, c_, coords_, e, c):
 A = numba.carray(A_, (Usize, Usize))
 A00 = numpy.zeros((Ssize, Ssize))
 kernel00(ffi.from_buffer(A00), ...)
 A01 = numpy.zeros((Ssize, Usize))
 kernel01(ffi.from_buffer(A01), ...)
 A10 = numpy.zeros((Usize, Ssize))
 kernel10(ffi.from_buffer(A10), ...)

 # A = -A10 * A00^{-1} * A01
 A[:, :] = -A10 @ numpy.linalg.solve(A00, A01)

NumPy supported operations, many implemented with BLAS, LAPACK
Example: static condensation assemble

```python
a = Form([U, U])
a.set_tabulate_tensor(..., knl.address)

A = assemble_matrix(a_cond)
A.assemble()
```
@numba.njit
def area(x0, x1, x2) -> float:
 '''Compute the area of a triangle embedded in 2D from the three vertices'''
 a = (x1[0] - x2[0])**2 + (x1[1] - x2[1])**2
 b = (x0[0] - x2[0])**2 + (x0[1] - x2[1])**2
 c = (x0[0] - x1[0])**2 + (x0[1] - x1[1])**2
 return np.sqrt(2*(a*b + a*c + b*c) - (a**2 + b**2 + c**2)) / 4.0

@numba.njit
def assemble_vector(b, mesh, x, dofmap):
 connections, pos = mesh
 q0, q1 = 1/3.0, 1/3.0
 for i, cell in enumerate(pos[:-1]):
 num_vertices = pos[i + 1] - pos[i]
 c = connections[cell:cell + num_vertices]
 A = area(x[c[0]], x[c[1]], x[c[2]])
 b[dofmap[i * 3 + 0]] += A * (1.0 - q0 - q1)
 b[dofmap[i * 3 + 1]] += A * q0
 b[dofmap[i * 3 + 2]] += A * q1
Performance: MPI neighborhood collectives

Neighbourhood collectives and unstructured grid methods are a match made in heaven

But, you need to build the neighbourhoods

Mesh creation blowing up in time due to non-scalable MPI all-to-all calls for building neighbourhoods

- 412 billion cells
- 131,072 cores
 - UnitCube (64x64x64) to be refined 6 times

Test problem summary
- Problem type: poisson
- Scaling type: weak
- Num processes: 131072
- Num cells: 412316860416 (412 billion)
- Total degrees of freedom: 68769820673 (68.8 billion)
- Average degrees of freedom per process: 524672
Neighbourhood building algorithms
We know outgoing neighbors, but need to find incoming neighbors...

NBX algorithm
Just send small data to neighbor using “synchronous send” (only “completes” once receive acknowledged). MPI-3.
Then use “non-blocking barrier” to wait for all processes to complete.

Using NBX for neighbourhood detection

Weak scaling on ARCHER2 - Poisson Cube 520k dofs/core

Time (s)

Number of cores

10 billion cells
100 billion cells
1 trillion cells

Before

After
FEniCS Form Compiler (FFCx)

- Major simplifications
- Generates C code (rather C++, GPU code under development)
- Now generates minimal ‘canonical data’
- Vectorisation friendly code
- Now supports different types, including complex numbers
- Different cells types, sum factorisation
Finite element kernels on CPUs

Matrix assembly for the curl-curl operator in 3D using Nedelec 1st kind (degree 4)
FFCx: UFL input to kernel code

UFL input

```python
coords = VectorElement("P", triangle, 2)
mesh = Mesh(coords)
dx = dx(mesh)

element = FiniteElement("P", mesh.ufl_cell(), 2)

space = FunctionSpace(mesh, element)
u = TrialFunction(space)
v = TestFunction(space)
f = Coefficient(space)
a = inner(grad(u), grad(v)) * dx
```

kernel code

```c
void tabulate_tensor_integral_68a(double* restrict A, const double* restrict w, ...
{
    // Quadrature rules
    static const double weights_39d[6] = {
        0.054975871827661, 0.054975871827661, ...
    };

    // Precomputed values of basis functions and precomputations
    // FE* dimensions:
    [permutation][entities][points][dofs]
    static const double FE3_C0_D01_Q39d[1][1][6][6] = 
        { { { 0.6336951459609197, . . . } },

    for (int iq = 0; iq < 6; ++iq)
    {
        // Quadrature loop body setup for quadrature rule
        // Varying computations for quadrature rule 39d
        double J_c0 = 0.0;

        . . .
```
Basix: finite element oracle

Tabulate basis functions
Quadrature schemes
Interpolation operators
Arbitrary order elements

Transformations, esp. for high-order elements, on polyhedral cells. No requirement for meshes to be ordered

Lagrange
Nédélec (first kind)
Nédélec (second kind)
Raviart–Thomas
Brezzi–Douglas–Marini
Bubble
Crouzeix–Raviart
Regge
Custom

Lagrange (Q)
Nédélec
Raviart–Thomas
Bubble
DPC
Serendipity
Custom

FEniCSx summary

• Data-oriented, functional design (what can it do, not what is it)
 • Transparent performance
 • Easy to reason with in parallel
 • User-injected functions/kernels
 • Supports different languages straightforwardly
 • Lends itself to GPU implementations

• Remarkably small codebase

• C++ and Python interfaces

• No pre-defined operators/kernels

• (minimal) JIT for performant Python for dynamically constructed problems

A finite element library is fundamentally (i) adjacency lists, (ii) algorithms that build and manipulate adjacency lists, and (iii) element kernels
Part II: High-performance finite element kernels

Igor Barratta, Chris Richardson, Garth Wells
Roofline models

Standard

\[R = \min \left\{ F_{\text{max}}, \frac{f_d}{b_d} B_{\text{max}} \right\} \]

- \(R \): maximum compute flops
- \(F_{\text{max}} \): CPU peak flops
- \(f_d \): flops per degree-of-freedom
- \(b_d \): number of transfers to/from main memory

Cache-aware

\[R = \min \left\{ F_{\text{max}}, \frac{f_d}{b_d} B_{\text{max}}, \frac{f_d}{b_c} \beta(B_c) \right\} \]

- \(b_c \): bytes moved per dof
- \(\beta \): cache speed
- \(B_c \): size of tables and temporaries

Throughput (dofs/s)

\[T = \alpha \frac{R}{f_d} \]

- \(\alpha \): efficiency (0 < \alpha \leq 1)
Memory bandwidth: cache and DRAM

A64fx roofline: mass action, tetrahedra

half precision

single precision

double precision
Icelake roofline: mass action, tetrahedra

Single precision

- DRAM
- cache
- flops
- roofline

Double precision

- DRAM
- cache
- flops
- roofline
Milan roofline: mass action, tetrahedra

Single precision

double precision
Icelake: measured performance vs model

![Graphs showing throughput vs polynomial degree for single and double precision with different batch sizes.](image-url)
A64fx: measured performance vs model

Single Precision

![Graph showing performance vs polynomial degree](image1)

Double Precision

![Graph showing performance vs polynomial degree](image2)
Icelake roofline: mass action, hexahedra

Single precision

Double precision
Icelake measured performance (mass action)

Single precision

- **Batch size 1**
- **Batch size 8**
- **Batch size 16**

![Graph showing throughput vs. polynomial degree for single precision with batch sizes 1, 8, and 16.]

Double precision

- **Batch size 1**
- **Batch size 8**

![Graph showing throughput vs. polynomial degree for double precision with batch sizes 1 and 8.]

A64fx measured performance (mass action)

Single precision

Double precision
Icelake measured performance: weighted Lapalace (hex)

Single precision

Double precision
Summary

• Performance of kernels typically limited by cache speed
• Cross-element vectorisation offers negligible vectorisation benefits in double precision over carefully designed single-cell kernels, but is more complex
• Cross-element vectorisation has vectorisation benefits at reduced precision for most orders
• Hexahedral cells
 • Cross-element vectorisation uses more temporaries, which can cause early cache spilling
• Simplices
 • Large tables, cross-element vectorisation reduces impact of cache spilling, esp, for $H(\text{div})$ and $H(\text{curl})$ elements
• Kernels are generated by FFCx (development branch)
• GPU work ongoing