
FSSpMDM—Accelerating Small
Sparse Matrix Multiplications by

Run-Time Code Generation

F.D. Witherden

Department of Ocean Engineering
Texas A&M University

Motivation

• Small matrix multiplications (SMM’s) are
a key building block of high-order finite
element methods.

Motivation

• Canonical example of this is polynomial evaluation.

= A

Motivation

• The most efficient SMM library for CPUs is libxsmm.

• It employs run-time assembly code generation and has
support for AVX2, AVX-512, NEON, and SVE.

Motivation

• However, it is also possible for the operator to be sparse.

• The prototypical example of this
are elements with a tensor-product
construction: quads, hexes, and
prisms.

A

Motivation

• Sparse operators can also arise through the factorisation of
dense operators.

Motivation
• Heretofore, the standard approach for handling such sparse

operators on CPUs has been GiMMiK.

Computer Physics Communications 202 (2016) 12–22

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

GiMMiK—Generating bespoke matrix multiplication kernels for
accelerators: Application to high-order Computational Fluid
Dynamics
Bartosz D. Wozniak a, Freddie D. Witherdenb, Francis P. Russell a,⇤, Peter E. Vincent b,
Paul H.J. Kelly a

a Department of Computing, Imperial College London, United Kingdom
b Department of Aeronautics, Imperial College London, United Kingdom

a r t i c l e i n f o

Article history:
Received 16 September 2014
Received in revised form
31 August 2015
Accepted 19 December 2015
Available online 18 January 2016

Keywords:
Matrix Multiplication
GPU
CUDA
Code generation
GEMM
GiMMiK
CuBLAS

a b s t r a c t

Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas of science and
engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS on GPUs) are the most popular
choices for an implementation of the General Matrix Multiply (GEMM) in software. In this paper
we present GiMMiK—a generator of bespoke matrix multiplication kernels for the CUDA and OpenCL
platforms. GiMMiK exploits a prior knowledge of the operator matrix to generate highly performant
code. The performance of GiMMiK’s kernels is particularly apparent in a block-by-panel type of matrix
multiplication, where the block matrix is typically small (e.g. dimensions of 96 ⇥ 64). Such operations
are characteristic to our motivating application in PyFR—an implementation of Flux Reconstruction
schemes for high-order fluid flow simulations on mixed unstructured meshes. GiMMiK fully unrolls the
matrix–vector product and embeds matrix entries directly in the code to benefit from the use of the
constant cache and compiler optimisations. Further, it reduces the number of floating-point operations by
removing multiplications by zeros. Together with the ability of our kernels to avoid the poorly optimised
cleanup code, executed by library GEMM, we are able to outperform cuBLAS on two NVIDIA GPUs:
GTX 780 Ti and Tesla K40c. We observe speedups of our kernels over cuBLAS GEMM of up to 9.98 and
63.30 times for a 294 ⇥ 1029 99% sparse PyFR matrix in double precision on the Tesla K40c and GTX 780
Ti correspondingly. In single precision, observed speedups reach 12.20 and 13.07 times for a 4 ⇥ 8 50%
sparse PyFR matrix on the two aforementioned cards. Using GiMMiK as the matrix multiplication kernel
provider allows us to achieve a speedup of up to 1.70 (2.19) for a simulation of an unsteady flow over
a cylinder executed with PyFR in double (single) precision on the Tesla K40c. All results were generated
with GiMMiK version 1.0.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Matrix multiplication is ubiquitous in all spheres of science
and engineering, hence the need for efficient and performant
implementations of such operations in software. Significant ef-
fort has been expended in building and optimising Basic Linear

⇤ Corresponding author.
E-mail addresses: bartosz.wozniak10@imperial.ac.uk (B.D. Wozniak),

freddie.witherden08@imperial.ac.uk (F.D. Witherden),
francis.russell02@imperial.ac.uk (F.P. Russell), p.vincent@imperial.ac.uk
(P.E. Vincent), p.kelly@imperial.ac.uk (P.H.J. Kelly).

Algebra Subprograms (BLAS) libraries [1,2]. The General Matrix Mul-
tiplication (GEMM) subroutine of level-3 BLAS is among the most
popular choices for an implementation of the matrix product.
However, GEMM is very generic and usually performs best with
large problem sizes [3–5]. In situations where the matrices are
known a priori, faster implementations can be achieved. In this
paper we are interested in a block-by-panel type of matrix mul-
tiplication, where the operator matrix is typically small (e.g. di-
mensions of 96 ⇥ 64). This is motivated by an application in Flux
Reconstruction [6] schemes for high-order fluid flow simulations
on unstructured grids. However, given the ubiquity of GEMM we
envisage that a variety of other applications within various fields
of engineering could also benefit from our research. In this paper

http://dx.doi.org/10.1016/j.cpc.2015.12.012
0010-4655/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Motivation

• GiMMiK works by unrolling the operator as a C kernel.

• As such performance is unpredictable and compiler
dependent.

• Moreover, for larger operators kernel compilation can take
several minutes and require gigabytes of memory.

Approach

• In this talk we consider adding a Fixed Size Sparse Matrix
Dense Matrix (FSSpMDM) multiplication routine to
libxsmm for performing:

,

where A is M by K and B is K by N and β is zero or one.

C ← AB + βC

Approach
• A is sparse and invariant.

• The multiplication will be performed repeatedly.

• B and C are stored in row-major order.

• B and C are small enough to reside in L1/L2 cache.

• N is a multiple of the SIMD vector length .vl

Approach

• Our overall approach is to follow GiMMiK and fully unroll
the multiplication, eliding multiplications through by zero.

for j in 0:(N / vl)
 for i in 0:M
 jj = j:(j + vl)
 dp = sparse_dot(A[i, :], B[:, jj])
 C[i, jj] = dp + β*C[i, jj]

Approach

• One potential issue with this strategy is that we are only
accumulating a single dot product at a time.

• When run on an in-order CPU which can dual issue FMAs
with 6 cycle latency (e.g., the original Intel Xeon Phi) we
are limited to ~8% of peak FLOPs.

Approach

• Thankfully, all recent CPUs incorporate out-of-order
execution and so are able to look ahead in the code stream
and find independent dot products to work on.

• However, this only works if a reasonable number of
complete dot products fit within the out-of-order execution
window.

Approach

• Beyond this, one solution is n-blocking where we unroll
and interleave iterations of the outer loop.

for j in 0:(N / vl)
 for i in 0:M
 jj = j:(j + vl)
 dp = sparse_dot(A[i, :], B[:, jj])
 C[i, jj] = dp + β*C[i, jj]

Approach
• This provides a simple means of doubling or quadrupling

the number of dot products in flight.

• However, it also results in a commensurate increase in
code size.

• Furthermore, N must now be divisible by where is the

n-blocking factor.

nvl n

Approach

• A better solution is m-blocking where we interleave the
iterations of the inner loop together.

for j in 0:(N / vl)
 for i in 0:M
 jj = j:(j + vl)
 dp = sparse_dot(A[i, :], B[:, jj])
 C[i, jj] = dp + β*C[i, jj]

Approach

• Since we are just rearranging existing instructions M
blocking not result in an increase in code size.

• However, to be effective we need to group together rows
with similar numbers of non-zero entries.

• The best case is grouping rows with identical non-zero
structures as we can reuse values from B.

Approach

• The biggest factor when generating a kernel is register
allocation.

• Once registers have been allocated synthesising the
assembly code itself is a trivial exercise.

• As such, from here on we’ll be focusing on registers.

x86-64: AVX2
• AVX2 provides us with 16 256-bit vector registers.

• We have instructions for evaluating:

 and ,

where and are registers and is a register or memory

operand of the form where is a general

purpose register and a 32-bit displacement.

c ← a ⋅ b c ← ± c ± a ⋅ b

a c b
[g + ⟨imm⟩] g
imm

x86-64: AVX2

• If we have 15 or fewer unique absolute values in A then
the simplest approach is to store one value per register.

• Any spare registers can then be used to facilitate n- and/or
m-blocking.

• We term this the A-in-registers approach.

x86-64: AVX2

SIMD Register
u m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 1 1

9 1 2

9 2 1

9 3 2

 Broadcast A value Loaded B value

 C accumulator

x86-64: AVX2

• When the number of unique absolute values exceeds 15
we resort to storing the unique values in an array.

• They can then be loaded into a register as needed with the
vbroadcasts[sd] instruction.

• We term this the A-in-memory approach.

x86-64: AVX2

• The idea is to treat all free registers, i.e. those not used for
loaded B values or C accumulators, as a cache.

• However, as we have foreknowledge of future dot products
we can be strategic about what values we evict.

• Specifically, we overwrite the register with the greatest
distance between now and when its value is next used.

x86-64: AVX2

SIMD Register
m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1

1 2

2 1

3 2

 Loaded B value C accumulator

 Temp broadcast A value

x86-64: AVX-512

• AVX-512 is the most recent extension for x86-64.

• It provides us with 32 512-bit vector registers.

• This leads to straightforward extensions of the A-in-
registers and A-in-memory strategies.

x86-64: AVX-512

• Additionally, the permutation instructions in AVX-512 also
allow for a new approach: storing multiple unique absolute
values inside a single vector register.

• When a unique value is needed permutation instructions
are used to broadcast it to a temporary register.

• We term this A-packed-in-registers.

x86-64: AVX-512

• With this we can store 8 (double) or 16 (single) values
inside a single register.

• However, broadcasting using (vpermd) requires up to 7
(double) or 15 (single) unique permutation constants which
must be stored in registers.

• This enables up to 120 unique absolute values.

x86-64: AVX-512

• Consider executing vpermd zmm31, zmm8, zmm0.

zmm0zmm31 zmm8

= 0x4
= 0x5

x86-64: AVX-512

SIMD Register
u m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

42d 1 1

42d 1 2

43d 2 1

49d 3 2

 Packed A values Loaded B value C accumulator

 Permutation constant Temp broadcast A value

AARCH64: NEON

• NEON provides us with 32 128-bit vector registers.

• We have instructions for evaluating:

 and ,

but, being a RISC architecture all arguments must be
registers.

c ← a ⋅ b c ← c ± a ⋅ b

AARCH64: NEON

• One unique feature is the availability of indexed forms:

 and ,

where the suffix denotes a specific lane of to broadcast
in advance of the operation.

• This enables us to implement the A-packed-in-registers
strategy for free!

c ← ai ⋅ b c ← c ± ai ⋅ b

i a

AARCH64: NEON

• Loading values of B can be more involved than x86-64 as
values are typically limited to 12-bits.

• Thus it is not unusual for a single AVX2/AVX-512 register-
memory instruction to translate into four or five AARCH64
instructions: two or three adds to generate the address,
then a load, and finally the FMA itself.

AARCH64: NEON

• One means of reducing this overhead is through paired
load instructions (ldp), which enable us to load 256-bits at
a time.

• This enables us to appreciably increase FMA density and

strongly suggests using blocking.n = 2

AARCH64: NEON

SIMD Register
u m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8s 1 1

9s 1 2

9s 2 1

13s 3 4

8d 1 1

9d 1 2

9d 2 1

13d 3 4

 Packed A values Loaded B value C accumulator

AARCH64: NEON

• Implementing the A-in-memory strategy requires more care
for NEON due to restricted immediate displacements.

• Thankfully, NEON has two extremely powerful features
which enable a highly efficient implementation.

AARCH64: NEON

• Firstly, using the ld1 instruction it is possible to load a
constant into a specific lane of a vector.

• Combined with the aforementioned indexed forms this
enables us to cache two (double) or four (single) times as
many constants in registers as AVX-512.

AARCH64: NEON

• Additionally, ld1 has a post-indexed form.

• Let us execute: ld1 {v5.s}[1], [x5], #4.

x5

Memory

v5

AARCH64: NEON

• Thus, by creating an array in memory which contains
values in the order they are needed by the kernel (i.e.,
when values miss in the register cache) we can bring in
constants with just a single four-byte load instruction.

• Although the array is larger than if we just stored unique
values, this is not a problem in practice.

AARCH64: NEON

SIMD Register
m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1

1 2

2 1

3 4

 Loaded B value C accumulator Temp packed A values

AARCH64: SVE

• SVE is a newer vector instruction set for AARCH64.

• Its most notable feature is support for varying vector
lengths from 128- to 2048-bits.

• The scalable functionality is not too useful for HPC but we
can certainly benefit from longer vectors.

AARCH64: SVE
• Indexed forms are also carried forward from NEON but

they now work on 128-bit chunks.

a0 a1 a2 a3a

SVE-256 single precision

AARCH64: SVE

• Constant register initialisation is aided through replicating
loads instructions (ld1rqw).

• Let us execute: ld1rqw { z1.s }, p0/Z, [x26].

x26

Memory

z1
512-bits

AARCH64: SVE

• Unfortunately, indexing is only supported for the first 16
(double) or 8 (single) registers.

• Thus when the number of unique values exceeds 32 we
need to allocate a low-numbered temporary register.

• Thankfully, on modern architectures register-to-register
move operations are zero latency.

AARCH64: SVE
SIMD Register

u m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8s 1 1

9s 1 2

9s 2 1

32s 3 4

33s 3 4

8d 1 1

9d 1 2

9d 2 1

32d 3 4

33d 3 4

 Packed A values Loaded B value C accumulator

 Temp packed A values

AARCH64: SVE

• The SVE implementation of A-in-memory is complicated by
the absence of a lane-indexed replicating load.

• It should be possible to emulate this using the predication
support in SVE.

• Unfortunately, ld1rqw only has support for zeroing masked
lanes rather than merging them.

AARCH64: SVE
• As such we revert to an x86-64 type approach where we

cache one unique value per register.

• Load instruction overhead is minimised through multiple
pre-offset pointers into the constant array.

Memory

x26 x27 x28 x29

64 values

AARCH64: SVE

SIMD Register
m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1

1 2

2 1

3 4

 Loaded B value C accumulator Temp broadcast A value

Blocking Factor Selection

• We often have freedom around our choice of m- and n-
blocking.

• Given the complexities associated with assessing the
various tradeoffs, in FSSpMDM we adopt a simple auto-
tuning strategy: generate a range of different kernels and
see what works best.

Results

• In order to evaluate our routines we will consider several of
the operator matrices which arise when solving an
advection-diffusion problem with PyFR.

• Moreover, we will consider a quadrature-free numerical
scheme employing a collocation type projection with
Gauss–Legendre type solution/flux points.

Results

Tetrahedron Pyramid Prism Hexahedron

Dense Uncommon

• Let N = 40 (corresponds to eight elements per block with
compressible Navier–Stokes).

Results

M0 M3

M6

M460

M132

M0

M3 M6

M460 M132

3

10

30

100

300

100 1,000 10,000

Non−zeros

U
n

iq
u

e
ab

so
lu

te
 v

a
lu

es

Element

hex

pri

Density

0.1

0.2

0.3

0.4

Order

1

2

3

4

5

6

• M0: Volume-to-surface.

• M132: Local divergence.

• M3: Divergence correction.

• M460: Local gradient.

• M6: Gradient correction.

Results: AVX2

• i7-12700H
(P-core).

• GCC 13.1.

• Hex.

Order 5 Order 6

Order 3 Order 4

M0 M132 M3 M460 M6 M0 M132 M3 M460 M6

0

20

40

60

0

20

40

60

G
FL

O
P/

s

Code
FSSpMDM
GiMMiK

Results: AVX2

• i7-12700H
(P-core).

• GCC 13.1.

• Prism.

Order 5 Order 6

Order 3 Order 4

M0 M132 M3 M460 M6 M0 M132 M3 M460 M6

0

20

40

60

0

20

40

60

G
FL

O
P/

s

Code
FSSpMDM
GiMMiK

Results: NEON

• M1 Max
(P-core)

• GCC 12.3.

• Hex.

Order 5 Order 6

Order 3 Order 4

M0 M132 M3 M460 M6 M0 M132 M3 M460 M6

0

10

20

30

40

50

0

10

20

30

40

50G
FL

O
P/

s

Code
FSSpMDM
GiMMiK

Results: NEON

• M1 Max
(P-core)

• GCC 12.3.

• Prism.

Order 5 Order 6

Order 3 Order 4

M0 M132 M3 M460 M6 M0 M132 M3 M460 M6

0

10

20

30

40

50

0

10

20

30

40

50G
FL

O
P/

s

Code
FSSpMDM
GiMMiK

Conclusions

• Have described the new small fixed sized sparse matrix
multiplication functionality (FSSpMDM) in libxsmm.

• Demonstrated how FSSpMDM is able to outperform
GiMMiK on both Intel and Apple architectures.

Backup Slides

Hex M3 Matrix Performance

• GiMMiK often outperforms
FSSpMDM for the hex M3
matrix.

• This is due to the unique
structure of M3 for tensor-
product elements.

Hex M3 Matrix Performance

• GCC exploits these properties by:

• Performing common sub-expression elimination.

• Only using a single accumulator to save registers.

• Saving multiple B values in registers to save cache
bandwidth.

