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Motivation

• Interested in simulating unsteady, turbulent, flows.



Motivation

• Such large eddy simulations (LES) often require 
billions of degrees of freedom (DOFs). 

• We routinely run unsteady turbulent simulations 
with 10 billion DOFs.



Motivation

• For example, an MTU T161 LPT case had 90.68 million 
elements and was run with degree four polynomials. 

• This equates to 11.35 billion DOFs per equation. 

• Each checkpoint file is hence 423 GiB.



Motivation

• Even worse are time-
averaged statistics. 

• For this case we averaged 
206 quantities. 

• Each time-average file is 
hence 17,420 GiB!
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Fig. 13. Instantaneous snapshot of density gradient magnitude (a), LIC of the time averaged in-plane velocity (b) and turbulent kinetic energy E tk (c) near the trailing edge 
of the suction side of the turbine blade. 
2.6.3. Time-Averaging 

During the Data Extraction Period various quantities were time- 
averaged throughout the entire domain, including: 
1. v i (3) 
2. ρ (1) 
3. ρv i (3) 
4. ρv i v j (6) 
5. ρv i v j v k (10) 
6. p (1) 
7. pv i (3) 
8. pv i v j (6) 
9. pv i v j v k (10) 

10. p 2 (1) 
11. p 2 v i (3) 
12. p 2 v i v j (6) 
13. p 3 (1) 
14. p 3 v i (3) 
15. p 4 (1) 
16. v i v j v k v l (15) 
17. √ v i v i (1) 
18. √ 

γ p/ρ (1) 
19. √ 

v i v i 
γ p/ρ (1) 

20. p (1 + γ −1 
2 ρv i v i 

γ p ) γ
γ −1 

(1) 
where i, j, k, l each run through x, y, z, the numbers in parenthe- 
sis indicate the term count. Distributions of these time-averaged 

quantities are available in a publicly accessible AWS S3 bucket with 
ARN arn:aws:s3:::pyfr-mtu-t161-dns-data . 
2.6.4. Point probes 

During the Data Extraction Period, values of ρ , ρv , and 
E were obtained at 660 point locations every 30 time-steps. 
This data allowed spectra to be obtained. The time series 
of ρ , ρv , and E at each of the 660 point locations are 
available in a publicly accessible AWS S3 bucket with ARN 
arn:aws:s3:::pyfr-mtu-t161-dns-data . 
3. Results 
3.1. Resolution 
3.1.1. Boundary layer resolution 

Fig. 3 plots variation of #y + = #y √ 
ρ τ /µ along the suction 

side of the turbine blade surface, where #y is the normal distance 
from the blade surface to the first solution point, ρ is the local 
time-averaged density, and τ is the local time-averaged wall shear 
stress. #y + < 1 at all locations. Hence, it is concluded that the 
mesh resolution is sufficient for DNS of the boundary layer [21] . 
3.1.2. Free-Stream resolution 

An estimate of the Kolmogorov length scale η can be obtained 
at each point in the computational domain, as can the charac- 
teristic solution point spacing δ. Moving from the laminar flow 
region on the suction side of the turbine blade into the turbu- 
lent wake, the ratio δ/η is seen to grow monotonically, peaking 

6 
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PyFR

Python + Flux Reconstruction



PyFR
• Features.

Governing Equations Compressible and incompressible Euler and Navier Stokes

Spatial Discretisation Arbitrary order Flux Reconstruction on curved mixed unstructured grids 
(tris, quads, hexes, prisms, pyramids, tets)

Temporal Discretisation Explicit adaptive Runge-Kutta schemes and implicit SDIRK

Stabilisation Anti-aliasing, artificial viscosity, modal filtering, entropy filtering

Shock capturing Artificial viscosity and entropy filtering

Platforms x86 and ARM CPU clusters 
AMD, Apple, Intel, and NVIDIA GPU clusters

Plugins
NaN checker, file writer, progress bar, fluid force, turbulence generation, 
Ffowcs–Williams Hawkings, in-situ vis, time averaging, point sampler, 
expression integrator



• High level structure.

PyFR

Translate 
templated code 
into low-level 
hardware specific 
code

Python Outer Layer 
(Hardware Independent)

• Problem setup and I/O 
• Outer ‘for’ loop schedules hardware specific kernels 
• Distributed memory parallelism (MPI) 

Matrix Multiply 
Kernels

• Data 
interpolation/
extrapolation 
etc.

Point-Wise 
Nonlinear Kernels

• Flux functions, 
Riemann solvers 
etc.

Metal for 
Apple GPUs

HIP 
for AMD 

GPUs

OpenCL 
for Intel GPUs

CUDA 
for NVIDIA 

GPUs

Compile, link, and load kernels at runtime Obtain Kernel

• Vendor BLAS
• libxsmm 
• GiMMiKC/OpenMP 

for CPUs

• Execute plugins for in-situ post processing



PyFR

• Employ a state-of-the-art 
implementation. 

• Use a task-graph structure internally. 

• Make extensive use of run-time code 
generation with auto-tuning.
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PyFR
• Enables heterogeneous computing from a homogeneous 

code base.



Performance

• Consider a tetrahedral grid with degree seven solution 
polynomials and explicit Navier–Stokes. 

• Employ a mesh with 12 × 1053 elements. 

• Use Frontier (AMD MI250X) and Alps (NVIDIA GH200).



Performance

• Measure performance in GDOF/s. 

• Translation: if we have 109 DOF in our simulation and need 
100,000 RK4 time steps to collect good statistics then our 
runtime will be: 

(109 × 105 × 4 / X) seconds.



Performance on Frontier
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Disk I/O

• Legacy format based around parallel HDF5. 

• Separate mesh and solution files (good). 

• Internal structure of mesh and solution files are 
decomposition dependent (bad).
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Requirements

• Our design specification for the new 
format was based around five key 
requirements.



Requirements: Archival

1. The format must be built upon a well established and self-
documenting archival-grade container. 

• Aids in portability and ensures that files will in principle 
remain readable for decades.



Requirements: Compact

2. Exhibit minimal redundancy except for when it greatly 
improves usability or reduces processing time.  

• Reduces storage and bandwidth requirements.



Requirements: Scalable

3. Be compatible with the ‘quirks’ of parallel file systems. 

• Needed for scalability on leadership class machines.



Requirements: Robust

4. Capable of delivering good application performance even 
in sub-optimal environments. 

• User misconfiguration is common and storage is a shared 
resource that is subject to frequent abuse by machine 
learning jobs.



Requirements: Simple

5. Be simple enough to enable ad-hoc post processing 
without bespoke middleware. 

• Each simulation has its own post-processing requirements 
and engineers all have their favourite languages (Python, 
Julia, R, MATLAB, …).
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Approach

• The most natural means of satisfying requirements 1 
(archival) and 5 (simple) is with HDF5. 

• While there are trendier formats (e.g. BP5) they are not as 
widely deployed and lack the proven track record of HDF5.



Approach
• Requirement 2 (compact) strongly suggests decoupling the 

geometry and the solution.

Mesh Solution



Approach

• As mesh files are write-once read-many and only used at 
start-up they are comparatively easy to design. 

• The two major considerations are: 

• How are elements represented? 

• How is connectivity represented or reconstructed?



Approach: Mesh

• A mesh is a collection of elements defined by nodes.

Quad 
p = 1 

Tri 
p = 2

Quad 
p = 3 



Approach: Mesh

• Using quadratically curved triangles as an example the 
most direct representation is: 

struct { 
    double locs[6][2]; 
} tris[Nt]; 

• However, it is also wasteful as many points are repeated.



Approach: Mesh
• A more efficient approach is to represent elements in terms 

of node numbers whence: 

double nodes[M][2];  
struct { 
    long locs[6]; 
} tris[Nt]; 

where M is the number of distinct nodes.



Approach: Mesh

• With this we have one array per element type indexing into 
a single global nodes array. 

• Number of nodes per element is fixed by the highest 
degree of curvature.



Approach: Mesh
• While connectivity information can be derived from node 

numbers alone this is extremely inefficient. 

• It is hence better to embed the information whence: 

struct { 
    long locs[6]; 
    struct { short cidx; long off; } conn[3]; 
} tris[Nt];



Approach: Mesh

• The cidx is an index into a codec array which provides a 
flexible means of stating what one is connected to: 

codec = ['/eles/tri/0', '/eles/tri/1', 
         '/eles/tri/2', ‘/bc/outflow’, …]; 

• For all non-boundary connections off is the offset into the 
connected elements array.



Approach: Mesh
• Parallel decompositions can be specified as a single array 

of element numbers. 

• For example with a three partition mesh with quads and 
tris:

r0 r1 r2

Quad numbers Tri numbers



Approach: Mesh

• The elements arrays can be efficiently read by having each 
rank read a contiguous chunk of each array. 

• An Alltoallv can then be used to redistribute the data. 

• This approach can also be used for reading the nodes.



Approach: Mesh

• In parallel it is also necessary to 
construct cross-partition 
interface connectivity arrays. 

• For each face on a partition 
boundary we need to determine 
which rank has its neighbour.

Figure 1: Quadrilateral mesh with sub-partitions small enough to fit into CPU L2 cache.

2. Flux Reconstruction and Kernels55

First, an overview of the FR approach for solving the Euler equations is

presented. Further details of the FR method can be found elsewhere [2]. Then,

kernel breakdown of the FR method, data structure, and current kernel execu-

tion order in PyFR v1.11.0 [4] are defined.

2.1. Flux Reconstruction60

The Euler equations can be written in conservative form as,

@u↵

@t
+r · f↵ = 0, (1)

where ↵ is the field variable index, u↵ = u↵(x, t) are the conservative field

variables, and f = f(u) is the Euler flux which is defined as,

f(u) =

2

6666666664
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⇢u2 + p

⇢uv
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k, (2)

where ⇢ is density, u, v, w are velocity, p is pressure, E is total energy per

unit volume, and i, j,k are orthogonal unit vectors. The relation between the65
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Approach: Mesh

• Simplest solution is for each rank to maintain a list of 
unpaired faces. 

• This list can then be distributed with an Allgatherv. 

• Ranks can then see which of these faces they have and 
respond accordingly via an Alltoallv.



Approach: Mesh

• This approach does not scale, 
however, and breaks down in the 
limit of one-element per rank. 

• A neat fix for this is to augment 
the partitioning array with its 
neighbour connectivity graph.

Figure 1: Quadrilateral mesh with sub-partitions small enough to fit into CPU L2 cache.
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Approach: Mesh

• This graph can be passed to Neighbor_allgatherv from 
MPI-3 such that only partitions we’re actually connected to 
receive our unpaired faces. 

• For a well partitioned mesh the number of neighbours is 

 and thus the approach scales.𝒪(1)



Approach: Solution

• With the mesh handled we now turn our attention to 
solution files which are write-once read-sometimes. 

• Hence, our goal is to maximise the speed at which they 
can be written out to disk. 

• This requires a short interlude on parallel file systems.



Approach: Lustre

• One of the more infamous parallel file systems is Lustre. 

• It is loved by users and sysadmins alike!



Approach: Lustre

• A useful mental model is that of RAID 0. 

• Instead of disks we have object storage targets (OST’s). 

• Moreover, the number of OST’s and the stripe size is 
configurable on a per-file basis.



Approach: Lustre

• 6 OST’s. 

• 32 MiB file. 

• 4 MiB stripe size. 

• 3 stripes.



Approach: Lustre

• This architecture allows I/O bandwidth to be scaled by 
adding more OST’s. 

• Of course to fully exploit this we almost certainly need to 
have multiple nodes writing simultaneously.



Approach: Lustre

• Unfortunately several ‘quirks’ of Lustre 
make achieving high throughput 
frustratingly difficult.



Approach: Lustre

1. Default stripe counts are often inadequate. 

• It is not uncommon for files to default to a single stripe. 

• Hence, unless the user knows how to use lfs 
performance will be poor. 



Approach: Lustre

2. Its baroque locking protocol can easily lead to thrashing—
even when writes do not overlap. 

• Given acquiring and relinquishing locks is expensive this 
can destroy performance. 

• Not uncommon for multiple independent writers to 
deliver lower throughput than a single writer.



Approach: Lustre

• The most obvious means of avoiding these issues is to have 
each node write out its own file. 

• This completely sidesteps the locking issue and since files 
are usually assigned an OST at random having a single 
stripe is not an issue.



Approach: Lustre

• Data from Moore et al. 
(2018). 

• 192 ranks. 

• 24 OSTs. 

• POSIX I/O.
B
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Approach: Lustre

• This is not a workable solution, however. 

• Firstly, having solutions split across many files goes against 
requirement 5 (simple). 

• Secondly, and more importantly, it doesn’t scale…



Approach: Lustre

3. Its metadata performance is awful. 

• Often an order of magnitude worse than NFS. 

• Practically limited to ~1,000 files per directory.



Approach: Lustre

• We could try for a hybrid solution where a small number of 
ranks share a file. 

• But, this isn’t simple and leaves us with a tunable. 

• So, the question becomes how can we resolve issues 1 and 
2 such that a single file is viable?



Approach: Lustre

PyFRHDF5MPI-IOPOSIXKernel

Lustre

• The source of these issues are due to the imperative rather 
then declarative nature of our I/O libraries.



Approach: Solution

• By taking full ownership of the I/O stack stripe count and  
size issues can be trivially resolved. 

• We know how big our solution file will be so can simply 
have the root rank ensure it is created properly. 

• Can even be done with raw ioctl’s to avoid a dependency 
on the Lustre library.



Approach: Solution
// On the root rank 
int fd = open(path, O_CREAT | O_EXCL | O_WRONLY | 
                    O_LOV_DELAY_CREATE); 
struct lov_user_md opts = { 
    .lmm_magic = LOV_USER_MAGIC, 
    .lmm_stripe_size = 128*1024*1024, 
    .lmm_stripe_count = -1, 
}; 
ioctl(fd, LL_IOC_LOV_SETSTRIPE, &opts);



Approach: Solution
• The root rank can then reopen the file with serial HDF5 to 

stub out the relevant solution arrays. 

• Then, the on-disk offset of each array can be queried and 
broadcast to all other ranks.

Decomposition independent solution file

Quad data Tri data



Approach: Solution

• The locking issues can be avoided by having all ranks 
acquire a group lock. 

• This comes at the cost of POSIX semantics but given our 
use case is write only this is not an issue… 

• …although it is an issue for MPI-IO and HDF5.



Approach: Solution

// On each rank 
int fd = open(path, O_RDWR); 
ioctl(fd, LL_IOC_GROUP_LOCK, group_id); 
 
// Write out our portion of each array 
pwrite(fd, quad_buf, quad_size, quad_off); 
pwrite(fd, tri_buf, tri_size, tri_off);



Approach: Solution

• Further, as we control the stack we can improve robustness 
by spawning a thread to issue the write calls. 

• This gives us guaranteed asynchronous I/O. 

• Cf. OpenMPI.



Approach: Solution

• With this I/O is no longer in the critical path. 

• This makes us extremely robust to abused or under-
provisioned file systems.



Approach: Solution

• This I/O stack also has packaging benefits. 

• Being in Python we use h5py for wrapping HDF5. 

• This is often installed with pip install h5py which 
bundles its own version of HDF5. 

• This bundled version is typically a serial build.



Approach: Solution

• Preliminary results compared with our existing parallel 
HDF5 file format in terms of wall-clock time reductions: 

• ~5% for I/O lite simulations on well-configured systems. 

• ~15% for I/O heavy simulations in sub-optimal 
environments. 
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Conclusions

• Have described a high-performance file format suitable for 
exascale discontinuous spectral element simulations. 

• Outlined techniques for avoiding typical I/O pitfalls to 
enable scalable single-file operation. 

• Code available in the develop branch of PyFR.
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Backup Slides



File Creation
• Consider the following snippet: 

❯ cat create.py 
import h5py 
 
with h5py.File('file.h5', 'w') as f: 
    r = f.create_dataset('r', shape=(2**36)) 
    r[-1] = 0.0 

❯ time python create.py 
python create.py … 0.101s total


