
High Performance Asynchronous I/O for
Exascale Spectral Element Methods

F.D. Witherden

Department of Ocean Engineering, Texas A&M University

Motivation PyFR Approach ConclusionsRequirements

Motivation

• Interested in simulating unsteady, turbulent, flows.

Motivation

• Such large eddy simulations (LES) often require
billions of degrees of freedom (DOFs).

• We routinely run unsteady turbulent simulations
with 10 billion DOFs.

Motivation

• For example, an MTU T161 LPT case had 90.68 million
elements and was run with degree four polynomials.

• This equates to 11.35 billion DOFs per equation.

• Each checkpoint file is hence 423 GiB.

Motivation

• Even worse are time-
averaged statistics.

• For this case we averaged
206 quantities.

• Each time-average file is
hence 17,420 GiB!

A.S. Iyer, Y. Abe, B.C. Vermeire et al. Computers and Fluids 226 (2021) 104989

Fig. 13. Instantaneous snapshot of density gradient magnitude (a), LIC of the time averaged in-plane velocity (b) and turbulent kinetic energy E tk (c) near the trailing edge
of the suction side of the turbine blade.
2.6.3. Time-Averaging

During the Data Extraction Period various quantities were time-
averaged throughout the entire domain, including:
1. v i (3)
2. ρ (1)
3. ρv i (3)
4. ρv i v j (6)
5. ρv i v j v k (10)
6. p (1)
7. pv i (3)
8. pv i v j (6)
9. pv i v j v k (10)

10. p 2 (1)
11. p 2 v i (3)
12. p 2 v i v j (6)
13. p 3 (1)
14. p 3 v i (3)
15. p 4 (1)
16. v i v j v k v l (15)
17. √ v i v i (1)
18. √

γ p/ρ (1)
19. √

v i v i
γ p/ρ (1)

20. p (1 + γ −1
2 ρv i v i

γ p) γ
γ −1

(1)
where i, j, k, l each run through x, y, z, the numbers in parenthe-
sis indicate the term count. Distributions of these time-averaged

quantities are available in a publicly accessible AWS S3 bucket with
ARN arn:aws:s3:::pyfr-mtu-t161-dns-data .
2.6.4. Point probes

During the Data Extraction Period, values of ρ , ρv , and
E were obtained at 660 point locations every 30 time-steps.
This data allowed spectra to be obtained. The time series
of ρ , ρv , and E at each of the 660 point locations are
available in a publicly accessible AWS S3 bucket with ARN
arn:aws:s3:::pyfr-mtu-t161-dns-data .
3. Results
3.1. Resolution
3.1.1. Boundary layer resolution

Fig. 3 plots variation of #y + = #y √
ρ τ /µ along the suction

side of the turbine blade surface, where #y is the normal distance
from the blade surface to the first solution point, ρ is the local
time-averaged density, and τ is the local time-averaged wall shear
stress. #y + < 1 at all locations. Hence, it is concluded that the
mesh resolution is sufficient for DNS of the boundary layer [21] .
3.1.2. Free-Stream resolution

An estimate of the Kolmogorov length scale η can be obtained
at each point in the computational domain, as can the charac-
teristic solution point spacing δ. Moving from the laminar flow
region on the suction side of the turbine blade into the turbu-
lent wake, the ratio δ/η is seen to grow monotonically, peaking

6

Motivation PyFR Approach ConclusionsRequirements

PyFR

Python + Flux Reconstruction

PyFR
• Features.

Governing Equations Compressible and incompressible Euler and Navier Stokes

Spatial Discretisation Arbitrary order Flux Reconstruction on curved mixed unstructured grids
(tris, quads, hexes, prisms, pyramids, tets)

Temporal Discretisation Explicit adaptive Runge-Kutta schemes and implicit SDIRK

Stabilisation Anti-aliasing, artificial viscosity, modal filtering, entropy filtering

Shock capturing Artificial viscosity and entropy filtering

Platforms x86 and ARM CPU clusters
AMD, Apple, Intel, and NVIDIA GPU clusters

Plugins
NaN checker, file writer, progress bar, fluid force, turbulence generation,
Ffowcs–Williams Hawkings, in-situ vis, time averaging, point sampler,
expression integrator

• High level structure.

PyFR

Translate
templated code
into low-level
hardware specific
code

Python Outer Layer
(Hardware Independent)

• Problem setup and I/O
• Outer ‘for’ loop schedules hardware specific kernels
• Distributed memory parallelism (MPI)

Matrix Multiply
Kernels

• Data
interpolation/
extrapolation
etc.

Point-Wise
Nonlinear Kernels

• Flux functions,
Riemann solvers
etc.

Metal for
Apple GPUs

HIP
for AMD

GPUs

OpenCL
for Intel GPUs

CUDA
for NVIDIA

GPUs

Compile, link, and load kernels at runtime Obtain Kernel

• Vendor BLAS
• libxsmm
• GiMMiKC/OpenMP

for CPUs

• Execute plugins for in-situ post processing

PyFR

• Employ a state-of-the-art
implementation.

• Use a task-graph structure internally.

• Make extensive use of run-time code
generation with auto-tuning.

8
gimmik_mm

10
gimmik_mm

7
gimmik_mm

9
gimmik_mm

1
gimmik_mm

3
MEMCPY
(UtoU,9216)

0
gimmik_mm

2
MEMCPY
(UtoU,24576)

4
intconu

5
bcconu

6
bcconu

11
gradcorulin

12
gradcorulin

13
gimmik_mm

14
gimmik_mm

16
gimmik_mm

17
gimmik_mm

15
EMPTY

19
intcflux

20
bccflux

21
bccflux

22
tfluxlin

18
EMPTY

23
tfluxlin

26
gimmik_mm

27
gimmik_mm

24
gimmik_mm

25
gimmik_mm

28
negdivconf

29
negdivconf

PyFR
• Enables heterogeneous computing from a homogeneous

code base.

Performance

• Consider a tetrahedral grid with degree seven solution
polynomials and explicit Navier–Stokes.

• Employ a mesh with 12 × 1053 elements.

• Use Frontier (AMD MI250X) and Alps (NVIDIA GH200).

Performance

• Measure performance in GDOF/s.

• Translation: if we have 109 DOF in our simulation and need
100,000 RK4 time steps to collect good statistics then our
runtime will be:

(109 × 105 × 4 / X) seconds.

Performance on Frontier
Pe

rf
or

m
an

ce
 G

D
O

F/
s

0

550

1100

1650

2200

2750

Ranks

0 256 512 768 1024 1280 1536 1792 2048

Ideal
80% scaling

16 ranks = 26 GDOF/s

Performance on Alps
Pe

rf
or

m
an

ce
 G

D
O

F/
s

0

1400

2800

4200

5600

7000

Ranks

0 256 512 768 1024 1280 1536 1792 2048

Ideal
80% scaling

16 ranks = 96 GDOF/s

Disk I/O

• Legacy format based around parallel HDF5.

• Separate mesh and solution files (good).

• Internal structure of mesh and solution files are
decomposition dependent (bad).

Motivation PyFR Approach ConclusionsRequirements

Requirements

• Our design specification for the new
format was based around five key
requirements.

Requirements: Archival

1. The format must be built upon a well established and self-
documenting archival-grade container.

• Aids in portability and ensures that files will in principle
remain readable for decades.

Requirements: Compact

2. Exhibit minimal redundancy except for when it greatly
improves usability or reduces processing time.

• Reduces storage and bandwidth requirements.

Requirements: Scalable

3. Be compatible with the ‘quirks’ of parallel file systems.

• Needed for scalability on leadership class machines.

Requirements: Robust

4. Capable of delivering good application performance even
in sub-optimal environments.

• User misconfiguration is common and storage is a shared
resource that is subject to frequent abuse by machine
learning jobs.

Requirements: Simple

5. Be simple enough to enable ad-hoc post processing
without bespoke middleware.

• Each simulation has its own post-processing requirements
and engineers all have their favourite languages (Python,
Julia, R, MATLAB, …).

Motivation PyFR Approach ConclusionsRequirements

Approach

• The most natural means of satisfying requirements 1
(archival) and 5 (simple) is with HDF5.

• While there are trendier formats (e.g. BP5) they are not as
widely deployed and lack the proven track record of HDF5.

Approach
• Requirement 2 (compact) strongly suggests decoupling the

geometry and the solution.

Mesh Solution

Approach

• As mesh files are write-once read-many and only used at
start-up they are comparatively easy to design.

• The two major considerations are:

• How are elements represented?

• How is connectivity represented or reconstructed?

Approach: Mesh

• A mesh is a collection of elements defined by nodes.

Quad
p = 1

Tri
p = 2

Quad
p = 3

Approach: Mesh

• Using quadratically curved triangles as an example the
most direct representation is:

struct {
 double locs[6][2];
} tris[Nt];

• However, it is also wasteful as many points are repeated.

Approach: Mesh
• A more efficient approach is to represent elements in terms

of node numbers whence:

double nodes[M][2];
struct {
 long locs[6];
} tris[Nt];

where M is the number of distinct nodes.

Approach: Mesh

• With this we have one array per element type indexing into
a single global nodes array.

• Number of nodes per element is fixed by the highest
degree of curvature.

Approach: Mesh
• While connectivity information can be derived from node

numbers alone this is extremely inefficient.

• It is hence better to embed the information whence:

struct {
 long locs[6];
 struct { short cidx; long off; } conn[3];
} tris[Nt];

Approach: Mesh

• The cidx is an index into a codec array which provides a
flexible means of stating what one is connected to:

codec = ['/eles/tri/0', '/eles/tri/1',
 '/eles/tri/2', ‘/bc/outflow’, …];

• For all non-boundary connections off is the offset into the
connected elements array.

Approach: Mesh
• Parallel decompositions can be specified as a single array

of element numbers.

• For example with a three partition mesh with quads and
tris:

r0 r1 r2

Quad numbers Tri numbers

Approach: Mesh

• The elements arrays can be efficiently read by having each
rank read a contiguous chunk of each array.

• An Alltoallv can then be used to redistribute the data.

• This approach can also be used for reading the nodes.

Approach: Mesh

• In parallel it is also necessary to
construct cross-partition
interface connectivity arrays.

• For each face on a partition
boundary we need to determine
which rank has its neighbour.

Figure 1: Quadrilateral mesh with sub-partitions small enough to fit into CPU L2 cache.

2. Flux Reconstruction and Kernels55

First, an overview of the FR approach for solving the Euler equations is

presented. Further details of the FR method can be found elsewhere [2]. Then,

kernel breakdown of the FR method, data structure, and current kernel execu-

tion order in PyFR v1.11.0 [4] are defined.

2.1. Flux Reconstruction60

The Euler equations can be written in conservative form as,

@u↵

@t
+r · f↵ = 0, (1)

where ↵ is the field variable index, u↵ = u↵(x, t) are the conservative field

variables, and f = f(u) is the Euler flux which is defined as,

f(u) =

2

6666666664

⇢u

⇢u2 + p

⇢uv

⇢uw

u(E + p)

3

7777777775

i+

2

6666666664

⇢v

⇢uv

⇢v2 + p

⇢vw

v(E + p)

3

7777777775

j+

2

6666666664

⇢w

⇢wu

⇢wv

⇢w2 + p

w(E + p)

3

7777777775

k, (2)

where ⇢ is density, u, v, w are velocity, p is pressure, E is total energy per

unit volume, and i, j,k are orthogonal unit vectors. The relation between the65

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Approach: Mesh

• Simplest solution is for each rank to maintain a list of
unpaired faces.

• This list can then be distributed with an Allgatherv.

• Ranks can then see which of these faces they have and
respond accordingly via an Alltoallv.

Approach: Mesh

• This approach does not scale,
however, and breaks down in the
limit of one-element per rank.

• A neat fix for this is to augment
the partitioning array with its
neighbour connectivity graph.

Figure 1: Quadrilateral mesh with sub-partitions small enough to fit into CPU L2 cache.

2. Flux Reconstruction and Kernels55

First, an overview of the FR approach for solving the Euler equations is

presented. Further details of the FR method can be found elsewhere [2]. Then,

kernel breakdown of the FR method, data structure, and current kernel execu-

tion order in PyFR v1.11.0 [4] are defined.

2.1. Flux Reconstruction60

The Euler equations can be written in conservative form as,

@u↵

@t
+r · f↵ = 0, (1)

where ↵ is the field variable index, u↵ = u↵(x, t) are the conservative field

variables, and f = f(u) is the Euler flux which is defined as,

f(u) =

2

6666666664

⇢u

⇢u2 + p

⇢uv

⇢uw

u(E + p)

3

7777777775

i+

2

6666666664

⇢v

⇢uv

⇢v2 + p

⇢vw

v(E + p)

3

7777777775

j+

2

6666666664

⇢w

⇢wu

⇢wv

⇢w2 + p

w(E + p)

3

7777777775

k, (2)

where ⇢ is density, u, v, w are velocity, p is pressure, E is total energy per

unit volume, and i, j,k are orthogonal unit vectors. The relation between the65

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Approach: Mesh

• This graph can be passed to Neighbor_allgatherv from
MPI-3 such that only partitions we’re actually connected to
receive our unpaired faces.

• For a well partitioned mesh the number of neighbours is

 and thus the approach scales.𝒪(1)

Approach: Solution

• With the mesh handled we now turn our attention to
solution files which are write-once read-sometimes.

• Hence, our goal is to maximise the speed at which they
can be written out to disk.

• This requires a short interlude on parallel file systems.

Approach: Lustre

• One of the more infamous parallel file systems is Lustre.

• It is loved by users and sysadmins alike!

Approach: Lustre

• A useful mental model is that of RAID 0.

• Instead of disks we have object storage targets (OST’s).

• Moreover, the number of OST’s and the stripe size is
configurable on a per-file basis.

Approach: Lustre

• 6 OST’s.

• 32 MiB file.

• 4 MiB stripe size.

• 3 stripes.

Approach: Lustre

• This architecture allows I/O bandwidth to be scaled by
adding more OST’s.

• Of course to fully exploit this we almost certainly need to
have multiple nodes writing simultaneously.

Approach: Lustre

• Unfortunately several ‘quirks’ of Lustre
make achieving high throughput
frustratingly difficult.

Approach: Lustre

1. Default stripe counts are often inadequate.

• It is not uncommon for files to default to a single stripe.

• Hence, unless the user knows how to use lfs
performance will be poor.

Approach: Lustre

2. Its baroque locking protocol can easily lead to thrashing—
even when writes do not overlap.

• Given acquiring and relinquishing locks is expensive this
can destroy performance.

• Not uncommon for multiple independent writers to
deliver lower throughput than a single writer.

Approach: Lustre

• The most obvious means of avoiding these issues is to have
each node write out its own file.

• This completely sidesteps the locking issue and since files
are usually assigned an OST at random having a single
stripe is not an issue.

Approach: Lustre

• Data from Moore et al.
(2018).

• 192 ranks.

• 24 OSTs.

• POSIX I/O.
B

an
dw

id
th

 G
B

/s
0

25

50

75

100

Transfer size MiB/s

1 4 16 64 256

File per process
Single shared file

Approach: Lustre

• This is not a workable solution, however.

• Firstly, having solutions split across many files goes against
requirement 5 (simple).

• Secondly, and more importantly, it doesn’t scale…

Approach: Lustre

3. Its metadata performance is awful.

• Often an order of magnitude worse than NFS.

• Practically limited to ~1,000 files per directory.

Approach: Lustre

• We could try for a hybrid solution where a small number of
ranks share a file.

• But, this isn’t simple and leaves us with a tunable.

• So, the question becomes how can we resolve issues 1 and
2 such that a single file is viable?

Approach: Lustre

PyFRHDF5MPI-IOPOSIXKernel

Lustre

• The source of these issues are due to the imperative rather
then declarative nature of our I/O libraries.

Approach: Solution

• By taking full ownership of the I/O stack stripe count and
size issues can be trivially resolved.

• We know how big our solution file will be so can simply
have the root rank ensure it is created properly.

• Can even be done with raw ioctl’s to avoid a dependency
on the Lustre library.

Approach: Solution
// On the root rank
int fd = open(path, O_CREAT | O_EXCL | O_WRONLY |
 O_LOV_DELAY_CREATE);
struct lov_user_md opts = {
 .lmm_magic = LOV_USER_MAGIC,
 .lmm_stripe_size = 128*1024*1024,
 .lmm_stripe_count = -1,
};
ioctl(fd, LL_IOC_LOV_SETSTRIPE, &opts);

Approach: Solution
• The root rank can then reopen the file with serial HDF5 to

stub out the relevant solution arrays.

• Then, the on-disk offset of each array can be queried and
broadcast to all other ranks.

Decomposition independent solution file

Quad data Tri data

Approach: Solution

• The locking issues can be avoided by having all ranks
acquire a group lock.

• This comes at the cost of POSIX semantics but given our
use case is write only this is not an issue…

• …although it is an issue for MPI-IO and HDF5.

Approach: Solution

// On each rank
int fd = open(path, O_RDWR);
ioctl(fd, LL_IOC_GROUP_LOCK, group_id);

// Write out our portion of each array
pwrite(fd, quad_buf, quad_size, quad_off);
pwrite(fd, tri_buf, tri_size, tri_off);

Approach: Solution

• Further, as we control the stack we can improve robustness
by spawning a thread to issue the write calls.

• This gives us guaranteed asynchronous I/O.

• Cf. OpenMPI.

Approach: Solution

• With this I/O is no longer in the critical path.

• This makes us extremely robust to abused or under-
provisioned file systems.

Approach: Solution

• This I/O stack also has packaging benefits.

• Being in Python we use h5py for wrapping HDF5.

• This is often installed with pip install h5py which
bundles its own version of HDF5.

• This bundled version is typically a serial build.

Approach: Solution

• Preliminary results compared with our existing parallel
HDF5 file format in terms of wall-clock time reductions:

• ~5% for I/O lite simulations on well-configured systems.

• ~15% for I/O heavy simulations in sub-optimal
environments.

Motivation PyFR Approach ConclusionsRequirements

Conclusions

• Have described a high-performance file format suitable for
exascale discontinuous spectral element simulations.

• Outlined techniques for avoiding typical I/O pitfalls to
enable scalable single-file operation.

• Code available in the develop branch of PyFR.

Acknowledgements

• Air Force Office of Scientific Research for support
under grant FA9550-23-1-0232.

Backup Slides

File Creation
• Consider the following snippet:

❯ cat create.py
import h5py

with h5py.File('file.h5', 'w') as f:
 r = f.create_dataset('r', shape=(2**36))
 r[-1] = 0.0

❯ time python create.py
python create.py … 0.101s total

