OpenParEM3D

Electromagnetic Simulator

Brian Young
January 9, 2024

Agenda

- Motivation
- Features
- S-parameters
- 3D FEM setup
- Adaptive mesh refinement
- Examples and discussion
- Regression suites
- Conclusion

Motivation

- Lack of a free or very low-cost frequency-domain S-parameter electromagnetic simulator inhibits exploration of new ideas and development of new products
- Target audience
- Engineers wanting to explore ideas at home
- Continuing education
- Students
- Small startups
- Feasibility
- Leverage existing open-source projects
- CAD (FreeCAD), meshing (gmsh), FEM (MFEM), visualization (ParaView)
- "Just" need to glue it all together

Features

- Full-wave time-harmonic 3D electromagnetic simulator
- Computing
- Electric and magnetic fields
- S-parameters between 2D ports on the surface of the 3D space
- Arbitrary high-order elements
- courtesy of MFEM, ParaView [up to $6^{\text {th }}$ order]
- Parallel processing via MPI
- courtesy of MFEM, PETSc, and SLEPc plus custom code
- Adaptive mesh refinement
- courtesy of MFEM plus custom code
- TBD: impedance boundary condition for conductor losses and antennas

S-parameters

- "S-parameters" is short for "scattering parameters"
- Links incident and reflected waves at the ports of a 3D volume
- Dominant in engineering to include electromagnetic results in circuit simulations and for performance analyses
- A "must have" output for a practical simulator

S-parameter Matrix Extraction

Propagating waves are modes on transmission lines or waveguides feeding N ports.

a_{i} is the incident wave to port i b_{i} is the reflected wave from port i

S-parameter matrix
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{N}\end{array}\right|=\left|\begin{array}{llll}S_{11} & S_{12} & \cdots & S_{1 \mathrm{~N}} \\ S_{21} & S_{22} & \cdots & S_{2 \mathrm{~N}} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N 1} & S_{N 2} & \cdots & S_{N N}\end{array}\right|\left|\begin{array}{l}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right|$

- Define ports - 2D (flat) on surface of 3D space
- Solve 1 column at a time
- Drive port i such that $\mathrm{a}_{\mathrm{i}} \neq 0$
- Apply absorbing boundary condition on all other ports, then $a_{k}=0$ for $k \neq i$
- Solve the 3D problem N times for $\mathrm{i}=1, . ., \mathrm{N}$
- Separate a_{i} and b_{i} at the driven port
- Output frequency-dependent S-parameters in Touchstone file format

Driving a_{i}

Port i: 2D simulation for fields, α, β, Z_{0}

Port k: absorbing boundary

- MFEM's ParSubMesh functionality is used to extract 2D meshes
- A 2D simulation is run for each port with OpenParEM2D*
- The 2D field solution for port i is applied to the 3D space, forcing the 3D fields at the port to take the 2D configuration
- An absorbing boundary condition is applied at the other ports
- 3D electromagnetic simulation is run
- Repeat for each port
- Extract S-paramters (more later)

3D FEM Setup

- Weak form of the wave equation in \bar{E}

$$
\iiint_{\Omega} \frac{1}{u_{r}} \nabla \times \bar{E} \cdot \nabla \times \bar{W} d V-k_{0}^{2} \iiint_{\Omega} \epsilon_{r} \bar{E} \cdot \bar{W} d V+\iint_{s} \frac{1}{\bar{u}_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S=0
$$

MFEM
CurlCurlIntegrator
MFEM
VectorFEMassIntegrator
Surface of the 3D space

- Separate the surface integral
$\iint_{S} \frac{1}{\mu_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S=\iint_{S_{b}} \frac{1}{\mu_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S+\sum_{i=1}^{N} \iint_{S_{p i}} \frac{1}{\mu_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S$
PEC and/or PMC boundary
N ports
Apply BC directly to the matrix [DOF=0 for PEC, keep DOF for PMC]

2D Port Setup on Surface

- Setup of the surface integral (from prior slide)

$$
\iint_{S} \frac{1}{\mu_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S=\iint_{S_{s}} \frac{1}{\mu_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S+\sum_{i=1}^{N} \iint_{S_{S_{0}}} \frac{1}{\bar{\mu}_{r}} \hat{n} \times \nabla \times \bar{E} \cdot \bar{W} d S
$$

- Apply a propagating assumption at the ports
- A first-order absorbing boundary condition

$$
\begin{aligned}
\hat{n} \times \nabla \times \bar{E} & =-\frac{\partial \overline{E_{t}}}{\partial n}+\nabla_{t} E_{n} \\
& =\gamma \overline{E_{t}}+\nabla_{t} E_{n}
\end{aligned} \quad \begin{aligned}
& \text { Identity } \\
& \\
& \\
& \text { MFEM }
\end{aligned} \begin{aligned}
& \text { Assumption } \frac{\partial \overline{E_{t}}}{\partial n}=\frac{\partial \bar{E}(t) \mathrm{e}_{t}^{-\gamma n}}{\partial n}=-\gamma \bar{E}(t)
\end{aligned}
$$

On the Neglected Gradient Term

- On the port boundaries, the gradient term of the normal component is neglected
- A zero gradient of a non-zero E_{n} is not physically realizable
- This means that it is assumed that $\mathrm{E}_{\mathrm{n}}=0$
- The implemented boundary condition strictly only applies to transverse electric modes (TE and TEM)
- TE and TEM cases dominate problems of interest. These include microstrip, stripline, coax, triax, slot line, coplanar waveguide, the TE10 mode in rectangular waveguide, and generally, any N -conductor transmission line
- So the TE restriction in practice is not significantly limiting
- Non-TE modes suffer field distortion at the port leading to a reflection
- Non-TE modes at the boundaries can be supported by using TE modes at the ports with 3D transitions to the required non-TE ports followed by de-embedding (like lab measurements)
- For quasi- TE and TEM modes, E_{n} is small compared to E_{t}
- The error caused by the reflection is determined by the strength of E_{n}
- For quasi- TE and TEM modes, the reduction in accuracy may be acceptable
- Future work is needed to relax this restriction, for example, by including the gradient term or by implementing a perfectly matched layer (PML) boundary condition

Top-Level Implementation Details

Start Here

ParMixedBilinearForm
\rightarrow HypreParMatrix

3D ParMesh
hypre_ParCSRMatrixToMat() \rightarrow
Δ

OpenParEM2D
frequency domain is inherently complex MFEM does not support complex

Custom system construction

- Apply known port DOFs
- Apply PEC BC
- Form linear system

Complex Ax=b solve in PETSc*

Custom fill of Re and Im ParGridFunctions

∇

Solve for H and fill Re and Im ParGridFunctions [Similar flow as for E]

Solve S-parameters
Export for ParaView

* A real formulation was tried in MFEM, but poor convergence was observed. For background, see David Day and Mike Heroux, "Solving Complex-valued Linear Systems via Equivalent Real Formulations", report from Sandia National Laboratories, May 9, 2000. There is a later SIAM paper based on this work.

S_{ij} : Separating a_{i} and b_{i}

- At this point, the 3D fields for \bar{E} and $\overline{\mathrm{H}}$ are computed.
- The E-field from the 2D port simulation was applied at port i [i.e. the driving port]
- Cannot differentiate \bar{E}^{+}from \bar{E}^{-}just from the port i Efield.
- Requires \bar{H} to separate the two
- Just use the tangential components since they dominate in practical applications

At Port i, the Driving Port

$\overline{E_{t i}}=C_{1 i} \overline{E_{t i}^{\dagger}}+C_{2 i} \overline{E_{t i}^{-}} \longleftarrow$ Split with weights
$\iint_{S_{i}} \overline{E_{t i}^{-*}} \cdot \overline{E_{t i}} d S=C_{1 i} \iint_{S_{i}} \overline{E_{t i}^{-*}} \cdot \overline{E_{t i}^{\mp}} d S+C_{2 i} \iint_{S_{i}} \overline{E_{t i}^{-*}} \cdot \overline{E_{t i}^{-}} d S \longleftarrow \begin{aligned} & \text { Inner products } \\ & \text { supported by MFEM }\end{aligned}$
$\overline{E_{t i}^{-}}=\overline{E_{t i}^{+}}$
$\iint_{S_{i}} \overline{E_{t i}^{+*}} \cdot \overline{E_{t i}} d S=C_{1 \mathrm{i}} \iint_{S_{i}} \overline{E_{t i}^{+*}} \cdot \overline{E_{t i}^{\mp}} d S+C_{2 \mathrm{i}} \iint_{S_{i}} \overline{E_{t i}^{+*}} \cdot \overline{E_{t i}^{+}} d S \quad \rightarrow e_{0 \mathrm{i}}=\left(C_{1 \mathrm{i}}+C_{2 \mathrm{i}}\right) e_{2 \mathrm{i}}$
$\overline{H_{t i}}=C_{1 \mathrm{i}} \overline{H_{t i}^{\dagger}}+C_{2 i} \overline{H_{t i}} \longleftarrow$ Same mode, same weights
$\iint_{S_{i}} \overline{H_{t i}^{-*}} \cdot \overline{H_{t i}} d S=C_{1 i} \iint_{S_{i}} \overline{H_{t i}^{-*}} \overline{H_{t i}^{+}} d S+C_{2 i} \iint_{S_{i}} \overline{H_{t i}^{-*}} \cdot \overline{H_{t i}} d S$
$\overline{H_{t i}}=-\overline{H_{t i}^{+}} \longleftarrow$ Note the change in sign

$$
\begin{aligned}
& C_{1 \mathrm{i}}=\frac{1}{2}\left|\frac{e_{0 \mathrm{i}}}{e_{2 \mathrm{i}}}+\frac{h_{0 \mathrm{i}}}{h_{2 \mathrm{i}}}\right| \\
& C_{2 \mathrm{i}}=\frac{1}{2}\left|\frac{e_{0 \mathrm{i}}}{e_{2 \mathrm{i}}}-\frac{h_{0 \mathrm{i}}}{h_{2 \mathrm{i}}}\right|
\end{aligned}
$$

$\iint_{S_{i}} \overline{H_{t i}^{+*}} \cdot \overline{H_{t i}} d S=C_{1 \mathrm{i}} \iint_{S_{i}} \overline{H_{t i}^{+*}} \cdot \overline{H_{t i}^{+}} d S-C_{2 \mathrm{i}} \iint_{S_{i}} \overline{H_{t i}^{+*}} \cdot \overline{H_{t i}^{+}} d S \rightarrow h_{0 \mathrm{i}}=\left(C_{1 \mathrm{i}}-C_{2 \mathrm{i}}\right) h_{2 \mathrm{i}}$

- E^{+}is the +z direction in OpenParEM2D
- Away from the 3D space, so related to b
- $\overline{\mathrm{E}}^{-}$is then related to a
- Voltage wave relationships to S: $a_{i}=\frac{V_{i}^{+}}{\sqrt{Z_{0 i}}} \quad b_{i}=\frac{V_{i}^{-}}{\sqrt{Z_{o i}}}$
- Proportional to the weights: (field structure is the same)

$$
a_{i}=\frac{C_{2 i}}{\sqrt{Z_{o i}}} \quad b_{i}=\frac{C_{1 i}}{\sqrt{Z_{o i}}}
$$

- $S_{i j}$:

$$
S_{i i}=\frac{b_{i}}{a_{i}}=\left|\frac{e_{0 \mathrm{i}}}{e_{2 \mathrm{i}}}+\frac{h_{0 \mathrm{i}}}{h_{2 \mathrm{i}}}\right| /\left|\frac{e_{0 \mathrm{i}}}{e_{2 \mathrm{i}}}-\frac{h_{0 \mathrm{i}}}{h_{2 \mathrm{i}}}\right|
$$

- Use direct calculation with voltages*

Integrate at the output port (no reverse wave): $V_{j}^{+}=V_{j}$
$S_{j i}=\frac{b_{j}}{a_{i}}=\left(\frac{V_{j}^{+}}{\sqrt{Z_{o j}}}\right) /\left(\frac{V_{i}^{-}}{\sqrt{Z_{o i}}}\right) \quad \begin{aligned} & \text { Integrate at the input port, then } \\ & \text { take the fraction traveling } \\ & \text { towards the 3D space: }\end{aligned} \quad V_{i}^{-}=C$

- S_{j} :

$$
S_{j i}=\frac{b_{j}}{a_{i}}=\left|\frac{V_{j}}{\sqrt{Z_{o j}}}\right| /\left|\frac{C_{2 i} V_{i}}{\sqrt{Z_{o i}}}\right|
$$

* Can also use currents, which is a future upgrade, to enable the power/current definition of Z_{o}.

Adaptive Mesh Refinement (AMR)

- Follows the setup used in the MFEM Tesla miniapp
- CurlCurlintegrator on \bar{E}, RT elements for flux, and ND elements for smoothed flux
- Merge errors from both $\operatorname{Re}(\overline{\mathrm{E}})$ and $\operatorname{Im}(\overline{\mathrm{E}})$
- Extract errors from several solutions
- Per driven port
- Combine across all driven ports
- Apply threshold refinement with a cap on the number of elements to refine
- Refine using ParMesh::GeneralRefinement
- Convergence test is on S. Calculate an error criteria at the Nth iteration
- error=max column norm $\left\{\bar{S}_{N}{ }^{-1}\left(\bar{S}_{N} \bar{S}_{N-1}\right)\right\}$
- Options for sequential number of iterations that must meet the convergence criteria
- Options for AMR at multiple frequencies
- Issue? Degradation of mesh quality with each iteration, especially at ports

Examples and Discussion

WR90 Loaded Rectangular Waveguide

- Exact solution
- |S11| in dB $\rightarrow-\infty$
- phase shift from highresolution OpenParEM2D simulation
- High accuracy with regular improvement to a very low noise floor

P Convergence at 8.3 GHz

Self Consistency and Run Time

h-Convergence with AMR

- WR90 loaded rectangular waveguide at 8.3 GHz
- Effective AMR
- Accuracy improves with AMR and FEM order
- Favor FEM order over iterations

WR75 with Dielectric Puck

- Solve with and without AMR
- $2^{\text {nd }}$ order, AMR: 575 s
- $4^{\text {th }}$ order: 968 s
- Excellent agreement between runs with and without AMR
- Excellent agreement between this and prior work

Port 1
$\epsilon_{r}=6$
Refinement focussed on the puck

at 10 GHz

No AMR: max edge length $=0.825 \lambda$ AMR: max edge length $=0.230 \lambda$

$$
\operatorname{Re}(|\bar{E}|)
$$

- K. Ise, K. Inoue, and M. Koshiba, "Three-Dimensional Finite-Element Solution of Dielectric Scattering Obstacles in a Rectangular Waveguide," IEEE Trans. Microwave Theory and Techniques, vol. 38, no. 9, Sept. 1990, pp. 1352-1359.
- K. Hirayama, Md. Alam, Y. Hayashi, and M. Koshiba, "Vector Finite Element Method with Mixed-Interpolation-Type TriangularPrism Element for Waveguide Discontinuities", IEEE Trans. Microwave Theory and Techniques, vol. 42, no. 12, Dec. 1994, pp. 2311-2316.

Port 2

Port 1

WR75 Waveguide T-Junction

- WR75 lossless waveguide splitting to two half-height waveguides for an even power split
- $4^{\text {th }}$ order elements with no adaptive refinement
- Excellent agreement between this work and the referenced paper

- F. Alessandri, M. Dionigi, and R. Rorrentino, "Rigorous Analysis of Compensated E-plane Junctions in Rectangular Waveguide," 1995 IEEE MTT-S Digest, pp. 987-990.

Microstrip Bridge

- Microstrip on GaAs bridging across a gap through a block of variable dielectric constant material
- $5^{\text {ti }}$ order elements with no adaptive refinement
- Use the same mesh throughout
- Excellent agreement between this work and the referenced paper

- J.-S. Wang, and R. Mittra, "Finite Element Analysis of MMIC Structures and Electronic Packages Using Absorbing Boundary Conditions," IEEE. Trans. Microwave Theory and Techniques, vol. 42, no. 3, March 1994, pp. 441-449.

Slotline Step

- $1 / 2$ slotline on symmetry
- substrate with $\varepsilon_{\mathrm{r}}=2.22$
- 3rd order finite elements with 11 passes of AMR at 35 GHz with 0.001 convergence criteria
- Excellent agreement between this work and the referenced paper

- K. Hirayama, Md. Alam, Y. Hayashi, and M. Koshiba, "Vector Finite Element Method with Mixed-Interpolation-Type Triangular-Prism Element for Waveguide Discontinuities," IEEE Trans. Microwave Theory and Techniques, vol. 42, no. 12, Dec. 1994, pp. 2311-2316.

Microstrip Filter

- Simulation with dielectric losses only
- conductor losses not yet supported
- $2^{\text {nd }}$ order elements
- AMR with 9 iterations at 4 GHz with 0.02 convergence criteria
- Good agreement considering the differences in losses

$|\operatorname{Re}(\mathrm{H})|$ @ 2.5 GHz

[^0]
Regression Suites

- Automated
- With and without AMR
- OpenParEM2D
- 27 test cases
- Microstrip, stripline, coax, rectangular waveguide, loaded rectangular waveguide
- 43,738 checks
- OpenParEM3D
- 17 test cases
- Microstrip, slotline, rectangular waveguide, loaded rectangular waveguide
- Orientation variations (i.e. rotations in space)
- 390 checks

Conclusions

- An effective 3D full-wave time-harmonic EM simulator for the calculation of S-parameters is outlined and demonstrated to produce high accuracy
- Lack of support for the gradient term $\nabla_{t} E_{n}$ on boundaries has two consequences
- non-TE modes at ports require de-embedding (should be rare)
- 2X run-time increase to separate forward and backward waves at the driving port due to the need to calculate \bar{H}
- To Do
- Add impedance boundary condition for losses and antennas
- Add PML for absorbing boundary condition at ports
- Write documentation
- Release

Thanks to LLNL's Mark Stowell for many very helpful email exchanges.

[^0]: 1 W.-C. Weng, "Design and Optimization of Compact Microstrip Wideband Bandpass Filter Using Taguchi's Method," IEEE Open Access Journal, vol. 10, 2022, pp. 107242-107249.

