Ċ

The University of Texas at Austin Oden Institute for Computational Engineering and Sciences

#### Axisymmetric MFEM-based solvers for the compressible Navier-Stokes equations and other problems

Raphaël Zanella MFEM Seminar · March 1, 2022



# Outline

Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

Conclusion





# Outline

#### Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

Conclusion





# Motivation for an axisymmetric model



Plasma torch



Transformer axisymmetric model

- System and external action roughly axisymmetric
- Non-axisymmetric effects expected to be small

ODEN INSTITUTE

- Highly accurate solution is not a priority (UQ, sensitivity analysis, ...)
- $\rightarrow$  Axisymmetric modeling and significant cut in the computational cost



# Outline

Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

Conclusion





# Problem description

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = u_b & \text{on } \partial \Omega \end{cases}$$

 $\Omega$ : axisymmetric domain u: unknown solution field

- f: axisymmetric source term
- $u_b$ : axisymmetric boundary value





### Axisymmetric approximation spaces



#### Notations

 $\begin{array}{l} \mathcal{T}_h\colon \text{mesh of }\Omega^{2D}\\ p\in\mathbb{N}^*\colon \text{order of the polynomial approximation}\\ \partial\Omega^{2D}_{ext}=\partial\Omega\cap\overline{\Omega^{2D}} \end{array}$ 

**Trial space** 

$$V^{2D} = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega^{2D}}; \mathbb{R}\right); v_h|_K \in \mathbb{P}_p, \forall K \in \mathcal{T}_h \right\}$$
$$V = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \exists v_h^{2D} \in V^{2D}; v_h(r, \theta, z) = v_h^{2D}(r, z), \forall (r, \theta, z) \right\}$$

Test space

$$V_0^{2D} = \left\{ v_h \in V^{2D}; v_h = 0 \text{ on } \partial \Omega_{ext}^{2D} \right\}$$
$$V_0 = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \exists v_h^{2D} \in V_0^{2D}; v_h(r, \theta, z) = v_h^{2D}(r, z), \forall (r, \theta, z) \right\}$$
Note:  $\forall v_h \in V_0, v_h = 0 \text{ on } \partial \Omega$ 



#### Axisymmetric weak formulation



Find  $u_h \in V$  such that

 $\begin{cases} \displaystyle \int_{\Omega} \nabla u_h \cdot \nabla v_h dV = \int_{\Omega} f v_h dV, \ \forall v_h \in V_0 \\ u_h = u_{bh} \text{ on } \partial \Omega \end{cases}$ 

 $u_{bh}$ : approximation of  $u_b$  in V

 $\Leftrightarrow$ 

Find  $u_h^{2D} \in V^{2D}$  such that

$$\begin{cases} \int_{\Omega^{2D}} r \nabla u_h^{2D} \cdot \nabla v_h^{2D} dS = \int_{\Omega^{2D}} r f v_h^{2D} dS, \ \forall v_h^{2D} \in V_0^{2D} \\ u_h^{2D} = u_{bh}^{2D} \ \text{on} \ \partial \Omega_{ext}^{2D} \end{cases}$$

 $\forall F \text{ axisymmetric},$ 

ODEN INSTITUTE

$$\int_{\Omega} F(r,\theta,z) dV = 2\pi \int_{\Omega^2 D} r F(r,z) dS$$

$$u^{2D}_{bh}:$$
 approximation of  $u_{b\mid\Omega^{2D}}$  in  $V^{2D}$ 



#### Convergence test on manufactured solution

Manufactured solution:  $u(r, \theta, z) = (r^2(\sin(2\pi r) - 1) + 0.25)\sin(2\pi z) + 1$ 





## Addition of Neumann boundary conditions

$$\begin{cases} -\Delta u = f & \text{in } \Omega\\ u = u_b & \text{on } \partial \Omega_d\\ \overline{\nabla u \cdot \mathbf{n}} = g & \text{on } \partial \Omega_n \end{cases}$$

 $\Omega$ : axisymmetric domain u: unknown solution field f: axisymmetric source term  $u_b$ : axisymmetric boundary value g: axisymmetric boundary flux





### Axisymmetric approximation spaces



#### Notations

 $\begin{array}{l} \mathcal{T}_h\colon \text{mesh of }\Omega^{2D}\\ p\in\mathbb{N}^*\colon \text{order of the polynomial approximation}\\ \partial\Omega^{2D}_d=\partial\Omega_d\cap\overline{\Omega^{2D}}, \ \partial\Omega^{2D}_n=\partial\Omega_n\cap\overline{\Omega^{2D}} \end{array}$ 

**Trial space** 

$$V^{2D} = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega^{2D}}; \mathbb{R}\right); v_h|_K \in \mathbb{P}_p, \forall K \in \mathcal{T}_h \right\}$$
$$V = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \exists v_h^{2D} \in V^{2D}; v_h(r, \theta, z) = v_h^{2D}(r, z), \forall (r, \theta, z) \right\}$$

Test space

$$V_0^{2D} = \left\{ v_h \in V^{2D}; v_h = 0 \text{ on } \partial \Omega_d^{2D} \right\}$$
$$V_0 = \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \exists v_h^{2D} \in V_0^{2D}; v_h(r, \theta, z) = v_h^{2D}(r, z), \forall (r, \theta, z) \right\}$$
Note:  $\forall v_h \in V_0, v_h = 0 \text{ on } \partial \Omega_d$ 



#### Axisymmetric weak formulation



 $\forall F \text{ axisymmetric},$ 

ODEN INSTITUTE

Find  $u_h \in V$  such that

$$\begin{cases} \int_{\Omega} \nabla u_h \cdot \nabla v_h dV = \int_{\Omega} f v_h dV + \int_{\partial \Omega_n} g v dS, \ \forall v_h \in V_0 \\ u_h = u_{bh} \text{ on } \partial \Omega_d^{2D} \end{cases}$$

 $u_{bh}$ : approximation of  $u_b$  in V

 $\Leftrightarrow$ 

Find  $u_h^{2D} \in V^{2D}$  such that

$$\begin{cases} \int_{\Omega^{2D}} r \nabla u_h^{2D} \cdot \nabla v_h^{2D} \, dS = \int_{\Omega^{2D}} r f v_h^{2D} \, dS + \int_{\partial \Omega_h^{2D}} r g v^{2D} \, dL, \ \forall v_h^{2D} \in V_0^{2D} \\ u_h^{2D} = u_{bh}^{bh} \ \text{on} \ \partial \Omega_d^{2D} \end{cases}$$

$$\int_{\partial\Omega_n} F(r,\theta,z) dS = 2\pi \int_{\partial\Omega_n^{2D}} rF(r,z) dL \quad u_{bh}^{2D} \colon \text{approximation of } u_{b\mid\Omega^{2D}} \text{ in } V^{2D}$$

#### Convergence test on manufactured solution

Manufactured solution:  $u(r, \theta, z) = (r^2(\sin(2\pi r) - 1) + 0.25)\sin(2\pi z) + 1$ 





# Outline

Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

Conclusion





# Problem description

$$\begin{cases} \partial_t u - \nabla \cdot (\kappa \nabla u) = f & \text{ in } \Omega \times [0,T] \\ u = 0 & \text{ on } \partial \Omega \times [0,T] \\ u_{|t=0} = u_0 & \text{ in } \Omega \end{cases}$$

- $\Omega:$  axisymmetric domain
- u: unknown solution field
- $\kappa$ : diffusivity parameter
- *f*: axisymmetric source term
- $u_0$ : axisymmetric initial condition



#### Axisymmetric weak formulation



 $\forall F \text{ axisymmetric},$ 

ODEN INSTITUTE

$$\int_{\Omega} F(r,\theta,z) dV = 2\pi \int_{\Omega^{2D}} r F(r,z) dS$$

$$\begin{split} V &= \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \, \exists v_h^{2D} \in V^{2D}; \, v_h(r, \theta, z) = v_h^{2D}(r, z), \, \forall (r, \theta, z) \right\} \\ V^{2D} &= \left\{ v_h \in \mathcal{C}^0\left(\overline{\Omega^{2D}}; \mathbb{R}\right); \, v_h|_K \in \mathbb{P}_p, \, \forall K \in \mathcal{T}_h, \text{ and } v_h = 0 \text{ on } \partial \Omega_{ext}^{2D} \right\} \end{split}$$

 $p \in \mathbb{N}^*$ : order of the polynomial approximation,  $\mathcal{T}_h$ : mesh of  $\Omega^{2D}$ 

Find  $u_h \in \mathcal{C}^1([0,T];V)$  such that

$$\begin{cases} \int_{\Omega} \frac{du_h}{dt}(t)v_h dV + \int_{\Omega} \kappa \nabla u_h(t) \cdot \nabla v_h dV = \int_{\Omega} f(t)v_h dV, \ \forall t \in [0,T], \ \forall v_h \in V \\ u_h(0) = u_{0h} \in V \end{cases}$$

 $\Leftrightarrow$  Find  $u_{h}^{2D} \in \mathcal{C}^{1}([0,T];V^{2D})$  such that

$$\begin{split} & \int_{\Omega^{2D}} \frac{du_{h}^{2D}}{dt}(t) v_{h}^{2D} r dS + \int_{\Omega^{2D}} \kappa \nabla u_{h}^{2D}(t) \cdot \nabla v_{h}^{2D} r dS = \int_{\Omega^{2D}} f(t) v_{h}^{2D} r dS, \\ & \forall t \in [0,T], \ \forall v_{h}^{2D} \in V^{2D} \\ u_{h}^{2D}(0) = u_{0h}^{2D} \in V^{2D} \end{split}$$

#### Mesh size convergence test

Manufactured solution:  $u(r, \theta, z) = ((r^2(\sin(2\pi r) - 1) + 0.25)\sin(2\pi z) + 1)t$ 





#### Time step convergence test

Manufactured solution:  $u(r, \theta, z) = 4 \left(1 - \left(\frac{r}{0.5}\right)^2\right) z(1-z) \cos(2\pi t)$ 





# Axisymmetric versus 3D formulation I

Tetrahedral mesh (same h)

Axisymmetric computation Triangular mesh



3D computation





۵Y

7

# Axisymmetric versus 3D formulation II



Quasi-identical results but axisymmetric code much faster (speedup  $\propto 1/h)$  due to the use of a 2D mesh instead of a 3D mesh





# Outline

Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

Conclusion

ODEN INSTITUTE



### Motivation: air flow in a plasma torch







System roughly axisymmetric Gas injected tangentially  $\rightarrow$  Axisymmetric model taking into account  $u_{\theta}$ 



#### Governing equations I

Compressible Navier-Stokes equations in cylindrical coordinates  $(r, \theta, z)$  with  $\frac{\partial}{\partial \theta} = 0$ :

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{1}{r} \frac{\partial r \rho u_r}{\partial r} + \frac{\partial \rho u_z}{\partial z} = 0 \\ \frac{\partial \rho u_r}{\partial t} &+ \frac{\partial \rho u_r u_r}{\partial r} + \frac{1}{r} (\rho u_r u_r - \rho u_\theta u_\theta) + \frac{\partial \rho u_r u_z}{\partial z} = -\frac{\partial p}{\partial r} + \frac{\partial \tau_{rr}}{\partial r} + \frac{1}{r} (\tau_{rr} - \tau_{\theta\theta}) + \frac{\partial \tau_{rz}}{\partial z} \\ &\frac{\partial \rho u_\theta}{\partial t} + \frac{\partial \rho u_\theta u_r}{\partial r} + \frac{2}{r} \rho u_\theta u_r + \frac{\partial \rho u_\theta u_z}{\partial z} = \frac{\partial \tau_{\theta r}}{\partial r} + \frac{2}{r} \tau_{\theta r} + \frac{\partial \tau_{\theta z}}{\partial z} \\ &\frac{\partial \rho u_z}{\partial t} + \frac{\partial \rho u_z u_r}{\partial r} + \frac{1}{r} \rho u_z u_r + \frac{\partial \rho u_z u_z}{\partial z} = -\rho g - \frac{\partial p}{\partial z} + \frac{\partial \tau_{zr}}{\partial r} + \frac{1}{r} \tau_{zr} + \frac{\partial \tau_{zz}}{\partial z} \\ &\frac{\partial \rho E}{\partial t} + \frac{1}{r} \frac{\partial r \rho E u_r}{\partial r} + \frac{\partial \rho E u_z}{\partial z} = -\rho g u_z + \frac{1}{r} \frac{\partial r ((-p + \tau_{rr}) u_r + \tau_{r\theta} u_\theta + \tau_{rz} u_z))}{\partial r} \\ &+ \frac{\partial \tau_{zr} u_r + \tau_{z\theta} u_\theta + (-p + \tau_{zz}) u_z}{\partial z} - \frac{1}{r} \frac{\partial r q_r}{\partial r} - \frac{\partial q_z}{\partial z} \end{aligned}$$

 $\rho$  density,  $(u_r, u_\theta, u_z)$  velocity components, p pressure, g gravity,  $[\tau]$  viscous stress tensor,  $(q_r, 0, q_z)$  heat flux vector components,  $E = e + \frac{u^2}{2}$  total energy per unit mass (e internal energy)

#### Governing equations II

Ideal gas equation of state:  $p = \rho RT$ , R specific gas constant, T temperature,  $h = e + \frac{p}{\rho}$  enthalpy per unit mass

$$e = c_v T, \qquad h = c_p T, \qquad R = c_p - c_v$$

 $c_{\boldsymbol{v}}$  specific heat at constant volume,  $c_p$  specific heat at constant pressure

Viscous stress tensor components:

$$\begin{aligned} \tau_{rr} &= \frac{2\eta}{3} \left( 2 \frac{\partial u_r}{\partial r} - \frac{u_r}{r} - \frac{\partial u_z}{\partial z} \right), \qquad \tau_{r\theta} = \eta \left( -\frac{u_\theta}{r} + \frac{\partial u_\theta}{\partial r} \right), \qquad \tau_{rz} = \eta \left( \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right), \\ \tau_{\theta\theta} &= \frac{2\eta}{3} \left( \frac{2u_r}{r} - \frac{\partial u_r}{\partial r} - \frac{\partial u_z}{\partial z} \right), \qquad \tau_{\theta z} = \eta \frac{\partial u_\theta}{\partial z}, \qquad \tau_{zz} = \frac{2\eta}{3} \left( 2 \frac{\partial u_z}{\partial z} - \frac{u_r}{r} - \frac{\partial u_r}{\partial r} \right), \\ \tau_{\theta r} &= \tau_{r\theta}, \qquad \tau_{zr} = \tau_{rz}, \qquad \tau_{z\theta} = \tau_{\theta z} \end{aligned}$$

Heat flux vector components:

$$q_r = -\lambda \frac{\partial T}{\partial r}, \qquad q_z = -\lambda \frac{\partial T}{\partial z}$$



# Governing equations III

Viscosity law:

$$\eta(T) = \eta_{ref} \left(\frac{T}{T_{ref}}\right)^n$$

 $\eta_{ref}$  dynamic viscosity at a reference temperature  $T_{ref}$  , n constant coefficient Thermal conductivity law:

$$\lambda(T) = \frac{\eta(T)c_p}{P_r}$$

 $P_r$  Prandtl number, considered constant

#### **Boundary conditions**

ODEN INSTITUTE

- Isothermal wall:  $T(t) = T_0$ ,  $\mathbf{u}(t) = \mathbf{u}_0$
- Inlet:  $\mathbf{u}(t) = \mathbf{u}_0$ ,  $T(t) = T_0$
- Outlet:  $p(t) = p_0$
- Axis:  $u_r(t) = u_{\theta}(t) = 0$



25

# Axisymmetric finite element spaces

Notations:

 $\mathcal{T}_h$  mesh of  $\Omega^{2D}$  with characteristic mesh size hK cell of  $\mathcal{T}_h$  $p \in \mathbb{N}^*$  order of the polynomial approximation

Trial space for  $\rho$  and  $\rho E$ :

$$V = \left\{ v \in \mathcal{C}^0\left(\overline{\Omega}; \mathbb{R}\right); \ \exists v^{2D} \in V^{2D}; \ v(r, \theta, z) = v^{2D}(r, z), \ \forall (r, \theta, z) \right\}$$

where

$$V^{2D} = \left\{ v \in \mathcal{C}^0\left(\overline{\Omega^{2D}}; \mathbb{R}\right); \left. v \right|_K \in \mathbb{P}_p, \left. \forall K \in \mathcal{T}_h \right\} \right\}$$

Trial space for  $\rho \mathbf{u}$ :

 $\mathbf{V} = V^3$ 

Test spaces for  $\rho$ ,  $\rho$ u,  $\rho E$ :

$$V_{0,\rho}, \quad \mathbf{V}_0, \quad V_{0,\rho E}$$



 $\Lambda z$ 

#### Weak formulation

Find  $\rho \in \mathcal{C}^1([0, t_f]; V)$ ,  $\rho \mathbf{u} \in \mathcal{C}^1([0, t_f]; \mathbf{V})$  and  $\rho E \in \mathcal{C}^1([0, t_f]; V)$  satisfying the boundary conditions such that

$$\begin{split} \int_{\Omega^{2D}} \frac{d\rho}{dt} vr dS &= \int_{\Omega^{2D}} \rho \mathbf{u} \cdot \nabla vr dS - \int_{\partial \Omega_{ext}^{2D}} v\rho \mathbf{u} \cdot \mathbf{n} r dL, \; \forall v \in V_{0,\rho} \\ \int_{\Omega^{2D}} \frac{d\rho \mathbf{u}}{dt} \cdot \mathbf{v} r dS &= \int_{\Omega^{2D}} (\rho \mathbf{u} \otimes \mathbf{u}) : \nabla \mathbf{v} r dS - \int_{\partial \Omega_{ext}^{2D}} ((\rho \mathbf{u} \otimes \mathbf{u}) \cdot \mathbf{v}) \cdot \mathbf{n} r dL \\ &- \int_{\Omega^{2D}} [\sigma] : \nabla \mathbf{v} r dS + \int_{\partial \Omega_{ext}^{2D}} ([\sigma] \cdot \mathbf{v}) \cdot \mathbf{n} r dL \\ &+ \int_{\Omega^{2D}} \rho \mathbf{g} \cdot \mathbf{v} r dS, \; \forall \mathbf{v} \in \mathbf{V}_0 \\ \int_{\Omega^{2D}} \frac{d\rho E}{dt} vr dS &= \int_{\Omega^{2D}} \rho E \mathbf{u} \cdot \nabla vr dS - \int_{\partial \Omega_{ext}^{2D}} v\rho E \mathbf{u} \cdot \mathbf{n} r dL \\ &- \int_{\Omega^{2D}} ([\sigma] \cdot \mathbf{u} - \mathbf{q}) \cdot \nabla vr dS + \int_{\partial \Omega_{ext}^{2D}} v([\sigma] \cdot \mathbf{u} - \mathbf{q}) \cdot \mathbf{n} r dL \\ &+ \int_{\Omega^{2D}} \rho \mathbf{u} \cdot \mathbf{g} vr dS, \; \forall v \in V_{0,\rho E} \end{split}$$



# Time integration

Matrix form of the weak formulation:

$$\begin{cases} \mathcal{M}\frac{d\mathcal{U}}{dt}(t) = \mathcal{R}(\mathcal{U}(t)), \ \forall t \in [0, t_f] \\ \mathcal{U}(0) = \mathcal{U}^0 \end{cases}$$

 $\mathcal{M} \in \mathbb{R}^{5n_{dof} \times 5n_{dof}}$  mass matrix ( $n_{dof}$  number of degrees of freedom)  $\mathcal{R}$  nonlinear function of the dofs describing the flux terms and the gravity terms  $\mathcal{U}^0 \in \mathbb{R}^{5n_{dof}}$  dofs of the initial condition projected in  $V^5$ 

Several explicit methods possible for time integration: forward Euler or Runge-Kutta of different orders



#### Convergence test on a manufactured solution

$$\begin{cases} \rho(r, z, t) = 1 + 50r^2(0.5 - r)^2 \sin(2\pi z) \cos(2\pi t) \\ u_r(r, z, t) = r^2 \sin(2\pi r) \sin(2\pi z) \cos(2\pi t) \\ u_\theta(r, z, t) = r^2 \sin(2\pi r) \sin(2\pi z) \cos(2\pi t) \\ u_z(r, z, t) = r^2(\cos(\pi r) \sin(2\pi z) \cos(2\pi t) - 1) + 0.25 \\ T(r, z, t) = 1 + r^2 \cos(\pi r) \sin(2\pi z) \cos(2\pi t) \end{cases}$$



First order FE  $2^{nd}$  order Runge-Kutta method Fixed small time step  $\tau=5\times10^{-5}$  Errors at final time  $t_f=1$ 

| h      | $\ U - U_{ex}\ _{L^2(\Omega)}$ | сос   |
|--------|--------------------------------|-------|
| 0.1    | 0.008600558                    |       |
| 0.05   | 0.0021620784                   | 1.992 |
| 0.025  | 0.00054275361                  | 1.994 |
| 0.0125 | 0.0001358782                   | 1.998 |

$$U = (\rho, \rho u_r, \rho u_\theta, \rho u_z, \rho E)$$

#### Test: Poiseuille flow in a tube





#### Test: Taylor-Couette flow

ODEN INSTITUTE



# Air flow in a torch geometry: Setup



Inlets modeled by axisymmetric inlet preserving mass flow rate and tangential velocity





# Scalability

| MPI proc. | Elapsed time (s) | Speed up | Scalability |
|-----------|------------------|----------|-------------|
| 1         | 6574.5672        | 1.0      | 1.0         |
| 36        | 237.12154        | 27.727   | 0.77        |
| 72        | 132.73101        | 49.533   | 0.688       |
| 108       | 88.398844        | 74.374   | 0.689       |
| 144       | 70.009964        | 93.909   | 0.652       |
| 180       | 58.943087        | 111.541  | 0.62        |
| 216       | 53.307597        | 123.333  | 0.571       |
| 252       | 52.826921        | 124.455  | 0.494       |
| 288       | 43.079631        | 152.614  | 0.53        |
| 324       | 41.369725        | 158.922  | 0.491       |
| 360       | 41.055994        | 160.137  | 0.445       |
| 396       | 37.644591        | 174.648  | 0.441       |

Mesh with 234187 nodes, 1170935 unknowns, 1000 iterations



# Air flow in a torch geometry: Simulation $(u_{\theta})$

Time: 0.000000

Azimuthal velocity (m/s) -0.0 10 20 30 40 50 60 70 87.3







# Air flow in a torch geometry: Simulation $(u_z)$

Time: 0.000000

Axial velocity (m/s) 0.0 2e-3**@-3@-3@-3@-3@-3@-3@-3@**-38 0.0





ODEN INSTITUTE



### Time-averaged fields in the torch geometry



Flow localized close to the wall in the bottom compartment Layers of upward / downward flow

ODEN INSTITUTE

#### Comparison with experiments



ODEN INSTITUTE

37

### Inflow at the outlet

Time: 0.000000







# Outline

Motivation

Laplacian solver

Heat equation solver

Compressible flow solver

#### Conclusion





# Conclusion

#### Summary

- Implementation of axisymmetric solvers for the Laplaction problem, the heat equation and the compressible Navier-Stokes equations
- Simple modifications are needed to change a 2D solver into a 2D axisymmetric solver:
  - r factor
  - Axis BC
- Solvers verified with manufactured and analytical solutions
- Simulation of a subsonic high-Reynolds air flow in a torch geometry

#### Perspectives

- Implementation of a stabilization method
- Improvement of the axisymmetric modeling of the inlets



# Thanks and bibliography

Thanks

Todd A. Oliver, Karl W. Schulz, Marc Bolinches (UT Austin)

#### Bibliography

- V. A. Dobrev, T. E. Ellis, T. V. Kolev and R. N. Rieben, *High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics*, Computers & Fluids 83, pp. 58-69, 2013
- J.-L. Guermond, R. Laguerre, J. Léorat and C. Nore, *Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method*, Journal of Computational Physics 228, pp. 2739–2757, 2009
- A. Ern and J.-L. Guermond, *Theory and Practice of Finite Elements*, 1st ed., Springer, New York, 2004





Thank you for your attention





# Air flow in a torch geometry: Simulation $(u_r)$

Time: 0.000000







ODEN INSTITUTE

