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Overview – complex geometries and coupled problems
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Flow (and transport) in fractured porous media

Contact Fluid-structure interaction (Video)
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Flow in fractured porous media
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Types of discrete fractures

Embedded/Immersed Fitted/Decomposition
• Fracture network mesh is independent from

matrix mesh

• Convenient for stochastically generated and
complex networks

• Intersections and coupling of discrete fields

• Exact representation of interface in matrix

• Complexity in meshing stage

• High-resolution meshes vs ill-shaped elements
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Flow in fractured porous media
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• Matrix domain Ω ⊂ Rd , d ∈ {2,3}
• Fracture γ ⊂ Ω (manifold dim. d or d − 1)

• Pressure p, pγ
• Sink/source f , fγ
• Lagrange multiplier λ

• Permeability K , K γ

The weak form: find (p, pγ) ∈ V and λ ∈ Λ, such that

(K∇p,∇q)Ω − (λ, q)γ = ( f , q)Ω,

(Kγ∇pγ,∇qγ)γ + (λ, qγ)γ = ( fγ, qγ)γ,

and the weak equality condition −(p− pγ,µ)γ = 0, are satisfied, ∀(q, qγ) ∈W , and ∀µ ∈ Λ
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Flow in fractured porous media: discretization
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• Finite element method

• MeshesMi =MΩi
for the matrix sub-domains Ωi , i = 1, . . . N

• MeshesMγk
for fractures γk, k = 1 . . . Nγ

• Multiplier space on fracture, we setMλk
=Mγk

• Lagrange elements Pk, or tensor-product elements Qk of order k

Wh,α = {w ∈W (α): ∀E ∈Mα,

w|E ∈

¨

Pk if E is a simplex

Qk if E is a hyper-cuboid

«

},

α ∈ {Ω,γd ,γd−1},

Λh,β β ∈ {γd ,γd−1} (Lagrange multiplier space)
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Flow in fractured porous media: discretization
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• {ϕi}i∈J is the basis of Wh,Ω

• {θ j} j∈Jγ is the basis of Wh,γ

• {ψk}k∈Jγ is the basis of Λh

• J and Jγ ⊂ N are nodes index sets

• Function p ∈Wh,Ω, pγ ∈Wh,γ, and
µ ∈ Λh,γ

• p =
∑

i∈J piϕi

• pγ =
∑

j∈Jγ
p jγθ j

• λ=
∑

k∈Jγ
λkγψk

• (θi ,ψ j)γh
= δi j(θi , 1)γh

∀i, j ∈ Jγ
(bi-orthogonality)

• (ψ j , 1)γh
> 0 (positivity)

Point-wise algebraic equations
• Porous matrix (Ap−BTλ= f)
∑

i∈J

pi(K∇ϕi ,∇ϕ j)Ωh
−
∑

k∈Jγ

λk(ψk,ϕ j)γh
= ( f ,ϕ j)Ωh

, ∀ j ∈ J ,

• Fracture (Aγpγ +DTλ= fγ)
∑

i∈J

pi,γ(Kγ∇θi ,∇θ j)γh
+
∑

k∈Jγ

λk(ψk,θ j)γh
= ( fγ,θ j)γh

, ∀ j ∈ Jγ,

• Weak-equality condition (−Bp+Dpγ = 0)

−

�

∑

i∈J

pi(ϕi ,ψ j)Ωh
−
∑

k∈J

pk,γ(θk,ψ j)γh

�

= 0, ∀ j ∈ Jλ
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Flow in fractured porous media: discretization
Università
della
Svizzera
italiana

Linear system of equations
• Saddle-point system

�

�

�

�

�

�

A 0 −BT

0 Aγ DT

−B D 0

�

�

�

�

�

�

�

�

�

�

�

�

p
pγ
λ

�

�

�

�

�

�

=

�

�

�

�

�

�

f
fγ
0

�

�

�

�

�

�

• Gaussian-elimination→ condensed system

(A+ TT AγT)p= f+ TT fγ,

• T= D−1B

• D is trivially invertible thanks to bi-orthogonal basis

• Symmetric-positive definite linear system solved only for p

• Solved with preconditioned CG or AMG (e.g., Hypre)
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Flow in fractured porous media: numerical experiments
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Handling non-conforming meshes→ computing T= D−1B

ℳ1 ℳ2

ξ1,2

ℳ

ℳγ1

(a) Non conforming interface ξ1,2 be-
tween meshM1 and meshM2.

(b) Meshes for fracture Mγ1 and porous
matrixM for the embedded scenario.

(c) Numerical quadrature within intersec-
tions

Matrix (mortar) Fracture (nonmortar) Intersection type

Ω ⊂ R3 γ3 polyhedron-polyhedron
Ω ⊂ R3 γ2 polyhedron-polygon

∂Ωi ∩ ξi, j ⊂ R
3 ∂Ω j ∩ ξi, j ⊂ R

3 polygon-polygon (oriented)

Ω ⊂ R2 γ2 polygon-polygon
Ω ⊂ R2 γ1 polygon-segment

∂Ωi ∩ ξi, j ⊂ R
2 ∂Ω j ∩ ξi, j ⊂ R

2 segment-segment (oriented)
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Flow in fractured porous media: numerical experiments
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Results are selected from these contributions

3D non-conforming mesh model for flow in fractured porous media using Lagrange multipliers
(Schädle, Zulian, Vogler, Bhopalam, Nestola, Ebigbo, Krause, and Saar [2019])

Comparison and application of non-conforming mesh models for flow in fractured porous media
using dual Lagrange multipliers (Zulian, Schädle, Karagyaur, and Nestola [2020])
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Flow in fractured porous media: numerical experiments
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Benchmark 1: regular fracture network

Università della Svizzera italiana
Euler institute

Benchmark 1: regular fracture network

A A’ B B’
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Flow in fractured porous media: numerical experiments
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Benchmark 1 (+3D): choice of Lagrange multiplier

Università della Svizzera italiana
Euler institute

Benchmark 1 (+3D): choice of Lagrange multiplier
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Flow in fractured porous media: numerical experiments
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High-resolution example

Università della Svizzera italiana
Euler institute

Higher resolution example

52 fractures
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Flow in fractured porous media: numerical experiments
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Matrix mesh: 62 676 992 tetrahedra

Università della Svizzera italiana
Euler institute

Matrix mesh: 62 676 992 tetrahedra
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Flow in fractured porous media: numerical experiments
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Fracture mesh: 3 367 552 triangles
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Fracture mesh: 3 367 552 triangles
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Flow in fractured porous media: numerical experiments
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Flow: pressure iso-surfaces
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Flow in fractured porous media: numerical experiments
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Flow: pressure iso-surfaces
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Flow in fractured porous media: numerical experiments
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INLET

OUTLET

OUTLET

Transport: concentration isosurfaces (0.75-1) 
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Fluid-structure-contact-interaction
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Similar idea for a more challenging scenario
Fluid-structure-contact interaction

Project Application Fluid Solid Coupling Contact Article
AV-Flow Heart-valves FD FEM IB - Nestola et al. [2019]

- Heart-valves FEM FEM ID Lagrange Multipliers (LM) Nestola et al. [2021]
Fluya Pumps CVFEM FEM ID Shifted-Penalty (SP) In preparation

ID := Immersed Domain, IB := Immersed Boundary
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Introduction: Techniques for fluid-structure interaction
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FSI: Boundary-fitted methods

• Matching boundary of fluid and solid meshes

• Arbitrary Lagragian Eulerian (ALE)

• Fluid mesh deforms with solid mesh

• Accurate results at FSI interface

• Large displacements→ Distorted fluid grid→
reduced numerical stability and accuracy

Figure: ALE mesh
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Introduction: Techniques for fluid-structure interaction
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FSI: Non Boundary-fitted fixed-grid methods

Immersed techniques
• Independent meshes of fluid and solid meshes

• Eulerian fluid formulation

• Fuzzy FSI interface→ higher resolution required
for reproducing accurate results

• Flexible choice of discretization for the fluid (e.g.,
FEM, FVM, CVFEM, FDM) and software

Immersed domain→ fluid and solid are
coupled in the entire intersection volume

Figure: Super-imposed solid and fluid meshes

Glowinski et al. [1999], Baaijens [2001], Hesch et al. [2014]
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FSI approach
Università
della
Svizzera
italiana

Strong formulation of the fluid-structure-interaction problem

ρ f

∂ u f

∂ t
+ρ f (u f · ∇)u f +σ f−λ= 0 in Ω f , (Navier-Stokes equations)

∇ · u f = 0 in Ω f ,

ρs
∂ 2ηs

∂ t2
+σs+λ= 0 in Ωs(t), (Elastodynamics equation)

∂ηs

∂ t
−u f = 0 in I = Ω f ∩Ωs(t),

where
u f := velocity, p f := pressure, ηs := displacement, λ := Lagrange multiplier, ρ := mass density, and
initial and boundary conditions . . .
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Introduction: structure sub-problem
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Contact between structures

• Initial conditions for FSI simulation

→ Containment problem
→ Large stresses in structure will cause

interpenetration

• Cases with low resolution (TTS
constraints)

• Multi-body contact and unilateral
contact

Dickopf and Krause [2009], Krause and Walloth [2012]
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FSCI approach
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Two-body contact problem

• Elastic bodies Ωm,Ωs ∈ Rd , d ∈ {2,3}
• Lipschitz continuous boundaries Γm, Γ s

• A priori unknown contact boundary ∂Ωc = Γc
• Gap between the two bodies gc

Ωm ΩsΦ

usum

∂ΩC
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FSCI approach
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Contact conditions

• Smooth contact mapping: Φ : Γ s
c → Γ

m
c

• Vector field of normal directions: nΦ : Γ s
c → S

2

nΦ(x ) =







Φ(x )− x
|Φ(x )− x |

, if Φ(x ) ̸= x ,

ns(x ), otherwise

• Jump of the solution in nΦ
JηK := ηs −ηm ◦Φ JηnK := JηK · nΦ

• Contact conditions
Non-penetration condition: JηnK− gc ⩽ 0

Normal contact stress: pn(η
s) ⩽ 0

Complementary condition: (JηnK− gc)pn(η
s) = 0

Tangential contact stress: τt(η
s) = 0



















on Γc
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Coupling and resampling
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FSCI problem discretization

• FEM for the structure

• CVFEMa for the fluid

• Variants of mortar-methodb for the coupling between fluid
and structure

• ∂ηs
∂ t −u f = 0→
∫

I

�

∑

i
∂ ηi
∂ t ϕ i −
∑

j u jθ j

�

·µk = 0 ∀µk ∈ Λ
(weak equality condition)

• Where ϕ i ∈ V s,θ j ∈ V f ,µk ∈ Λ are the basis functions for
structure, fluid, and multiplier discretizations, respectively

• Similary for contact

aBaliga and Patankar [1983]
bBernardi et al. [2005]

Lagrange multiplier

Standard interpolation (etc.)

Variational approach
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Coupling and resampling
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Parallel coupling procedure
Coupling types
• FSI Volumetric coupling

• Contact conditions Surface coupling

Geometric operations
• Structure considered in the deformed

configuration

• Intersection mesh for numerical
quadrature of the coupling conditions
fluid-structure and structure-structure

Krause and Zulian [2016]
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Numerical applications
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Bio-prosthetic heart-valve simulation
Spatial discretization
• Fluid: FEM (+SUPG), with the MOOSE

framework [Peterson et al., 2018]

• Structure: FEM

Time discretization
• Fluid: Backward Differentiation Formula

(BDF2)

• Structure: Contact-stabilized-Newmark
scheme [Krause and Walloth, 2012]

Staggered approach
• Fluid and structure sub-problems solved

separately within a Picard iteration

• A multibody contact problem is solved
with a non-smooth sub-structuring
methoda

aArticle is work in progress
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Numerical applications
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Bio-prosthetic heart-valve simulation

Aortic valve stenosis
• Prevalent valvular pathology in Western

countries

• Progressive thickening of the valve

• Results in severe impairment of the
valve motion→ Replacement with
bioprosthetic valve

Bioprosthetic heart valve
• Limited durability

• Numerical simulations for studying valve
design
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Numerical applications
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Bio-prosthetic heart-valve simulation

BHV model
• Holzapfel fiber-reinforced material

• Two valve designs

• with and without fibers
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Numerical applications
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Bio-prosthetic heart-valve simulation

Purely structure simulation of
the BHV
• Pressure profile imposed on

the structure

• VonMises stresses are lower
in the fiber-reinforced BHV 1
model
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Numerical applications
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Bio-prosthetic heart-valve simulation

Fiber reinforced BHV 1 performance
• Mechanical and haemodynamic

performance

• (a) Velocity. Inflow boundary condition.

• (b) Windkessel model for pressure
gradient between 80 and 120 mmHg

• (c) Systole

• (d) Diastole

More details in Nestola, Zulian, Gaedke-Merzhäuser,

and Krause [2021]
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FSCI: Challenges in fluid-structure-contact interaction
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• Properly and efficiently simulating the
sub-problems is challenging on their own
• Complex setups and geometries→ generality

and robustness of methods and algorithms
• Non-smooth interactions between structures due to

contact
• Closing gaps and blockage of fluid flow
• From CAD models to proper initial value problem
• Physical parameters and engineering goals
• FP70 Video

• Transient simulation (3 + 1)D→ scalable
solution techniques and high-performance codes
• Simulation time is constrained by business goals

and computational resources

• Sufficient fidelity vs computational effort

• (Limited freedom due to split development efforts)

Figure: Set-up for FSCI in idealized hydro-pump
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation

Simulation of fluid-structure interac-
tion in diaphragm pumps
• Collaboration with HSLU, article is WIP

• Structure only IVP initialization

• NeoHookean hyperelastic material

• Monolithic formulation

Spatial discretization
• Fluid: CVFEM

• Structure: FEM

Time discretization
• Fluid: Implicit Euler

• Structure: Newmark scheme

Timestep

Assemble projection matrix

Detect and assemble contact 
matrices and vectors

Newton solver

Fluid linearization

Solid linearization

Contact penalization

Condensed coupled system

Solve linear system

?

Update solution
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation

FSI Saddle-point system (after linearization)
�

�

�

�

�

�

A f 0 −BT

0 As DT

−B D 0

�

�

�

�

�

�

�

�

�

�

�

�

δu f

δus

δλ

�

�

�

�

�

�

=

�

�

�

�

�

�

R f

Rs

RFSI

�

�

�

�

�

�

,

with dual-Lagrange multipliers
T= D−1B,δus = D−1RFSI + Tδu f ,

δλ= D−T
�

Rs −As(D
−1RFSI + Tδu f )
�

,

we compute (Gaussian elimination on paper)

(A f + TT AsT)δu f = R f + TT Rs − TT AsD
−1RFSI,

where RFSI = −(Dus
k −Bu f

k).
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation

• Condensed linearized system (k) is solved for the velocity increment δu f

• Structure equations adapted after linearization
• As =

2
τMs +

τ
2 Hs(ηs

k),
• Rs = f s

external − f s
contact − f s

int(ηs
k) +Ms
�

as
t − 2

τ (us
k − us

t )
�

,
• after solve us

k+1 = us
k + Tδu f − (us

k − Tu f
k),

• t := time, τ := time-step.

• The structure displacement is computed with ηs
t+1 = ηs

t + τ
2 (us

t + us
t+1),

• Penalty methods for f s
contact

• Interior penalty, logarithmic barrier (or polynomial)
• Exterior penalty and shifted variant (Augmented Lagrangian)
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation

Shifted-penalty methoda

• Classical penalty term in the objective is
modified (augmented Lagrangian)
1
2εg2

c →
1
2ε(s+ gc)2

• The shift s is used to “change the
obstacle”

• Same penalty parameter but better
enforcement of non-penetration
condition

• The contribution included in the FSI by
means of f s

contact (details not shown
here)

aDivi and Kesavan [1982], Zavarise [2015]
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump: initial conditions

1) SDF on structured grid 2) In small volume w.r.t. the fluid domain

3) SDF is resampled to solid mesh 4) Contact problem solved (3 + 4) until contained
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation: simplified diaphragm pump

Simplified diaphragm pump test-rig

1. Rigid driving piston

2. Fluid reservoir

3. Valve limiters

4. Valvesa

5. Transparent plexiglass window

aParts removed due to copyright
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation: simplified diaphragm pump

Simplified diaphragm pump mesh
• Fluid 122 432 nodes (637 570 cells)

• Structure 11 140 nodes (47 045 cells)

Simulation setup
• Rigid piston modelled as inlet/outlet

boundary with prescribed transient flow signal

• Water surface of reservoir modelled as
opening with constant static pressure

• Valves modelled as immersed structures,
anchored through contact with fluid domain
walls
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation: simplified diaphragm pump

Flow from the piston cylinder into the water reser-
voir during the pressure stroke

Flow from the water reservoir into the piston cylin-
der during the suction stroke
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FSCI: Challenges in fluid-structure-contact interaction
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Hydro-pump simulation: simplified diaphragm pump
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Further research using our techniques and tools
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On the role of aortic valve architecture for physiological
hemodynamics and valve replacement

Work from
• Corso and Obrist [2024a]

• Corso and Obrist [2024b]

• Tsolaki, Corso, Zboray, Avaro, Appel,
Liebi, Bertazzo, Heinisch, Carrel,
Obrist, et al. [2023]

• Corso, Coulter, and Nestola [2024]

• Based on AVFLOW [Nestola, Becsek,
Zolfaghari, Zulian, De Marinis, Krause,
and Obrist, 2019]

• Videos are courtesy of Pascal Corso
(ETHZ)

Computers in Biology and Medicine 176 (2024) 108526

6

P. Corso and D. Obrist

Fig. 3. Experimental validation of the FSI numerical model under peak systolic conditions. Leaflet opening (a) simulated for the VLth30 bioprosthetic valve case and (b) recorded
by a high-speed camera during in vitro experiments [6] (c) Area at the vena contracta downstream of the two simulated BioAV cases obtained from the FSI numerical simulations
and downstream of the Edwards Intuity Elite BioAV extracted from the flow field measured using the tomographic particle image velocimetry technique [33]. (d) Streamlines along
the velocity field averaged over systole downstream of the VLth30 valve model. (e) Streamlines along the phase-averaged velocity obtained from tomo-PIV measurements. (f)
Non-dimensional slice-averaged turbulence intensity from the simulation (VLth30 BioAV case) and from tomo-PIV experiments.

streamlines of the time-averaged velocity field obtained from the 3D
FSI simulation are in line with those observed in experimental tomo-
PIV data as depicted in Fig. 3 (d, e). The tomo-PIV data were acquired
using a silicone phantom model of the ascending aorta with the Edwards
Intuity Elite valve positioned in the sinus of Valsalva portion of the
aorta model [33]. For comparison, the experimental velocity field was
phase-averaged over peak systole. Notably, a high-velocity jet is present
in the middle of the aorta, as indicated by streamlines aligned with
the aorta’s centreline. Additionally, recirculation zones are observed
and align with the three posts of the BioAV ring. The curves in Fig. 3
(f) showing slice-averaged turbulence intensity, which represent the
magnitude of velocity fluctuations owing to turbulence relative to the
strength of the mean flow velocity, are nearly coincident for various
slices perpendicular to the centreline of the ascending aorta. The dis-
crepancy between the two curves averaged over the centreline amounts
to 1.9% of the experimentally derived turbulence intensity. The random
uncertainty in the turbulence intensity quantity derived from tomo-PIV
phase-averaged velocity fields is estimated to be approximately 14%,
with the uncertainty in turbulent kinetic energy estimated to be about
10%. This observation underscores the remarkable consistency between
the in vitro experiment utilising the silicone phantom model and the
numerical FSI simulation with the VLth30 BioAV design. A more in-
depth analysis of the correlation between the kinetic energy carried by
the leaflets and the kinetic energy calculated in the flow over spherical
regions is presented in the second part of this study [19]. Fig. 6 presents
the L1-norm of vorticity averaged over two downstream planes and
over systole for different valvular configurations. We observe that the
in vitro evaluation of vorticity downstream of the Edwards Intuity Elite
BioAV, obtained from tomo-PIV data, is comparable to that of the

vorticity downstream of the VLth30 BioAV case calculated in silico. The
difference between the two cases represents 7.2% of the taxicab norm
of the vorticity downstream of the severely stenosed case. Through an
uncertainty propagation calculation, where the independent variable
is the phase-averaged velocity field, the random uncertainty for the
vorticity computed in vitro amounts to approximately 9%.

3. Results and discussion

3.1. Jet flow configuration

Fig. 4 presents the velocity magnitude in a plane at a distance
of 10 mm from the STJ (plane 1) as well as the evaluation of the
eccentricity of the jet centre (white dots in Fig. 4) in relation to the
centre of the circular cross-section (black dot in Fig. 4). The eccentricity
distance, denoted as 𝜔𝜀 is defined as the distance between the black
and white dots in Fig. 4. The eccentricity angle, represented by 𝜗𝜀 ,
is the angle formed between these two dots, measured in relation to
the horizontal direction starting from the black dot as a reference.
Positive angles are counted in the counter-clockwise direction, while
negative angles are measured in the clockwise direction. In the stenotic
case, the eccentricity angle 𝜗𝜀 of ω5⋛ to 5⋛ and eccentricity distance
𝜔𝜀 of about 2 mm do not significantly vary over time as the orifice
geometry is immobile due to the severely calcified leaflets (see Fig. 1
(f)). Moreover, the regions situated between commissures 1–2 and 2–
3 (cf. Fig. 4) exhibit elevated velocity magnitudes that extend from
the jet, in contrast to the region between commissures 1–3. This trend
is further highlighted in Fig. S6 of the supplementary information
illustrating vortex straining magnitude in the proximal plane p1. In
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Further research using our techniques and tools
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Contact between rough surfaces using a dual mortar method

• Work from von Planta, Vogler, Zulian, Saar, and Krause [2020]
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Further research using our techniques and tools
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Svizzera
italiana

Scalable hierarchical PDE sampler for generating spatially
correlated random fields using nonmatching meshes
• Work from Osborn, Zulian, Benson, Villa, Krause, and Vassilevski [2018]

• Based on Krause and Zulian [2016] integrated in MFEM
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Preliminary work on semi-structured operators
• Greater spatio-temporal resolution of simulations needed to capture relevant small

scale dynamics

• More complex physics such as multi-phase flows

• Supercomputing mandatory→ Semi-structured operators

• PASC project 2025-2028 XSES-FSI (https://pasc-ch.org/index.html)
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WIP: High-performance tetrahedral FEM
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Comparison with cuSPARSE on NVIDIA P100 (FP64: 4.7 TFlop/s)
Throughput in MDoF/s (Million degrees of freedom per second)
• Matrix-Free (MF) operators achieve higher throughput than cuSPARSE SpMV except tet4 (highest macrotet4)

• Laplacian: 1.8x and 3.2x speedup over SpMV and tet4, respectively

• Linear Elasticity: 3.4x and 2.9x speedup over SpMV and tet4, respectively

• In line with results from ECP, additional regularity benefits performance

Laplacian Linear elasticity
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WIP: Semi-structured discretizations
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Memory footprint from structured to unstructured
Basic example
• Cuboid with Ω= (0, 2)× (0, 1)× (0, 1)

• 80× 402 × 83 = 65 536 000 elements,
and 66 049 281 nodes.

• Semi-structured mesh (“level 8”), with
128 000 macro-elements.

• Laplace operator stored with
first-fundamental form, i.e., 6 scalars
per element (FP16)

• Nodal field (FP64), Elemental indices
(INT32), Coordinates (FP32)

Mesh Points [GB] Elements [GB] Field [GB] Operator [GB] Total [GB] Proportion
Structured 0 0 0.528 0 0.528 1

Semi-structured (8) 0.001 0.37 0.528 0.0015 0.9 1.7
Unstructured 0.79 2 0.528 0.7864 4.1 7.7
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WIP: Semi-structured discretizations
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Compromise between convenience and regularity
• Complex mesh descriptions→

Boundary parametrization [Zulian
et al., 2017] (to be revisited)

• Memory efficiency and bandwidth
requirements

• Implicit hierarchical structure to be
mapped to compute hardware

• Geometric multigrid methods and
sub-structuring methods

• Workload granularity (1 element per
thread to 1 element per GPU)

• Main target is solution strategies
employing matrix-free operators

• Performance of linear operators might be
further improved by exploting stencils

Parametric finite elements with bijective mappings 1199

0 n = 42 n = 80 n = 194 n = 644 n = 1611

103 104 105

10−2

10−1

100

Warped
Standard

103 104 105
10−6

10−3

100

103 104 105

10−2

10−1

100

r(uh) without shape recovery. s( ). r(uh) with shape recovery.

Fig. 15 Convergence plots against different numbers of degrees of freedom m for a 3D experiment. We use
s = 10 uniform steps in the composite mapping integrated with a standard Gaussian quadrature formula

In classical finite element simulations the original shape is usually not recovered
when performing mesh refinement as shown in Fig. 12. For this reason, r(uh) does not
converge to zero for the standard solution, while our approach converges (top plots in
Figs. 13, 14, 15).

In order to better understand this behaviour, we measure the actual geometric devi-
ation with

s(T ) =
∣∣∣∣∣
‖1‖L2(T )

‖1‖L2(Ω)

− 1

∣∣∣∣∣

which corresponds to the volume of the mesh (note that ‖1‖L2(T ) is equivalent to the
square root of the sum of the entries of the mass-matrix). We compute the volume
by means of numerical quadrature, which might introduce errors (Sect. 3.3), since
our discretization consists of warped elements. For the standard discretization, when
refining the mesh without recovering the shape, the volume trivially stays constant.
Hence, in order to have a fair comparison, we increase the shape accuracy while
refining the mesh to ensure that the shape of the domain also converges to the exact
one. The behaviour of s(T ) shows that our discretization has almost zero geometrical
error independently of h, while the standard discretization has higher geometrical error
(middle plots in Figs. 13, 14, 15).

In order to investigate how the approximation error is influenced by the geometri-
cal error, we measure r(uh) for our method and classical finite elements with shape
recovery. Our discretization always has a smaller approximation error compared to the
standard discretization (right plots in Figs. 13, 14, 15). This is due to the fact that our
approach allows solving the problem in the exact geometry, even at low resolutions.

123

Author's personal copy
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WIP: Geometric Multigrid
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Performance of semi-structured operators
Throughput in MDoF/s (Million degrees of freedom per second)
• Baseline Laplace operator for geometric multigrid
• #nodes per element is (N+ 1)3

• Factor of 8 increase in elements does not translate to 8x larger compute times
• Finer levels have higher throughput approx. 3-5x
• On NVIDIA H100 GPU best throughput 20320.3 [MDOF/s]
• On Mac M1 Max (8 OpenMP threads) best throughput 758.631 [MDOF/s] (N = 10)
• On Shaheen’s AMD EPYC 9654, perf. limited by basic OpenMP parallelization (0.5-0.6 efficiency), for Level
= 16 #elements 1 943 764 992, #nodes 1 948 441 249

Table: One node on Shaheen: 192 OpenMP threads. Coarse mesh (N = 1) #elements 783, approx. 1.9 G dofs

N TTS [s] Throughput [MDOF/s]
16 0.303056 6429.3
8 0.0390528 6251.56
4 0.00781309 3924.73
2 0.000913524 4236.23
1 0.000239933 2054.9
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WIP: Shifted-Penalty Multigrid for Contact
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Solution to contact problems with semi-structured matrix-free finite
elements operators1

1Collaboration with PSU for algebraic coarse spaces. Article in preparation.
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WIP: Shifted-Penalty Multigrid for Contact
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High-frequency surface geometric features
• Geometric MG proof-of-concept for Fluya FSCI

• Unilateral linearized contact problem, SDF obstacle

• WIP: baseline implementation to be optimized

• One Shaheen III node, AMD EPYC 9654 CPUs (192
cores)

• TLP: OpenMP

• #elements 136 294 400 (HEX8)

• #nodes 137 380 497→ #dofs 412 141 491

• Matrix-based version does not fit one node

• Time-to-solution: 39 minutes

• 65% Linear-elasticity operator

• 82% Nonlinear smoothing→ #steps 7230
fine-level block-Jacobi (block size = 3× 3)
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WIP: Accelerating variational resampling on GPU/CPU
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Resampling: structured→ unstructured

• Approximate numerical quadrature

• Sampling a field defined over a structured grid for
each quadrature node in the tetrahedral mesh.

• Gather memory access pattern

• First and second order iso-parametric mesh

• We start from structured to unstructured, we will
address semi-structured to semi-structured later

• Effects of approximate quadrature? (study
by Boffi, Credali, and Gastaldi [2024])

• Preliminary work in collaboration with Simone
Riva (USI)

Example for a triangular mesh: quadrature-points
for a triangle, nodes of the structured grid
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Performance results Linear TET4 elements (CPU)

AMD EPYC 9654 96-Core on Shaheen III, KAUST Supercomputer

21 · 106 tetrahedral elements, 900× 900× 900 structured mesh
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• 10 nodes per element, and 56 quadrature points per element
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Performance results Quadratic TET10 elements (CPU)

AMD EPYC 9654 96-Core on Shaheen III, KAUST Supercomputer

21 · 106 tetrahedral elements, 900× 900× 900 structured mesh
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WIP: Accelerating variational resampling on GPU/CPU
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CUDA Tiled-partitioned quadrature (GPU)

• A tile consists of a subset of a Warp (32 lanes) of
a GPU vector unit, and each GPU thread occupies
one lane

• One tetrahedral element per tile

• The performances significantly change as a
function of the tile size N

0 1 5432 76Lane

0 1 5432 76

0 1 5432 76

0 1 5432 76

GPU SIMD register (32 lanes in NVidia)

Reduction

Element Wise
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Performance results Quadratic TET10 elements (GPU)

GH200 nodes @ Alps CSCS

21 · 106 tetrahedral elements, 900× 900× 900 structured mesh
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Thank you for your attention!

Summary
• Immersed approach to flow in fractured porous media and

FSI

• Example numerical applications
• Open-source libraries (BSD 3-clause license)

• https://github.com/mfem/mfem (branch
“moonolith_h1_bugfix” PR in review)
• https://bitbucket.org/zulianp/utopia
• https://bitbucket.org/zulianp/par_moonolith

Future work
• Focus on FSCI models and large scale FSI and FSCI

• Hybrid matrix-free and matrix-based algorithm on GPU

• Preconditioning techniques exploiting semi-structured
operators

• ...

Acknowledgments
• Innosuisse project 48321.1 IP-ENG
• Swiss National Fund (SNF)

• Immersed methods for
fluid-structure-contact-interaction
simulations and complex geometries
• Stress-based methods for variational

inequalities in Solid Mechanics

• UniDistance Suisse and USI-FIR

• PASC 2025-2028 – XSES-FSI
Connect

P. Zulian – FEM@LLNL – Lawrence Livermore National Lab – Immersed 58

https://github.com/mfem/mfem
https://bitbucket.org/zulianp/utopia
https://bitbucket.org/zulianp/par_moonolith


References
Università
della
Svizzera
italiana

Frank P. T. Baaijens. A fictitious domain/mortar element method for fluid–structure interaction. International Journal for Numerical
Methods in Fluids, 35(7):743–761, 2001. doi: 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A.

BR Baliga and SV Patankar. A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numerical
Heat Transfer, 6(3):245–261, 1983.

Christine Bernardi, Yvon Maday, and Francesca Rapetti. Basics and some applications of the mortar element method.
GAMM-Mitteilungen, 28(2):97–123, 2005.

Daniele Boffi, Fabio Credali, and Lucia Gastaldi. Quadrature error estimates on non-matching grids in a fictitious domain
framework for fluid-structure interaction problems. arXiv preprint arXiv:2406.03981, 2024.

P. Corso, F. B. Coulter, and M. G. Nestola. How do polymeric aortic valves perform? a computational study of blood-structure
dynamics under various material and geometrical conditions. In 1st European Fluid Dynamics Conference, Aachen, Germany,
2024.

Pascal Corso and Dominik Obrist. On the role of aortic valve architecture for physiological hemodynamics and valve replacement,
part i: Flow configuration and vortex dynamics. Computers in biology and medicine, 176:108526, 2024a.

Pascal Corso and Dominik Obrist. On the role of aortic valve architecture for physiological hemodynamics and valve replacement,
part ii: Spectral analysis and anisotropy. Computers in biology and medicine, 176:108552, 2024b.

Thomas Dickopf and Rolf Krause. Efficient simulation of multi-body contact problems on complex geometries: a flexible
decomposition approach using constrained minimization. International journal for numerical methods in engineering, 77(13):
1834–1862, 2009.

R Divi and HK Kesavan. A shifted penalty function approach for optimal load-flow. IEEE transactions on power apparatus and
systems, (9):3502–3512, 1982.

P. Zulian – FEM@LLNL – Lawrence Livermore National Lab – Immersed 58



References
Università
della
Svizzera
italiana

R. Glowinski, T.-W. Pan, T.I. Hesla, and D.D. Joseph. A distributed lagrange multiplier/fictitious domain method for particulate
flows. International Journal of Multiphase Flow, 25(5):755 – 794, 1999. ISSN 0301-9322. doi:
https://doi.org/10.1016/S0301-9322(98)00048-2. URL
http://www.sciencedirect.com/science/article/pii/S0301932298000482.

C Hesch, AJ Gil, A Arranz Carreño, J Bonet, and P Betsch. A mortar approach for fluid–structure interaction problems: Immersed
strategies for deformable and rigid bodies. Comput. Method Appl. M., 278:853–882, 2014.

Rolf Krause and Mirjam Walloth. Presentation and comparison of selected algorithms for dynamic contact based on the newmark
scheme. Applied Numerical Mathematics, 62(10):1393–1410, 2012.

Rolf Krause and Patrick Zulian. A parallel approach to the variational transfer of discrete fields between arbitrarily distributed
unstructured finite element meshes. SIAM Journal on Scientific Computing, 38(3):C307–C333, 2016. doi:
10.1137/15M1008361. URL https://epubs.siam.org/doi/10.1137/15M1008361.

Maria G C Nestola, Patrick Zulian, Lisa Gaedke-Merzhäuser, and Rolf Krause. Fully coupled dynamic simulations of bioprosthetic
aortic valves based on an embedded strategy for fluid–structure interaction with contact. EP Europace, 23(Supplement_1):
i96–i104, 03 2021. ISSN 1099-5129. doi: 10.1093/europace/euaa398. URL
https://doi.org/10.1093/europace/euaa398.

Maria Giuseppina Chiara Nestola, Barna Becsek, Hadi Zolfaghari, Patrick Zulian, Dario De Marinis, Rolf Krause, and Dominik
Obrist. An immersed boundary method for fluid-structure interaction based on variational transfer. Journal of Computational
Physics, 398:108884, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.108884. URL
http://www.sciencedirect.com/science/article/pii/S0021999119305820.

Sarah Osborn, Patrick Zulian, Thomas Benson, Umberto Villa, Rolf Krause, and Panayot S Vassilevski. Scalable hierarchical PDE
sampler for generating spatially correlated random fields using nonmatching meshes. Numerical Linear Algebra with

P. Zulian – FEM@LLNL – Lawrence Livermore National Lab – Immersed 58

http://www.sciencedirect.com/science/article/pii/S0301932298000482
https://epubs.siam.org/doi/10.1137/15M1008361
https://doi.org/10.1093/europace/euaa398
http://www.sciencedirect.com/science/article/pii/S0021999119305820


References
Università
della
Svizzera
italiana

Applications, 25(3):e2146, 2018. doi: 10.1002/nla.2146. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2146.

John W Peterson, Alexander D Lindsay, and Fande Kong. Overview of the incompressible navier–stokes simulation capabilities in
the moose framework. Advances in Engineering Software, 119:68–92, 2018.

Philipp Schädle, Patrick Zulian, Daniel Vogler, Sthavishtha R Bhopalam, Maria GC Nestola, Anozie Ebigbo, Rolf Krause, and
Martin O Saar. 3d non-conforming mesh model for flow in fractured porous media using lagrange multipliers. Computers &
Geosciences, 132:42–55, 2019.

Elena Tsolaki, Pascal Corso, Robert Zboray, Jonathan Avaro, Christian Appel, Marianne Liebi, Sergio Bertazzo, Paul Philipp
Heinisch, Thierry Carrel, Dominik Obrist, et al. Multiscale multimodal characterization and simulation of structural alterations
in failed bioprosthetic heart valves. Acta biomaterialia, 169:138–154, 2023.

Cyrill von Planta, Daniel Vogler, Patrick Zulian, Martin O. Saar, and Rolf Krause. Contact between rough rock surfaces using a dual
mortar method. International Journal of Rock Mechanics and Mining Sciences, 133:104414, 2020. ISSN 1365-1609. doi:
https://doi.org/10.1016/j.ijrmms.2020.104414. URL
http://www.sciencedirect.com/science/article/pii/S1365160919308688.

Giorgio Zavarise. The shifted penalty method. Computational Mechanics, 56:1–17, 2015.

Patrick Zulian, Philipp Schädle, Liudmila Karagyaur, and Maria Nestola. Comparison and application of non-conforming mesh
models for flow in fractured porous media using dual Lagrange multipliers, 2020.

Patrick Zulian, Teseo Schneider, Kai Hormann, and Rolf Krause. Parametric finite elements with bijective mappings. BIT Numerical
Mathematics, 57(4):1185–1203, dec 2017. ISSN 1572-9125. doi: 10.1007/s10543-017-0669-6. URL
https://doi.org/10.1007/s10543-017-0669-6.

P. Zulian – FEM@LLNL – Lawrence Livermore National Lab – Immersed 58

https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2146
http://www.sciencedirect.com/science/article/pii/S1365160919308688
https://doi.org/10.1007/s10543-017-0669-6

	Overview – complex geometries and coupled problems
	Flow in fractured porous media
	Flow in fractured porous media: discretization
	Flow in fractured porous media: numerical experiments
	Fluid-structure-contact-interaction
	Introduction: Techniques for fluid-structure interaction
	FSI approach
	Introduction: structure sub-problem
	FSCI approach
	Coupling and resampling
	Numerical applications
	FSCI: Challenges in fluid-structure-contact interaction
	Further research using our techniques and tools
	Working in Progress (WIP)
	WIP: High-performance tetrahedral FEM
	WIP: Semi-structured discretizations
	WIP: Geometric Multigrid
	WIP: Shifted-Penalty Multigrid for Contact
	WIP: Accelerating variational resampling on GPU/CPU
	Conclusions
	References
	References

