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Magnetic Resonance Imaging

= Medical imaging modality employing
non-ionizing EM radiation

= MRI based on
excitation of
particle’s spins
and measuring
spin signals for
image formation

= Signal localization
using so-called
gradient coils

Slide 2/28 — Mathias Davids — PNS modeling for MRI



MRI gradient coils
= Create linear variation
of B, component

» Localization of spin
signal

= X-gradient linear along x
= Y-gradient linear along y

= Z-gradient linear along z
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= Linearity requires
large B-fields
outside of the FOV
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B-field strength



Magnetically induced PNS in MRI

= Rapid switching of gradient’s B-fields induces E-fields strong enough to stimulate nerves
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Peripheral Nerve Stimulation in MRI

= PNS has become a fundamental
limitation in MRI

= PNS can render large portion of
performance space unusable

= PNS is not directly addressed
during the coil design phase

PNS modeling

» Understand PNS: where, why, when?
» Predict thresholds and locations

= Compare different coil windings

= PNS constrained coil design

= Assess other mitigation techniques
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EM-neurodynamic
simulations

Models of
conductive tissues

= Very high spatial
resolution (1 mm3)

= Tissues labeled by
dielectric properties
(conductivity)

Davids et al. “Predicting
Magnetostimulation Thresholds in the
Peripheral Nervous System using
Realistic Body Models”, Scientific
Reports, 2017

Davids et al. “Prediction of peripheral
nerve stimulation thresholds of MRI
gradient coils using coupled
electromagnetic and neurodynamic
simulations”, MRM 2019
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Nerve atlas for PNS
modeling

= ~2000 nerve
segments labeled by
local axon diameter

= Nerves embedded in
correct tissue classes

= Correct definition of
direction and
branching points
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Threshold determination #1: Non-Linear Circuit Model
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= Modulate potentials by coil waveform

<« PNS

/ threshold

—1150

1100

50

Transmembrane potential [mV]

= Increase amplitude until action potentials are observed
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Threshold determination #2: Calibrated Linear Model

PNS threshold curve
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= Analyze spatial characteristics of potentials along nerves

= Parameters calibrated for given coil waveform (sinusoidal, trapezoidal, etc.)
= PNS oracle is linear in the electric potential (and thus in the E-field and coil current)
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Traditional PNS model

| Compute coil’s B-field
using Biot-savart

0.0 )

|B|-field [a.U ]
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Simulate E-field

0.0 N

|E|-field

Obtain thresholds
for all nerves

PNS oracle [1/A]
(inverse thresholds)




MFEM-based Electromagnetic Solver
= Body model with 1mm?3 hexahedral mesh elements,
total of ~80M mesh elements, up to ~50 tissue classes
= EM field solver based on open MFEM library

= Solve magneto quasi-static approximation:

(o I(7) _
Alr) = > V.0V = —iwV -
() 47 /Q |7 — ”F||d " Ty WV oA

. : electric scalar potential
(magnetic vector potential) ( P ®)

= Partitioning and large-scale parallelization using
algebraic multigrid solver (Hyper-AMG)

~35 min. (LHS, i.e., initialization of FE system)
I::> plus 2-3 min. (compute RHS and solve)

20 processes, ~400 GB memory consumption
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Design optimization of new head gradient

New.head 1. High-performance: 2. Relatively larger 3. Comparably high
gradient for ~ ) . _ : : -
high-resolution Gmax =200 mT/m, inner diameter: field linearity:

MR Smax =900 T/m/s 44 cm ~6% in 20 cm DSV
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Analyzing large
number of coils
w.r.t. PNS

= Study different coil
design strategies
and impact on PNS

= Maximize worst
case PNS
thresholds

= Equivalent to
minimizing worst
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Experimental vs.

Experimental and Simulated
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More efficient PNS model Huygens’
:I|> PNS model (—
| Compute coil’s B-field Simulate E-field :> Extract PNS oracle
using Biot-savart (time-consuming) along all nerves

|B|-field [a.U ]

1.0

. . . . |E|-field PNS oracle [1/A]
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Traditional PNS model

1. Enclose body with Huygens’ surface, add basis functions

2. Precompute E-fields and PNS responses for each basis

oracle
rves

Thousands of basis
functions per model

Initialization (~35 minutes)

V.oV =—-iwV-cdA

Matrix assemble

Solve per basis function
(~2 minutes)

= Compute magn. vector potential 4
= Matrix multiply to get RHS
= Solve for electric scalar potential

1.0

. . . . |E|-field PNS oracle [1/A]
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Huygens‘ PNS model

| Compute coil’s B-field
using Biot-savart

0.0 )

|B|-field [a.U ]
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Simulate E-field
(time-consuming)

0.0 N

|E|-field

Extract PNS oracle
along all nerves

PNS oracle [1/A]




Huygens® PNS model

Compute coil’s B-field
using Biot-savart

0.0 )

|B|-field [a.U ]
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Project B-field onto
Huygens’ basis set,
yielding weight vector

Huygens’ surface

0.0 N

Abs. Huygens’ weights

Use weight vector to
translate Huygens’
bases to coil’s PNS

PNS oracle [1/A]




Huygens PNS model

Huygens’ basis function index
500 1000 1500 2000 2500

frontal
cranial
facial

= Huygens’ PNS model
represented as P-matrix

musculocutaneous

= P-matrix describes
interaction between Huygens
bases and all nerves

intercostal

= P-matrix is body model and
waveform specific
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ulnar
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= PNS prediction without
further EM or neurodynamic
modeling (seconds)

femoral
sciatic
saphenous
sural

tibial

peroneal

Allows incorporation of
PNS metrics in numeric
coil optimization

Location along nerves [m] (all nerves concatenated)
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Gradient Coil Design: Boundary Element Method Stream Function (BEM-SF)
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Turner et al., “A target field approach to optimal
coil design”, J. Phys. D: Appl. Phys., 1986

Peeren et al., “Stream function approach for
determining optimal surface currents”. Journal of
Computational Physics, 2003

Lemdiasov et al., “A stream function method for
gradient coil design”, Concepts Magn. Reson.,
2005

Poole et al., “Convex optimisation of gradient and
shim coil winding patterns”. Journal of Magnetic
Resonance, 2014.

Slide 20/28 — Mathias Davids — PNS modeling for MRI



Precompute field contribution for each basis
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Coil design as optimization problem
Optimized stream
function and coil
windings

Target field
(y-gradient field)
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: . Sopt = argmin s Ls Min. inductance
Formulate coil design < { }

as constrained Includes torque,
optimization problem S.L. M's < Mpay force, shielding,
linearity, wire density
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<«—— Stream function basis index ——
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PNS constrained optimization
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Sopt = arg min {STLS} Min. inductance
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Includes torque,
s.t. Ms < Max force, shielding,
Davids et al., “Optimization of MRI Gradient Coils with |inearity’ wire density

Explicit Peripheral Nerve Stimulation Constraints”, IEEE
Transactions on Medical Imaging, 2020, 40, 129-142
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PNS constraint
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L-curve analysis of PNS-constrained coil design

= Study tradeoff between PNS optimization for
reciprocal PNS thresholds head-imaging
and coil inductance ' =

0.0% PNS oracle reduction
0.0% inductance increase
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L-curve analysis of PNS-constrained coil design

= Study tradeoff between PNS optimization for
reciprocal PNS thresholds head-imaging
and coil inductance '

41.0% PNS oracle reduction
16.5% inductance increase
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Analyze full PNS curves and operational region

Without PNS optimization

Gradient
amplitude AG

Plateau
(500 us)

Gradient
amplitude [a.U.]
O —

0 1 2 3 4
= Low PNS thresholds
T T T T T
= Low inductance _ , | ‘
£ o e s
. L = & VNNWYPNS A
With PNS optimization E 100 «olp}imi,zation |
= 70% higher PNS © I
thresholds g
= 17% higher inductance 9 2
(slightly smaller hardware @ 80y~ 4 Y Without PNS |
operational region) < (mgggm;@tv'ggge)
%)
pd
o
Overall GAIN in 0 | | | | |
isableperioimance 0 01 02 03 04 05 06

Slide 26/28 — Mathias Davids — PNS modeling for MRI

Rise time [ms]



Future use of MFEM

= Non-conforming

meshes to
increase spatial
resolution
Projection of the E-field onto
=  Switch to e Purkinje fibers 1€ cardiac fiber paths
tetrahedral i =3 TR
meshes - L= """

MUK

’.“M‘)
= Other research \ ‘-‘l
activities such
as cardiac and
retinal

stimulation
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Summary

PNS modeling
= Useful tool in guiding gradient coil design phase to
increase usable encoding performance

= Successfully used in design phase of new head-gradient,
prototype phase of asymmetrical coils ongoing

Role of MFEM
= Enabled us to utilize Huygens’ principle to make PNS
tool more accessible and easier to use

= EM solver tailored to problem at hand (reuse LHS to
speed up processing)
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Thanks
= To the entire MFEM Team!

= Special thanks to Mark Stowell, Veselin Dobrev
and Tzanio Kolev
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