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Introduction: RF waves in plasmas and magnetic fusion 
● Waves in plasmas: 

○ many different waves in the universe
○ described by Maxwell-Vlasov equations, or simply by Maxwell 

eq. at high frequency.
● Waves ares used to heat a fusion plasma (RF heating)

○ Simulation of the RF heating requires to solve the frequency 
domain Maxwell in an strongly anisotropic, spatially 
non-uniform dielectric.

[source: NASA, Solar Dynamic Observatory, ITER]



RF fullwave simulation presents multiple challenges, leading us to 
develop versatile FEM analysis framework

Complicated variety of antenna structures for 
different frequencies (50MHz - 100GHz)

Waves with very different wave lengths exists 
even in the same place (and spatially dispersive) 

Background plasma is not uniform and turbulent 
and RF waves can change its characteristics.

[source: Alcator C-Mod, NSTX]
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[source: MAST, Alcator C-Mod, NSTX]

Two track approach
● Physics model block development
● Integration for real world simulation



RF SciDAC center adopted the MFEM library for 
developing the new generation of RF simulations 

● 2D SOL transport simulation (Braginskii)
○ Time dependent solver  of energy/momentum/continuity 

coupled equations in DG FEM
● Adaptive mesh refinement for resolving slow wave propagation
● DD-based preconditioner 
● Fokker-Planck solver on GPUs

Time stepping for transport solver

LH plateau

AMR for LH waves M. 
Hakim et. al, (2021)

FP solver on GPU

2D domain sweep in DD 
solver_



Petra-M: towards whole device scale RF 
fullwave simulation



Petra-M : Physics equation translator for MFEM

Integrated multi-physics FEM platform

● Geometry creation

● Mesh generation

● FEM assembly and solve

● Visualization

Solves user defined PDEs

Scales from laptop to cluster

(https://github.com/piScope/Petra-M)

Built on OOS and ASCR developed 

high-performance libraries

ASCR development 

https://github.com/piScope/Petra-M














Petra-M has applied on variety of fusion devices worldwide 



First fully resolved 3D HHFW field on NSTX-U 

● Obtained using 4th order basis functions.
● 50M DoFs at 4th order basis. λ/L ~ 15 is close to what is required for 

resolving ICRF wave field on ITER. 

Ez

Bt = 1T, ne0 = 5x1019m-3 
150 º phasing
Cold plasma dielectric
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PyMFEM



PyMFEM: Python binding for MFEM
Python binding is good for many things including

● Prototyping/rapid app development
● Education/demonstration
● Analysis using MFEM simulation output
● Still can perform a large scales computing on leading class clusters

mfem/PyMFEM

http://mybinder.org http://pypi.org http://github.com



PyMFEM allows for writing an MFEM application w/o C++

● Provide convenient access to MFEM class objects from 
Python

● Extend MFEM to support additional features for Python 
user

○ Object construction/data access using numpy 
array

○ Numba based coefficient
○ Distributed hypre Matrix construction from 

scipy.sparse

● Attempt to support ever expanding list of MFEM features 
as much as possible (using setup.py options)

○ MPI parallelism
○ GPU
○ libCEED

● Mainly developed by one person at PPPL + robots 
(Github actions)

○ Help is more than welcome! In many cases, C++ and Python 
codes are nearly identical except 
for language syntax.

ex1.cpp

ex1.py



PyMFEM uses SWIG to generate most of wrapper codes.
SWIG creates a Python module for each C++ header

● Input: C/C++ header file (*.hpp) + wrapper recipe file (*.i)
● Output: C extension for Python (*_wrap.cxx) and Python proxy module (*.py)

Almost automatic, but the recipe file needs to be prepared well so that generated wrapper becomes 
Python friendly.

● C array to numpy.array
● Pointer argument as a return value

%module(package=”xxx”) 
MyClass

%include “MyModulue.hpp” 

class MyClass {
  private:
     int _hidden;
  Public:
     void function(int x);
};

MyModule.iMyModule.hpp

MyModule.py

MyModule_wrap.cxx



PyMFEM module structure

Serial (mfem._ser)

Standalone (no external dependency)

MyBinder uses mfem.ser

Loaded to mfem.ser namespace

import mfem.ser as mfem

Parallel (mfem._par)

Built with Hypre and METIS

Loaded to mfem.par namespace

Import mfem.par as mfem



Updating PyMFEM wrapper codes takes a few steps

Case (1) API changes in MFEM. ex) a new overloaded class method

● Regenerating a wrapper
○ python setup.py install --swig
○ python setup.py install --swig --with-parallel

● Note, the recipe file (*.i) may need an update.
● Inform it in GitHub!

Case (2) New header file is added

● Add an interface recipe file (*.i) for each *.hpp
○ Copy a short  *.i as template and modify it
○ SWIG Doc. http://www.swig.org/Doc4.0/index.html

● Add a new module to setup.py 
○ mfem/_ser/setup.py 
○ mfem/_par/setup.py

● Edit mfem/ser.py and mfem/par.py to load a new module
triangle.i

http://www.swig.org/Doc4.0/index.html
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Module name

Header file

dependency

custom config.

http://www.swig.org/Doc4.0/index.html


Documentation still needs improvement quite a bit

Started migration to Notebook



Waiting for contribution/suggestions !


