
Development of PyMFEM python wrapper for MFEM and scalable
RF wave simulation for nuclear fusion

S. Shiraiwa (PPPL)
Acknowledgements: N. Bertelli (PPPL), E. H-. Kim (PPPL), J. C. Wright (MIT),

P.T.Bonoli (MIT), T. Kolev, M. Stowell (LLNL), J. Hillairet (CEA),
J. Myra (Lodestar), M. Ono (PPPL), R. Ragona (LPP), and RF SciDAC

MFEM community workshop 20 Oct. 2021

Introduction: RF waves in plasmas and magnetic fusion
● Waves in plasmas:

○ many different waves in the universe
○ described by Maxwell-Vlasov equations, or simply by Maxwell

eq. at high frequency.
● Waves ares used to heat a fusion plasma (RF heating)

○ Simulation of the RF heating requires to solve the frequency
domain Maxwell in an strongly anisotropic, spatially
non-uniform dielectric.

[source: NASA, Solar Dynamic Observatory, ITER]

RF fullwave simulation presents multiple challenges, leading us to
develop versatile FEM analysis framework

Complicated variety of antenna structures for
different frequencies (50MHz - 100GHz)

Waves with very different wave lengths exists
even in the same place (and spatially dispersive)

Background plasma is not uniform and turbulent
and RF waves can change its characteristics.

[source: Alcator C-Mod, NSTX]

Complicated variety of antenna structures for
different frequencies (50MHz - 100GHz)

Waves with very different wave lengths exists
even in the same place (and spatially dispersive)

Background plasma is not uniform and turbulent
and RF waves can change its characteristics.

RF fullwave simulation presents multiple challenges, leading us to
develop versatile FEM analysis framework

Complicated variety of antenna structures for
different frequencies (50MHz - 100GHz)

Waves with very different wave lengths exists
even in the same place (and spatially dispersive)

Background plasma is not uniform and turbulent
and RF waves can change its characteristics.

RF fullwave simulation presents multiple challenges, leading us to
develop versatile FEM analysis framework

[source: MAST, Alcator C-Mod, NSTX]

Two track approach
● Physics model block development
● Integration for real world simulation

RF SciDAC center adopted the MFEM library for
developing the new generation of RF simulations

● 2D SOL transport simulation (Braginskii)
○ Time dependent solver of energy/momentum/continuity

coupled equations in DG FEM
● Adaptive mesh refinement for resolving slow wave propagation
● DD-based preconditioner
● Fokker-Planck solver on GPUs

Time stepping for transport solver

LH plateau

AMR for LH waves M.
Hakim et. al, (2021)

FP solver on GPU

2D domain sweep in DD
solver_

Petra-M: towards whole device scale RF
fullwave simulation

Petra-M : Physics equation translator for MFEM

Integrated multi-physics FEM platform

● Geometry creation

● Mesh generation

● FEM assembly and solve

● Visualization

Solves user defined PDEs

Scales from laptop to cluster

(https://github.com/piScope/Petra-M)

Built on OOS and ASCR developed

high-performance libraries

ASCR development

https://github.com/piScope/Petra-M

Petra-M has applied on variety of fusion devices worldwide

First fully resolved 3D HHFW field on NSTX-U

● Obtained using 4th order basis functions.
● 50M DoFs at 4th order basis. λ/L ~ 15 is close to what is required for

resolving ICRF wave field on ITER.

Ez

Bt = 1T, ne0 = 5x1019m-3
150 º phasing
Cold plasma dielectric

16

PyMFEM

PyMFEM: Python binding for MFEM
Python binding is good for many things including

● Prototyping/rapid app development
● Education/demonstration
● Analysis using MFEM simulation output
● Still can perform a large scales computing on leading class clusters

mfem/PyMFEM

http://mybinder.org http://pypi.org http://github.com

PyMFEM allows for writing an MFEM application w/o C++

● Provide convenient access to MFEM class objects from
Python

● Extend MFEM to support additional features for Python
user

○ Object construction/data access using numpy
array

○ Numba based coefficient
○ Distributed hypre Matrix construction from

scipy.sparse

● Attempt to support ever expanding list of MFEM features
as much as possible (using setup.py options)

○ MPI parallelism
○ GPU
○ libCEED

● Mainly developed by one person at PPPL + robots
(Github actions)

○ Help is more than welcome! In many cases, C++ and Python
codes are nearly identical except
for language syntax.

ex1.cpp

ex1.py

PyMFEM uses SWIG to generate most of wrapper codes.
SWIG creates a Python module for each C++ header

● Input: C/C++ header file (*.hpp) + wrapper recipe file (*.i)
● Output: C extension for Python (*_wrap.cxx) and Python proxy module (*.py)

Almost automatic, but the recipe file needs to be prepared well so that generated wrapper becomes
Python friendly.

● C array to numpy.array
● Pointer argument as a return value

%module(package=”xxx”)
MyClass

%include “MyModulue.hpp”

class MyClass {
 private:
 int _hidden;
 Public:
 void function(int x);
};

MyModule.iMyModule.hpp

MyModule.py

MyModule_wrap.cxx

PyMFEM module structure

Serial (mfem._ser)

Standalone (no external dependency)

MyBinder uses mfem.ser

Loaded to mfem.ser namespace

import mfem.ser as mfem

Parallel (mfem._par)

Built with Hypre and METIS

Loaded to mfem.par namespace

Import mfem.par as mfem

Updating PyMFEM wrapper codes takes a few steps

Case (1) API changes in MFEM. ex) a new overloaded class method

● Regenerating a wrapper
○ python setup.py install --swig
○ python setup.py install --swig --with-parallel

● Note, the recipe file (*.i) may need an update.
● Inform it in GitHub!

Case (2) New header file is added

● Add an interface recipe file (*.i) for each *.hpp
○ Copy a short *.i as template and modify it
○ SWIG Doc. http://www.swig.org/Doc4.0/index.html

● Add a new module to setup.py
○ mfem/_ser/setup.py
○ mfem/_par/setup.py

● Edit mfem/ser.py and mfem/par.py to load a new module
triangle.i

http://www.swig.org/Doc4.0/index.html

Updating PyMFEM wrapper codes takes a few steps

Case (1) API changes in MFEM. ex) a new overloaded class method

● Regenerate a wrapper
○ python setup.py install --swig
○ python setup.py install --swig --with-parallel

● Note, the recipe file (*.i) may need an update.
● Inform it in GitHub!

Case (2) New header file is added

● Add an interface recipe file (*.i) for each *.hpp
○ Copy a short *.i as template and modify it
○ SWIG Doc. http://www.swig.org/Doc4.0/index.html

● Add a new module to setup.py
○ mfem/_ser/setup.py
○ mfem/_par/setup.py

● Edit mfem/ser.py and mfem/par.py to load a new module
triangle.i

Module name

Header file

dependency

custom config.

http://www.swig.org/Doc4.0/index.html

Documentation still needs improvement quite a bit

Started migration to Notebook

Waiting for contribution/suggestions !

