

Unstructured FEM Neutron Transport William C. Dawn

Overview Neutron Transport Results Next Steps

Unstructured Finite Element Neutron Transport using MFEM

William C. Dawn

Nuclear Engineering Department North Carolina State University Raleigh, NC

wcdawn@ncsu.edu
https://wcdawn.github.io/

October 20, 2021

Table of Contents

Unstructured FEM Neutron Transport William C. Dawn

Overview Neutron Transport Results Next Steps

1. Overview

2. Neutron Transport

3. Results

4. Next Steps

0	
	iiitline
	uume

Unstructured FEM Neutron Transport William C. Dawn	
Overview	
Neutron Transport	1. Overview
Results	
Next Steps	2. Neutron Transport
	3. Results
	4. Next Steps

Microreactors

Unstructured FEM Neutron Transport

William C. Dawn

Overview

- Neutron Transport
- Results
- Next Steps

- Relatively small electrical output (<10 MW).
- Geometrically compact.
- Varied designs.
 - ► Thermal, epithermal, and fast neutron spectra.
 - Unique cooling designs (e.g., heat pipes).
 - Space applications.

NC STATE MARVEL Microreactor

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport Results Next Steps

- Development led by Idaho National Laboratory (INL) for construction on-site.
- 18 kW to 25 kW electric output.
- Cylinder with 50 cm height and 120 cm diameter.
- UZrH HALEU fuel.
- Thermal spectrum.
- Liquid NaK eutectic coolant.

Why MFEM?

Unstructured FEM Neutron Transport

William C. Dawn

Overview

- Neutron Transport
- Results
- Next Steps

- Exascale Computing Project (ECP).
- GPU support.
- Library support (e.g., HYPRE, PETSc, SLEPc, AmgX, etc.).
- Rapid prototyping.
 - Essential for research computer programs.
 - Dozens of solver methods implemented.

MFEM	Workshop		
2021			

Unstruct	ured	FEM
Neutron	Trar	isport

William C. Dawn

Overview

Neutron Transport

Results Next Steps

2. Neutron Transport

3. Results

4. Next Steps

NC STATE Neutron Transport Equation

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport

Results

Next Steps

- Steady-state Boltzmann equation.
- 6 independent variables:
 - ► 3 space.
 - 2 direction (angle).
 - 1 energy.
- Eigenvalue problem for eigenvalue λ and eigenfunction $\psi(\mathbf{r}, \hat{\Omega}, E)$.
- Coefficients are "cross sections." Interaction probabilities.

$$\begin{split} \hat{\Omega} \cdot \nabla \psi(\mathbf{r}, \hat{\Omega}, E) + \Sigma_t(\mathbf{r}, E) \psi(\mathbf{r}, \hat{\Omega}, E) &= \\ & \frac{\chi(\mathbf{r}, E)}{\lambda} \int_0^\infty \nu \Sigma_f(\mathbf{r}, E') \int_{4\pi} \psi(\mathbf{r}, \hat{\Omega}', E') \ d\hat{\Omega}' + \\ & \int_0^\infty \int_{4\pi} \Sigma_s(\mathbf{r}, \hat{\Omega}' \cdot \hat{\Omega}, E' \to E) \psi(\mathbf{r}, \hat{\Omega}', E') \ d\hat{\Omega}' \ dE' \end{split}$$

Neutron Transport Equation – Multigroup Discretization

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport

Results Next Steps

- Multigroup approximation in energy (e.g., 24 groups).
- Multigroup constants conserve reaction rates.

$$\begin{split} \hat{\Omega} \cdot \nabla \psi_{g}(\mathbf{r}, \hat{\Omega}) + \Sigma_{t,g}(\mathbf{r}) \psi_{g}(\mathbf{r}, \hat{\Omega}) &= \\ \frac{\chi_{g}(\mathbf{r})}{\lambda} \sum_{g'=1}^{N_{G}} \nu \Sigma_{f,g'}(\mathbf{r}) \int_{4\pi} \psi_{g'}(\mathbf{r}, \hat{\Omega}') \ d\hat{\Omega}' + \sum_{g'=1}^{N_{G}} \int_{4\pi} \Sigma_{s,g' \to g}(\mathbf{r}, \hat{\Omega}' \cdot \hat{\Omega}) \psi_{g'}(\mathbf{r}, \hat{\Omega}') \ d\hat{\Omega}' \end{split}$$

$$\psi_g(\mathbf{r},\hat{\Omega}) \equiv \int_{E_g}^{E_{g-1}} \psi(\mathbf{r},\hat{\Omega},E) \ dE$$

Neutron Transport Equation – Discrete Ordinates Discretization

Unstructured FEM Neutron Transport William C. Dawn

Overview

Neutron Transport

Results

Next Steps

- Discrete ordinates (S_N) approximation in angle.
- Full derivation projects Σ_s onto spherical harmonics.

$$N_A = \begin{cases} N(N+2) & 3D\\ \frac{N(N+2)}{2} & 2D \end{cases}$$

 $\hat{\Omega}_{n} \cdot \nabla \psi_{g,n}(\mathbf{r}) + \Sigma_{t,g}(\mathbf{r})\psi_{g,n}(\mathbf{r}) =$ Level-symmetric S₁₀ quadrature. $\frac{\chi_{g}(\mathbf{r})}{\lambda} \sum_{g'=1}^{N_{G}} \nu \Sigma_{f,g'}(\mathbf{r}) \sum_{n'=1}^{N_{A}} w_{n}\psi_{g',n'}(\mathbf{r}) + \sum_{g'=1}^{N_{G}} \sum_{n'=1}^{N_{A}} S_{g' \to g,n' \to n}(\mathbf{r})\psi_{g',n'}(\mathbf{r})$

Vector Dimension

Unstructured FEM Neutron Transport William C. Dawn

Overview

- Neutron Transport
- Results
- Next Steps

- Number of unknowns per spatial grid point.
- Unique to neutron transport due to underlying phase space.
- High-dimensional continuous phase space leads to high-dimensional discrete phase space.
- Example:
 - ▶ 24 group, S₁₀ in 2D.
 - ▶ $N_G = 24$, $N_A = 60$. VDIM = 1440.
- Most DOF are due to energy & angle (not space).
- Linear finite elements. Spectral FEM likely not useful.

NC STATE SAAF Equations for FEM

Self-Adjoint Angular Flux (SAAF).

Second-order system of PDEs can be solved with continuous FEM.

• Convert hyperbolic to elliptic.

- Unstructured FEM Neutron Transport
- William C. Dawn
- Overview
- Neutron Transport
- Results Next Steps

No sweep. $\int_{\Omega} \frac{1}{\sum_{t=0}^{t} (\mathbf{r})} \hat{\Omega}_{n} \cdot \nabla v(\mathbf{r}) \hat{\Omega}_{n} \cdot \nabla \psi_{g,n}(\mathbf{r}) \, d\mathbf{r} + \int_{\Omega} v(\mathbf{r}) \sum_{t,g} (\mathbf{r}) \psi_{g,n}(\mathbf{r}) \, d\mathbf{r} +$ $\frac{1}{2} \left(\oint_{\Gamma} v(\mathbf{r}) \psi_{g,n}(\mathbf{r}) \hat{\Omega}_{n} \cdot \hat{\mathbf{n}} \, d\Gamma + \oint_{\Gamma} v(\mathbf{r}) \psi_{g,n}(\mathbf{r}) \left| \hat{\Omega}_{n} \cdot \hat{\mathbf{n}} \right| \, d\Gamma \right) =$ $\left|\frac{1}{\lambda}\left(\int_{\mathcal{D}}\chi_{g}(\mathbf{r})\sum_{r=l-1}^{N_{G}}\nu\Sigma_{f,g'}(\mathbf{r})\sum_{r=l-1}^{N_{A}}w_{n'}\psi_{g',n'}(\mathbf{r})\,d\mathbf{r}+\int_{\mathcal{D}}\frac{\hat{\Omega}_{n}\cdot\nabla\nu(\mathbf{r})}{\Sigma_{t,g}(\mathbf{r})}\chi_{g}(\mathbf{r})\sum_{r=l-1}^{N_{G}}\nu\Sigma_{f,g'}(\mathbf{r})\sum_{r=l-1}^{N_{A}}w_{n'}\psi_{g',n'}(\mathbf{r})\,d\mathbf{r}\right|$ $\int_{\mathcal{D}} v(\mathbf{r}) \sum_{\ell=1}^{N_G} \sum_{\ell=1}^{N_A} S_{g' \to g, n' \to n}(\mathbf{r}) \psi_{g', n'}(\mathbf{r}) \, d\mathbf{r} + \int_{\mathcal{D}} \frac{\hat{\Omega}_n \cdot \nabla v(\mathbf{r})}{\Sigma_{\ell,g}(\mathbf{r})} \sum_{\ell=1}^{N_G} \sum_{\ell=1}^{N_A} S_{g' \to g, n' \to n}(\mathbf{r}) \psi_{g', n'}(\mathbf{r}) \, d\mathbf{r} \frac{1}{2} \left(\oint_{\Gamma} v(\mathbf{r}) \psi_{g,n}^{\text{inc}}(\mathbf{r}) \hat{\Omega}_n \cdot \hat{\mathbf{n}} \, d\Gamma - \oint_{\Gamma} v(\mathbf{r}) \psi_{g,n}^{\text{inc}}(\mathbf{r}) \left| \hat{\Omega}_n \cdot \hat{\mathbf{n}} \right| \, d\Gamma \right)$

Solver Methodologies

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport

Results

Next Steps

Generalized Eigensolver.

- All-at-once.
- PETSc + SLEPc.
 - Generalized Davidson.

• Approx. 100 GMRES iteration preconditioning. • Scattering iterations with Diffusion Synthetic

- NVIDIA AmgX library.
- HYPRE+GPU in development.

Challenge:

Memory limited.

• Approx. 10 000 PCG solves.

• HyprePCG + HypreBoomerAMG.

• One group at-a-time (all angle).

Gauss-Seidel in energy.

• "Lagged" source term.

Acceleration (DSA).

Source Iteration.

Source Iteration Algorithm

NC STATE Methods Comparison

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport

Results

Next Steps

Increasing "Matrix-free"

Jnstructured FEM		
Neutron Transport		
William C. Dawn		

Overview

Neutron Transport

Results

Next Steps

. Overviev

2. Neutron Transport

3. Results

4. Next Steps

MARVEL Reactor Model

Unstructured FEM Neutron Transport William C. Dawn

Overview

Neutron Transport

Results

Next Steps

- Series of two-dimensional meshes generated with Gmsh.
- 24 and 238 group cross sections generated with data from SCALE.
- All results use 24 group structure.
- Large gaseous region (approx. 12 % by volume).
- Gas density artificially increased 100 ×.

Refinement	$h_{\text{inner}} [\text{cm}]$	$h_{\text{outer}} [\text{cm}]$	Elements	Vertices
R0	0.5	1.0	45 204	22 791
R1	0.25	0.5	439 168	220 333
R2	0.125	0.25	6322912	3 164 449
R3	0.0625	0.125	96 378 000	48 200 969

NC STATE UNIVERSITY MARVEL Reactor Geometry

NC STATE MARVEL Reactor Results

Unstructured FEM Neutron Transport

William C. Dawn

Overview

- Neutron Transport
- Results

Next Steps

- Source iteration solver necessary.
- Most refined results require 256 Summit nodes (10752 MPI ranks) and 6 h.
- More spatially refined results desirable.
- Observed convergence rate $O(h^{1.340})$.

Refinement	S_2	S_4	S ₆	S_8	S_{10}
R 0	1.325 219	1.326 908	1.326742	1.326 872	1.327 017
R1	1.335 505	1.336 675	1.336745	1.336790	1.336 872
R2	1.339 502	1.340 601	1.340697		
Ref. [†]	1.342042	1.343240	1.343278		

[†] Richardson extrapolation.

Refinemen	t S ₂	S_4	S ₆	S ₈	S ₁₀
R0	2.19 M	6.56 M	13.13 M	21.88 M	32.82 M
R1	21.15 M	63.46 M	126.91 M	211.52 M	317.28 M
R2	303.79 M	911.36 M	1.82 B	*	

NC STATE MARVEL Reactor Results

Unstructured FEM Neutron Transport William C. Dawn

Overview

Neutron Transport

Results

Next Steps

Thermal scalar flux. E < 0.625 eV Epithermal scalar flux. 0.625 eV < E < 6 keV Fast scalar flux. E > 6 keV

MFEM Workshop 2021

20

Mesh Refinement Effects

Unstructured FEM Neutron Transport

William C. Dawn

Overview

Neutron Transport

Results

Next Steps

Two entirely separate effects:

- 1. Better describe curved geometry.
- 2. Decrease characteristic mesh size.
- 1.64 % fuel volume error for R0 mesh.
- Brief investigation of "mesh correction" methods.
 - ► Equidistant vertices.
 - Volume preserving meshes.
 - Cross section correction.
- Eigenvalue change due to refinement is mostly attributable to improved mass conservation.

Refinement	Corrected	Uncorrected	Difference [pcm]
R0 R1	1.334 091 1.338 354	1.326 872 1.336 790	721.88 156.41
	MARVE	L 2D S ₈ Resul	ts.

MARVEL 3D Model

Unstructured FEM Neutron Transport William C. Dawn

Overview

Neutron Transport

Results

Next Steps

	. 1 .	
<u>)</u> П	f 1	ne
Ju	UII	IIC.

Unstructured	FEM
Neutron Tran	isport
William C. I	Dawn

Overview Neutron Transport

Results

Next Steps

4. Next Steps

Next Steps

Unstructured FEM Neutron Transport William C. Dawn

Overview

Neutron Transport

- Results
- Next Steps

- Improved GPU utilization.
 - ► HYPRE+GPU.
 - "Partial"/tensor assembly of linear forms on GPUs.
- "Large" meshes.
- Heat conduction multiphysics feedback.
- Demonstration of three-dimensional results.

Acknowledgments

Unstructured FEM Neutron Transport	
William C. Dawn	
Overview	
Neutron Transport	This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
Results	effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Next Steps	Administration.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Thank You!

Unstruct	d F	FEN	
Neutron	Tra	ins	por
William	c	Ds	

Overview

Neutron Transport

Results

Next Steps

Thank you all for your attention this afternoon!

wcdawn@ncsu.edu
https://wcdawn.github.io/