
High-Order Solvers in MFEM

Will Pazner + the MFEM team October 20, 2021

pazner1@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National
Security, LLC. LLNL-PRES-828127.



High-Order Discretizations and Solvers

• High-order discretizations present many benefits
• Very high accuracy on smooth problems
• With hp-refinement, exponential convergence on prob-
lems with singularities

• Advection-dominated problems: low dispersion, dissi-
pation, better resolution of small-scale features

• High arithmetic intensity =⇒ better for GPUs

For example…



Performant GPU Kernels

102 103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Convection (using shared memory)

p = 2
p = 3
p = 4
p = 5
p = 6

102 103 104 105 106 107 108
0

0.5

1

1.5

2
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Vector diffusion

p = 2
p = 3
p = 4
p = 5
p = 6



Double Mach Reflection

ρ

ρv2

Secondary slip line
Primary slip line

Wall-adjacent jet



Incompressible Flow



hp-Adaptivity



High-Order Discretizations and Solvers

• High-order discretizations present many benefits
• Very high accuracy on smooth problems
• With hp-refinement, exponential convergence on problems
with singularities

• Advection-dominated problems: low dispersion, dissipation,
better resolution of small-scale features

• High arithmetic intensity =⇒ better for GPUs

But…

• Difficult to solve the linear systems
• Poorly conditioned systems (κ ∼ p3/h2 or κ ∼ p4/h2)
• Large, dense, element-wise blocks (O(p6) nonzeros in 3D)
• Expensive to form/assemble the matrix
• Classical methods don’t always work well



High-Order Discretizations and Solvers

• High-order discretizations present many benefits
• Very high accuracy on smooth problems
• With hp-refinement, exponential convergence on problems
with singularities

• Advection-dominated problems: low dispersion, dissipation,
better resolution of small-scale features

• High arithmetic intensity =⇒ better for GPUs

But…

• Difficult to solve the linear systems
• Poorly conditioned systems (κ ∼ p3/h2 or κ ∼ p4/h2)
• Large, dense, element-wise blocks (O(p6) nonzeros in 3D)
• Expensive to form/assemble the matrix
• Classical methods don’t always work well



High-Order Solvers in MFEM

MFEM aims to make efficient solvers for high-order
problems readily available and easy to use



MFEM’s Solver Capabilities

Traditional Solver Methods
Iterative methods

• CG, GMRES, FGMRES, MINRES, BiCGSTAB

Sparse direct methods

• UMFPACK, KLU, PARDISO, SuperLU, MUMPS, STRUMPACK

Multigrid and AMG methods

• hypre, AMGX, Ginkgo, geometric multigrid

Solvers for High-Order
MFEM also provides several specialized high-order solvers



Solvers Designed for High-Order Methods

Solver Model Problem Matrix-Free GPU

hp-multigrid Diffusion + others… 3 3

Low-order refined Diffusion, curl-curl, grad-div 3 3

Matrix-free AMS curl-curl 3 3

Block ILU Advection-dominated 7 7

AIR Advection-dominated 7 7



Geometric multigrid

• Flexible base class Multigrid

• BYO:
• Hierarchy of operators
• Prolongation operators
• Smoothers
• Coarse solvers

• GeometricMultigrid
• Work on a hierarchy of ‘FiniteElementSpace’ objects
• h and p refinements supported

• Illustrated in ex26 and ex26p



Matrix-Free Multigrid

• FiniteElementSpaceHierarchy (as the name suggests…)
manages a hierarchy of finite element spaces

• The user can add h- or p-refined spaces
• Prolongation operators between p-refined spaces are
automatically matrix-free and sum-factorized

• OperatorJacobiSmoother and OperatorChebyshevSmoother
provide fast, matrix-free, sum-factorized access to the diagonal of
the high-order operator and associated Chebyshev smoother



Demo



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh

• Under some assumptions, the two are spectrally equivalent
• Use your favorite classical preconditioner on the LOR system

→



Low-order refined in MFEM

• MFEM provides the classes LORDiscretization and LORSolver to
help users build these solvers automatically

• lor_solvers miniapp demonstrates this capability on:
• H1 diffusion
• Definite Maxwell with H(curl)

• grad-div problem with H(div)

• DG diffusion
• Parallel example plor_solvers provides matrix-free AMG solvers
for these problems

• BoomerAMG, AMS, ADS
• One-liners:

• LORSolver<UMFPackSolver> solv_lor(a, ess_dofs);
• LORSolver<HypreBoomerAMG> solv_lor(a, ess_dofs);



Low-order refined in MFEM

• MFEM provides the classes LORDiscretization and LORSolver to
help users build these solvers automatically

• lor_solvers miniapp demonstrates this capability on:
• H1 diffusion
• Definite Maxwell with H(curl)

• grad-div problem with H(div)

• DG diffusion

• Parallel example plor_solvers provides matrix-free AMG solvers
for these problems

• BoomerAMG, AMS, ADS
• One-liners:

• LORSolver<UMFPackSolver> solv_lor(a, ess_dofs);
• LORSolver<HypreBoomerAMG> solv_lor(a, ess_dofs);



Low-order refined in MFEM

• MFEM provides the classes LORDiscretization and LORSolver to
help users build these solvers automatically

• lor_solvers miniapp demonstrates this capability on:
• H1 diffusion
• Definite Maxwell with H(curl)

• grad-div problem with H(div)

• DG diffusion
• Parallel example plor_solvers provides matrix-free AMG solvers
for these problems

• BoomerAMG, AMS, ADS

• One-liners:
• LORSolver<UMFPackSolver> solv_lor(a, ess_dofs);
• LORSolver<HypreBoomerAMG> solv_lor(a, ess_dofs);



Low-order refined in MFEM

• MFEM provides the classes LORDiscretization and LORSolver to
help users build these solvers automatically

• lor_solvers miniapp demonstrates this capability on:
• H1 diffusion
• Definite Maxwell with H(curl)

• grad-div problem with H(div)

• DG diffusion
• Parallel example plor_solvers provides matrix-free AMG solvers
for these problems

• BoomerAMG, AMS, ADS
• One-liners:

• LORSolver<UMFPackSolver> solv_lor(a, ess_dofs);
• LORSolver<HypreBoomerAMG> solv_lor(a, ess_dofs);



Demo



Advection-dominated problems

• More challenging (from a methods point of view) than
elliptic/parabolic problems

• Most robust options are currently matrix-based
• Block ILU(0) with MDF ordering
• Approximate Ideal Restriction (AIR) AMG

• Both illustrated in ex9p

• Both methods can perform “sweeps”, i.e. converge immediately if
there is a perfect (triangular) ordering (no cycles)



Demo



• Questions?
• Feedback?
• Suggestions?



This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This document was prepared as an account of
work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore
National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising
or product endorsement purposes.


