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High-Order Discretizations and Solvers

• High-order discretizations present many benefits
• Very high accuracy on smooth problems
• With hp-refinement, exponential convergence on prob-
lems with singularities

• Advection-dominated problems: low dispersion, dissi-
pation, better resolution of small-scale features

• High arithmetic intensity =⇒ better for GPUs

For example…
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Incompressible Flow
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High-Order Discretizations and Solvers

• High-order discretizations present many benefits
• Very high accuracy on smooth problems
• With hp-refinement, exponential convergence on problems
with singularities

• Advection-dominated problems: low dispersion, dissipation,
better resolution of small-scale features

• High arithmetic intensity =⇒ better for GPUs

But…

• Difficult to solve the linear systems
• Poorly conditioned systems (κ ∼ p3/h2 or κ ∼ p4/h2)
• Large, dense, element-wise blocks (O(p6) nonzeros in 3D)
• Expensive to form/assemble the matrix
• Classical methods don’t always work well
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High-Order Solvers in MFEM

MFEM aims to make efficient solvers for high-order
problems readily available and easy to use



MFEM’s Solver Capabilities

Traditional Solver Methods
Iterative methods

• CG, GMRES, FGMRES, MINRES, BiCGSTAB

Sparse direct methods

• UMFPACK, KLU, PARDISO, SuperLU, MUMPS, STRUMPACK

Multigrid and AMG methods

• hypre, AMGX, Ginkgo, geometric multigrid

Solvers for High-Order
MFEM also provides several specialized high-order solvers



Solvers Designed for High-Order Methods

Solver Model Problem Matrix-Free GPU

hp-multigrid Diffusion + others… 3 3

Low-order refined Diffusion, curl-curl, grad-div 3 3

Matrix-free AMS curl-curl 3 3

Block ILU Advection-dominated 7 7

AIR Advection-dominated 7 7



Geometric multigrid

• Flexible base class Multigrid

• BYO:
• Hierarchy of operators
• Prolongation operators
• Smoothers
• Coarse solvers

• GeometricMultigrid
• Work on a hierarchy of ‘FiniteElementSpace’ objects
• h and p refinements supported

• Illustrated in ex26 and ex26p



Matrix-Free Multigrid

• FiniteElementSpaceHierarchy (as the name suggests…)
manages a hierarchy of finite element spaces

• The user can add h- or p-refined spaces
• Prolongation operators between p-refined spaces are
automatically matrix-free and sum-factorized

• OperatorJacobiSmoother and OperatorChebyshevSmoother
provide fast, matrix-free, sum-factorized access to the diagonal of
the high-order operator and associated Chebyshev smoother



Demo



Low-order refined

Main idea

• High-order matrix-free operator — no assembled matrix!
• Assemble low-order matrix on auxiliary refined mesh
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Low-order refined in MFEM

• MFEM provides the classes LORDiscretization and LORSolver to
help users build these solvers automatically

• lor_solvers miniapp demonstrates this capability on:
• H1 diffusion
• Definite Maxwell with H(curl)

• grad-div problem with H(div)

• DG diffusion
• Parallel example plor_solvers provides matrix-free AMG solvers
for these problems

• BoomerAMG, AMS, ADS
• One-liners:

• LORSolver<UMFPackSolver> solv_lor(a, ess_dofs);
• LORSolver<HypreBoomerAMG> solv_lor(a, ess_dofs);
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Advection-dominated problems

• More challenging (from a methods point of view) than
elliptic/parabolic problems

• Most robust options are currently matrix-based
• Block ILU(0) with MDF ordering
• Approximate Ideal Restriction (AIR) AMG

• Both illustrated in ex9p

• Both methods can perform “sweeps”, i.e. converge immediately if
there is a perfect (triangular) ordering (no cycles)
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• Questions?
• Feedback?
• Suggestions?
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