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What is the fractional Laplacian?
Fractional PDEs

Example Definition Intuition

1.5
We follow the spectral definition of the
fractional laplacian. For regular Laplacian: D
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The fractional Laplacian with MFEM

examples/ex33p

a=0.2 a=0.8 a=14 a=2.0

make ex33p && mpirun -np 4 ex33p -m ../data/l-shape.mesh —-alpha <your-alpha/2.0> -0 3 -r 5



Rational approximation

.. via the AAA algorithm

_AY% =} = y = — A~ * Apply a rational approximation to the inverse

of the operator

N N
Ck _ —1  Equivalence holds due to central results of the
o (A~ ) ¢ ((—A) - A
l; ( X — Pk) (=4) I; £ <( ) =P k) spectral theory for normal operators

) = ” . “A)— )y = b * Ultimately, we solve N independent reactio-
Z K with (=8) = Py £ diffusion equations and sum them up

Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., & Vutov, Y. (2018). Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Numerical Linear Algebra with Applications, 25(5), €2167. https://doi.org/10.1002/nla.2167
Nakatsukasa, Y., Sete, O., & Trefethen, L. N. (2018). The AAA Algorithm for Rational Approximation. SIAM Journal on Scientific Computing, 40(3), A1494—A1522. https://doi.org/10.1137/16M 1106122



The fractional Laplacian with MFEM

examples/ex33p
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make ex33p && mpirun -np 4 ex33p -m ../data/l-shape.mesh —-alpha 0.1 -0 3 -r 5




What are stochastic PDEs?

Some examples

|. Stochastic Coefficients

0
<0t V-D(G))V>M=f

Il. Stochastic Load

(a V-DV)u=W(a))
ot



White noise in MFEM
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Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with
Nonnested Meshes*
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Abstract. When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise, a u t O *Wh i t eN O i S e — n ew W h i t e G a u S S i a n N O i S e D O m a i n L F I n t e g r a t O r ( S e e d ) ;
techmique that <an o used to effciontly compute white noiss ssmples in a fmite clement methoq b.AddDomainInte gra tor(WhiteNoise) ’

(FEM) and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit the finite element
matrix assembly procedure and factorize each local mass matrix independently, hence avoiding the b A S S e m b -l- e ( ) n
factorization of a large matrix. Moreover, in an MLMC framework, the white noise samples must be | ) /
coupled between subsequent levels. We show how our technique can be used to enforce this coupling
even in the case of nonnested mesh hierarchies. We demonstrate the efficacy of our method with
numerical experiments. We observe optimal convergence rates for the finite element solution of the

elliptic SPDEs of interest in 2D and 3D and we show convergence of the sampled field covariances. L r.l CALIGALI YVIITIWW WU WIVVIWALL 1 IV IV

In an MLMC setting, a good coupling is enforced and the telescoping sum is respected.
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1. Introduction. Gaussian fields are ubiquitous in uncertainty quantification to model
the uncertainty in spatially dependent parameters. Common applications are in geology, oil
reservoir modeling, biology, and meteorology [6, 23, 27, 33]. Here, let D C R? be an open brendankeith
spatial domain of interest whose closure is a compact subset of R?. Consider the task of
sampling from a zero-mean Gaussian field u of Matérn covariance C,

o? , V8v This PR provides a new LinearFormIntegrator for spatial white Gaussian noise.
(11) C(.’L‘,y) = T(KV') ’CV(K’T): r= H"B - y“27 K=—— Z,YE D,
2v~-11(v) A

where o2, v, A > 0 are the variance, smoothness parameter, and correlation length of the field, The target problem is the linear SPDE a(u,v) = F(v) with F(v) := <W,v>,6 where W is spatial
respectively, and K, is the modified Bessel function of the second kind. white Gaussian noise. When the Galerkin method is used to discretize this problem into a linear

In practice, samples of u are needed only at discrete locations x,...,x,, € D, and a ‘
simple sampling strategy consists of drawing realizations of a Gaussian vector u ~ N(0,C) system of equations Ax = b, the RHS is a Gaussian random vector b~N(@,M) whose

*Received by the editors March 12, 2018; accepted for publication (in revised form) September 9, 2018; published covariance matrix is the same as the mass matrix M_ij = (v_i,v_3j) . This property can be
electronically November 20, 2018. . _ .

http:/ /www.siam.org/journals/juq/6-4/M117523.html ensuredif b = H w ] where HHT™ = M and each component w_i1i~N(©,1) .
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The SPDE method

Generating Gaussian random fields with Matern Covariance

U+ d

|
—>-V-(OV) +1 u(x',w) = nW(x, )
L

Whittle, P. (1954). On Stationary Processes in the Plane. Biometrika, 41(3/4),434. https://doi.org/10.2307/2332724
Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Inst. Internat. Statist., 40, 974-994

Lindgren, F., Rue, H., & Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical
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The SPDE method

Generating Gaussian random fields with Matern Covariance

/ 2u+d \
1 4

(——V (OV) + 1) w(x, w) = nW(x', o) Theoretical results:

Equation 2y
1 * The solution to the PDE is a Gaussian random
o (27)7y/det (@) (v + %) field with Matérn covariance and zero mean
Normalization 5 = » The parameter ¥ determines the smoothness of

vl ) the field.

* The parameter ® determines the spatial structure
Domain: arbitrary Boundaries: arbitrary of the random field.
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The SPDE method with MFEM

miniapps/materials

v=0.5 v=1.0 v =20 v=4.0

make && mpirun -np 4 main -0 1 -r 3 -rp 6 —-nu <your—-nu> -11 0.05 -12 0.05 —no-rs




The SPDE method with MFEM o LW 0

2v 0 (lz)z

miniapps/materials

make && mpirun -np 4 main -0 1 -r 3 -rp 6 -nu 4.0 -11 <your-11> -12 <your-12> —-no-rs



What is topology optimization?

minimize min J Mf dx
pEL*(Q) 0

subject to —div r(lﬁ) Viu= f

—€e’Ap+p=p
J p(X)dx <V
Q

0<p<l

7'(,5) = Pmin T :53(1 — pmin)

Homogeneous Neumann = INnhomogeneous Dirichlet Prin = 0.001 e = 0.01




Examples




Topology optimization under uncertainty
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