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High order methods...

» Promise higher accuracy per DOF than
low-order

» Have demonstrated success modeling
under-resolved physics such as turbulence
(e.g. large eddy simulation)

» Symmetry preservation, curved
geometries, adaptivity, problems with
SingUIarities High-order wave

propagation in

» Better suited for modern architectures rest .
magnetic fusion device
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High-order incompressible More accurate resolution of enstrophy for equal
Taylor-Green vortex # DOFs with high-order methods



Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
» Extremely ill-conditioned
> Expensive to assemble

» High memory cost to store
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We would like to construct linear solvers that:
Converge quickly

Have low memory requirements

>
| 4
> Are applicable to different types of physics
» Support end-to-end GPU acceleration

>

Are available and easy to use in MFEM
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Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p

Number of DOFs O(p?) p’
Nonzeros in system matrix O(p*?) p°
Traditional (naive) assembly O(p*?) ops P’
Sum-factorized assembly O(p*™*") ops p’
Optimal memory usage O(p?) p’
Sum-factorized operator application O(p?*") ops p*




Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p

Number of DOFs O(p?) p’
Nonzeros in system matrix O(p*?) p°
Traditional (naive) assembly O(p*?) ops P’
Sum-factorized assembly O(p*™*") ops p’
Optimal memory usage O(p?) p’
Sum-factorized operator application O(p?*") ops p*

Goal: Iterative solvers with:

optimal O(p?) memory || O(p?*') operations || O(1) iterations

= Cannot assemble the matrix
= Must construct preconditioners without access to matrix entries



Low-order-refined preconditioning

» High-order operator A, &\ \\/’ // /
« Matrix-free operator evaluation SO
\ \

» Low-order-refined operator Ap
+ Gauss-Lobatto refined mesh Ap
« Ay is sparse: O(1) nonzeros per row
- By ~ A, ' uniform preconditioner

» Use By as a preconditioner for A,

» LOR spectral equivalence (“FEM-SEM
equivalence”)

Ap, A are H' discretizations of Poisson = A}, is spectrally
equivalent to A, (constant independent of h and p).
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Theorem [Dohrmann, Kolev, P.]

Spectral equivalence (independent of h and p) extends to curl-curl
problems in H(curl), grad-div problems in H(div), and DG diffusion
problems in L? using the “interpolation-histopolation” basis.

Iterations
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Solution Algorithm

> Setup phase

1. High-order operator setup
2. Low-order-refined matrix assembly
3. AMG setup

» Solve phase

1. High-order operator evaluation
2. AMG V-cycle

» Delegate the AMG setup and V-cycle to hypre

» LOR preconditioning = can use any matrix-based
preconditioner applied to the LOR system to precondition the
HO problem




High-order operator setup and application

» Use MFEM’s partial assembly approach

A, = PTG"B"DBGP|

Global true dofs Local subdomain dofs Element dofs Quadrature point values
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e Nested product of linear operators

» Closely related to the CEED project

and libCEED library CEE

EXASCALE DISCRETIZATIONS



High-order operator setup and application

» Optimal O(p) memory requirements
> O(p?*t") computational complexity
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High-order operator setup and application

» Optimal O(p) memory requirements
> O(p?*") computational complexity

High-Order Operator Setup High-Order Operator Application (libCEED)
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» Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation
» Typical behavior of high-order methods on GPU:

e Higher-order — faster performance



Low-order-refined matrix assembly
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» Creation and

induced significant overhead

> Actual matrix assembly either on host

(AssemblyLevel: :LEGACY)
» Or more recently on device (AssemblyLevel: :FULL)
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Low-order-refined matrix assembly on GPU

» Perform all work at the level of macro-elements
» Avoid generating LOR mesh

> Reuse all data structures and connectivity from high-order
(coarse) mesh

» Make use of local Cartesian structure

One block of threads per
macro-element

Thread over LOR “subelements”

Assembly macro-elements into local
sparse matrices with fixed sparsity

Assemble into global (parallel) CSR
format for use with AMG




LOR assembly throughput

MDOF/s
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Including only assembly kernels (no pre-processing)



LOR assembly throughput

MDOF/s
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Including full assembly procedure (with pre-processing)



LOR assembly throughput
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Macro-element strategy: higher order = faster performance
(In constrast to “legacy” assembly algorithm)



CPU and GPU comparisons

} Setup

{1 HO Application Sol
{1 AMG V-cycle olve

(Total over all CG iterations)

Total: 181s
3D Case, CPU

[ ] AMG Setup
Setup

L
{1 LOR Assembly
{1 HO Setup
[T 1 HO Application Sol
{1 AMG V-cycle olve
1048 ms (Total over all CG iterations)

Total: 4540 ms
3D Case, GPU

GPU:



Neédelec and Raviart-Thomas elements
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» To solve curl-curl (electromagnetic diff.) and grad-div (radiation diff.)
problems, use hypre’s AMS and ADS auxiliary space preconditioners

» In addition to the system matrix, these solvers require:
e vertex coordinates, discrete gradient matrix, discrete curl matrix
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Parallel scalability

» Good strong and weak scalability (shown here

Runtime (s)

Strong and Weak Scaling of HO Setup

Strong and Weak Scaling of LOR Assembly
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LOR AMR preconditioning
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» New LOR preconditioning method based on variational restriction
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Results: AMR

p DOFs NNz NNZ per row Its. GPU Runtime (s)
1]6.0x10* 1.7 x10° 28 28 0.4
2]6.1x10° 2.2 x 107 36 43 0.7
3122x%x10° 8.8x 107 40 42 1.1
4155x10% 2.3x 108 42 44 2.0
51 1.1x107 5.0x 108 45 45 3.3
6| 1.9x10" 9.2x 108 48 46 5.7
7 131x10 1.6x10° 52 47 9.9




Electromagnetic diffusion

» Solve for magnetic field induced by electric current running
through a coil

» Use A-¢ formulation of magnetic diffusion
» Drive current by potential difference at two terminals

» Piecewise constant conductivity coefficient in two materials
(copper and air)
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Solve for electric scalar potential  — LOR + AMG

Compute electric field with discrete gradient

Solve for magnetic vector potential A— LOR + AMS in H(curl)
Compute magnetic field B in H(div) with discrete curl

1.5 x 10° hexahedral elements mesh

2.9 x 108 Nédélec DOFs with p = 4

45 CG iterations in H', 22 CG iterations in H(curl)

Wall clock runtime on 320 V100 GPUs 26 seconds

20



21



22



How can | use this?

» All of these methods are available and easy to use in MFEM

» GPU acceleration and macro-element batching are
automatically enabled if applicable

» Creating LOR solvers is one line of code

// For any SolverType (AMG, direct solver, etc.), form the
// corresponding LOR preconditioner
LORSolver<SolverType> lor_solver(a, ess_dofs);

// For example:

// if ’a’ is H1 diffusion...

LORSolver <HypreBoomerAMG> lor_amg(a, ess_dofs);
// if ’a’ is ND curl-curl...

LORSolver <HypreAMS> lor_ams (a, ess_dofs);

// if ’a’ is RT div-div...

LORSolver <HypreADS> lor_ads(a, ess_dofs);
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‘ Demo

» These methods are illustrated in the LOR solvers miniapp
(included with MFEM)
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‘ Demo

» These methods are illustrated in the LOR solvers miniapp
(included with MFEM)
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Conclusions

Matrix-free high-order solvers on the GPU

MFEM supports end-to-end GPU acceleration of LOR
preconditioners

Preconditioners for all of the de Rham complex
e H', H(curl), H(div) problems
Convergence independent of mesh size and polynomial degree h
Easy to use API: usually just one line of code
[llustrated in bundled solvers miniapp

Pazner, Kolev, Dohrmann. Low-order preconditioning for the
high-order de Rham complex (2022).

Pazner, Kolev, Camier. End-to-end GPU acceleration of
low-order-refined preconditioning for high-order finite element
discretizations (2022).
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