High-Order Solvers + GPU Acceleration

Will Pazner pazner@pdx.edu

Joint with Tzanio Kolev, John Camier, and members of the MFEM team

MFEM Community Workshop Portland State

October 25, 2022 Fariborz Maseeh Department of
’ Mathematics & Statistics

High order methods...

» Promise higher accuracy per DOF than
low-order

» Have demonstrated success modeling
under-resolved physics such as turbulence
(e.g. large eddy simulation)

» Symmetry preservation, curved
geometries, adaptivity, problems with
SingUIarities High-order wave

propagation in

» Better suited for modern architectures rest .
magnetic fusion device

S S T R T]

High-order incompressible More accurate resolution of enstrophy for equal
Taylor-Green vortex # DOFs with high-order methods

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
» Extremely ill-conditioned
> Expensive to assemble

» High memory cost to store

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
» Extremely ill-conditioned
> Expensive to assemble

» High memory cost to store

We would like to construct linear solvers that:
Converge quickly

Have low memory requirements

>
| 4
> Are applicable to different types of physics
» Support end-to-end GPU acceleration

>

Are available and easy to use in MFEM

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
» Extremely ill-conditioned
> Expensive to assemble

» High memory cost to store

We would like to construct linear solvers that:
» Converge quickly

» Have low memory requirements

> Are applicable to different types of physics
> Support end-to-end GPU acceleration
> Are available and easy to use in MFEM

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p

Number of DOFs O(p?) p’
Nonzeros in system matrix O(p*?) p°
Traditional (naive) assembly O(p*?) ops P’
Sum-factorized assembly O(p*™*") ops p’
Optimal memory usage O(p?) p’
Sum-factorized operator application O(p?*") ops p*

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p

Number of DOFs O(p?) p’
Nonzeros in system matrix O(p*?) p°
Traditional (naive) assembly O(p*?) ops P’
Sum-factorized assembly O(p*™*") ops p’
Optimal memory usage O(p?) p’
Sum-factorized operator application O(p?*") ops p*

Goal: Iterative solvers with:

optimal O(p?) memory || O(p?*') operations || O(1) iterations

= Cannot assemble the matrix
= Must construct preconditioners without access to matrix entries

Low-order-refined preconditioning

» High-order operator A, &\ \\/’ // /
« Matrix-free operator evaluation SO
\ \

» Low-order-refined operator Ap
+ Gauss-Lobatto refined mesh Ap
« Ay is sparse: O(1) nonzeros per row
- By ~ A, ' uniform preconditioner

» Use By as a preconditioner for A,

» LOR spectral equivalence (“FEM-SEM
equivalence”)

Ap, A are H' discretizations of Poisson = A}, is spectrally
equivalent to A, (constant independent of h and p).

|

o v, l‘:l(cu rl,? 23 ‘l‘-l(div) YR
“nodes” edges faces”
Kinematics MHD Rad. diffusion

L2

[43 »
elements

Rad. transfer

Theorem [Dohrmann, Kolev, P.]

Spectral equivalence (independent of h and p) extends to curl-curl
problems in H(curl), grad-div problems in H(div), and DG diffusion
problems in L? using the “interpolation-histopolation” basis.

Iterations

30

20

10

Poisson
-V -Vu=f
Lagrange H'

u+VxVxu=f

30

20

Maxwell

Nédélec H(curl)

Raviart-Thomas H(div)

Grad-div
u—V(V-u)=f

30

20

Solution Algorithm

> Setup phase

1. High-order operator setup
2. Low-order-refined matrix assembly
3. AMG setup

» Solve phase

1. High-order operator evaluation
2. AMG V-cycle

» Delegate the AMG setup and V-cycle to hypre

» LOR preconditioning = can use any matrix-based
preconditioner applied to the LOR system to precondition the
HO problem

High-order operator setup and application

» Use MFEM’s partial assembly approach

A, = PTG"B"DBGP|

Global true dofs Local subdomain dofs Element dofs Quadrature point values

: e BB (EIEEE
et P 111 ¢ (EED B] @@D
S S8 IBES L IET R (T mmmmm@@ B
S sissitses HE BE
T-vector L-vector E-vector Q-vector

» Represent operator in matrix-free ",‘b
format . i‘ 7
N

777
9,

27

4

(2 27

e Nested product of linear operators

» Closely related to the CEED project

and libCEED library CEE

EXASCALE DISCRETIZATIONS

High-order operator setup and application

» Optimal O(p) memory requirements
> O(p?*t") computational complexity

High-Order Operator Setup High-Order Operator Application
> Peak: 7.1 x 10° DOF/s —o—p =1 || Peak: 1.6 x 10° DOF/s

- 3,000 |- p— . _ 3,000 |- p=2 —
iy ——p= I ——p=3
8 ——p=4 8 —e—p=
=, 2000 |—e—p= . =, 2,000 |—e—p= -
5 ——p==6] ——p=6
2 _ 2 _
2 1,000 - — 2 1,000 -
< £
= =

0 o-=5—"F.0 000 0 IO ik I

10° 10° 10 10° 10° 10 10° 10° 10* 10° 10° 107

Degrees of Freedom (DOF) Degrees of Freedom (DOF)

High-order operator setup and application

» Optimal O(p) memory requirements
> O(p?*") computational complexity

High-Order Operator Setup High-Order Operator Application (libCEED)
—o—p=1||Peak: 7.1 x 10° DOF /s —o—p =1 ||Peak: 3.2 x 10° DOF/s
3000 o o 1 _ 30001 o =2
Iy ——p=3 Iy ——p=3
8 ——p=4 8 ——p=4
= 2000 |-e—p=5 - = 2000 |-e—p=5
5 —e-p==6 5 ——p=6
= ——p=7 = —e—p=
® P- D P-
2 1,000 - 2 1,000 - -
= =
[= =
. -8 0 Lo o L R
102 10° 10* 10° 10 107 10? 10° 10* 10° 10° 107
Degrees of Freedom (DOF) Degrees of Freedom (DOF)

» Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation
» Typical behavior of high-order methods on GPU:

e Higher-order — faster performance

Low-order-refined matrix assembly

o0
o=
c
2
&=
b
<
o
o
o)
e
a
o
@)
|
=
~
o
)
c
2
=
o
2
B

w, this was am

Until no

”»

bookkeeping” for the low-order refined mesh

143

» Creation and

induced significant overhead

> Actual matrix assembly either on host

(AssemblyLevel: :LEGACY)
» Or more recently on device (AssemblyLevel: :FULL)

e
S .
R N

S
MRS NTRR

10

Low-order-refined matrix assembly on GPU

» Perform all work at the level of macro-elements
» Avoid generating LOR mesh

> Reuse all data structures and connectivity from high-order
(coarse) mesh

» Make use of local Cartesian structure

One block of threads per
macro-element

Thread over LOR “subelements”

Assembly macro-elements into local
sparse matrices with fixed sparsity

Assemble into global (parallel) CSR
format for use with AMG

LOR assembly throughput

MDOF/s

25

Before After

Batched LOR (Reduced Alloc)

FULL LOR (Reduced Alloc)
1x Tesla V100-SXM2

1x Tesla V100-SXM2

T AL oo

MDOF/s

10° 108 103 10* 10° 108

10° 10*
Degrees of Freedom (DOF)

Degrees of Freedom (DOF)

Including only assembly kernels (no pre-processing)

LOR assembly throughput

MDOF/s

Before After
FULL LOR (With Allocs) Batched LOR (Reduced Alloc)
1x Tesla V100-SXM2 1x Tesla V100-SXM2
pa TorProe
| ” |
ey
o
a
10} 1 = .
51 | |
e %% —0 o o o0so0e
0 L Ot e [Pt O Do e YO -0 — 0 L - L L —
10° 10* 10° 106 10° 10* 10° 106

Degrees of Freedom (DOF) Degrees of Freedom (DOF)

Including full assembly procedure (with pre-processing)

LOR assembly throughput

Before After

“Full” LOR Assembly Macro-Element LOR Assembly
—0—p =1 || Peak: 9.5 x 10° DOF/s Peak: 2.1 x 10’ DOF/s
= 20 *P=2 s - 20
w —o-p=3 [PE3 e e o0 ea
8 ——p=4 8
S 15H o p—5 i S
FIN | - i
5 0 |—e—p= 7 S < 10
3 3
° Q
F 5 : Fos
0 ool il il il 0 2| R AR RTTY RWETII MATRwETT
10? 10° 10* 10° 10° 107 10? 10° 10* 10° 10° 107
Degrees of Freedom (DOF) Degrees of Freedom (DOF)

Macro-element strategy: higher order = faster performance
(In constrast to “legacy” assembly algorithm)

CPU and GPU comparisons

} Setup

{1 HO Application Sol
{1 AMG V-cycle olve

(Total over all CG iterations)

Total: 181s
3D Case, CPU

[] AMG Setup
Setup

L
{1 LOR Assembly
{1 HO Setup
[T 1 HO Application Sol
{1 AMG V-cycle olve
1048 ms (Total over all CG iterations)

Total: 4540 ms
3D Case, GPU

GPU:

Neédelec and Raviart-Thomas elements

Throughput [MDOF /s]

Nedelec

Macro-Element Nédélec LOR Assembly

S —

20 H

10

—o—p=1

—eo—p=2
—o—p=3
—e—p=4
-—e—p=>5
——p==6
—e—p=7

—e—p=28

Peak: 2.5 x 10’ DOF/s

0
10

10°

10°
Degrees of Freedom (DOF)

10* 10° 10° 10" 10°

Throughput [MDOF/s]

Raviart-Thomas

Macro-Element Raviart—-Thomas LOR Assembly

150

100

LLILALLLU S RALLLL JALRLLLL L L AL S ARLL IR
—o—p =1 || Peak: 1.5 x 10° DOF/s
——p=2 |
—o—p=3

——p=4

—e—p=>5 -
—e—p==6

——p=17

—e-p=28 i

50

10*

10> 10° 10* 10° 10° 10" 10°
Degrees of Freedom (DOF)

» To solve curl-curl (electromagnetic diff.) and grad-div (radiation diff.)
problems, use hypre’s AMS and ADS auxiliary space preconditioners

» In addition to the system matrix, these solvers require:
e vertex coordinates, discrete gradient matrix, discrete curl matrix

Discrete Gradient Matrix Assembly Vertex Coordinates (E-Vector)
15,000 r r r T T T T T
—o—p =1 ||Peak: 1.2 x 10'° DOF/s 25,000 -{ o p = Peak: 2.2 x 10'° DOF/s a
- ——p=2 . ——p=2
= ——p=3 o 20,000 |{—e—p=3 o
Q 10,000 {—e—p=4 - 2 —o—p=4
= ——p=5 2 15,000 | =P = -
5 ——p=6 £ ——p==6
2 e p=7 2 —ep=7
) P % 10,000 P -
2 5,000 | 2
3 3
= =
[= 5,000 =
0 L L L 0 &
102 10° 10 10° 10° 10" 10° 102 10° 10 10° 10° 107 10°
Degrees of Freedom (DOF) Degrees of Freedom (DOF)
Discrete Curl Matrix Assembly Vertex Coordinates (T-Vector)
15,000 r r r r r r r T
—o0—p =1 ||Peak: 45 x 10° DOF/s 25,000 -| o p= Peak: 2.3 x 10" DOF/s m
- —e—p=2 - ——p=2
Py ——p=3 o 20,000 —e—p= B
S 10,000 o p=14 , 8 e p=
= ——p=5 2, 15000 |~ P= 4
< —e—p=6 B ——p=6
2 —p=7 £ 10000| | P=
3§ 5000 - 1 5] o |
= =
’_ f = 5000 .
0 I I I 0 I I I
10° 10° 10* 10° 10° 10" 10° 10° 100 10 10° 10° 107 10°

Degrees of Freedom (DOF) Degrees of Freedom (DOF)

Parallel scalability

» Good strong and weak scalability (shown here

Runtime (s)

Strong and Weak Scaling of HO Setup

Strong and Weak Scaling of LOR Assembly

Runtime (s)

up to 1024 GPUs)

Strong and Weak Scaling of PTAP

Y

Number of GPUs

N N I N N S
22 28 2t 25 20 o7 28 20 l0
Number of GPUs

N O Y Y Y O |
22 23 2t 25 90 o7 98 29 W0
Number of GPUs

Scaling Legend

Problem Size (DOFs)

~—— ldeal Strong Scaling
—0— Strong Scaling
-x- Weak Scaling

—0-84x10° —e—1.7x 10" —o— 3.4 x 10"
——6.7x 107 —o— 1.4 x10° —e— 2.7 x 10°

—0—5.4x 108 —e— 1.1 x 10°

LOR AMR preconditioning

AD.
(< <
~ a m
< c
[m
=
< &
(5]
o
£
a
<
< a
~a <
< 2
Il <
a <
<

» New LOR preconditioning method based on variational restriction

17

Results: AMR

p DOFs NNz NNZ per row Its. GPU Runtime (s)
1]6.0x10* 1.7 x10° 28 28 0.4
2]6.1x10° 2.2 x 107 36 43 0.7
3122x%x10° 8.8x 107 40 42 1.1
4155x10% 2.3x 108 42 44 2.0
51 1.1x107 5.0x 108 45 45 3.3
6| 1.9x10" 9.2x 108 48 46 5.7
7 131x10 1.6x10° 52 47 9.9

Electromagnetic diffusion

» Solve for magnetic field induced by electric current running
through a coil

» Use A-¢ formulation of magnetic diffusion
» Drive current by potential difference at two terminals

» Piecewise constant conductivity coefficient in two materials
(copper and air)

VVyVvyVvVVYyVYVYYy

Solve for electric scalar potential — LOR + AMG

Compute electric field with discrete gradient

Solve for magnetic vector potential A— LOR + AMS in H(curl)
Compute magnetic field B in H(div) with discrete curl

1.5 x 10° hexahedral elements mesh

2.9 x 108 Nédélec DOFs with p = 4

45 CG iterations in H', 22 CG iterations in H(curl)

Wall clock runtime on 320 V100 GPUs 26 seconds

20

21

22

How can | use this?

» All of these methods are available and easy to use in MFEM

» GPU acceleration and macro-element batching are
automatically enabled if applicable

» Creating LOR solvers is one line of code

// For any SolverType (AMG, direct solver, etc.), form the
// corresponding LOR preconditioner
LORSolver<SolverType> lor_solver(a, ess_dofs);

// For example:

// if ’a’ is H1 diffusion...

LORSolver <HypreBoomerAMG> lor_amg(a, ess_dofs);
// if ’a’ is ND curl-curl...

LORSolver <HypreAMS> lor_ams (a, ess_dofs);

// if ’a’ is RT div-div...

LORSolver <HypreADS> lor_ads(a, ess_dofs);

23

‘ Demo

» These methods are illustrated in the LOR solvers miniapp
(included with MFEM)

24

‘ Demo

» These methods are illustrated in the LOR solvers miniapp
(included with MFEM)

24

Conclusions

Matrix-free high-order solvers on the GPU

MFEM supports end-to-end GPU acceleration of LOR
preconditioners

Preconditioners for all of the de Rham complex
e H', H(curl), H(div) problems
Convergence independent of mesh size and polynomial degree h
Easy to use API: usually just one line of code
[llustrated in bundled solvers miniapp

Pazner, Kolev, Dohrmann. Low-order preconditioning for the
high-order de Rham complex (2022).

Pazner, Kolev, Camier. End-to-end GPU acceleration of
low-order-refined preconditioning for high-order finite element
discretizations (2022).

25

