
High-Order Solvers + GPU Acceleration

Will Pazner

Joint with Tzanio Kolev, John Camier, and members of the MFEM team

MFEM Community Workshop
October 25, 2022

pazner@pdx.edu

High order methods. . .

▶ Promise higher accuracy per DOF than
low-order

▶ Have demonstrated success modeling
under-resolved physics such as turbulence
(e.g. large eddy simulation)

▶ Symmetry preservation, curved
geometries, adaptivity, problems with
singularities

▶ Better suited for modern architectures

High-order wave
propagation in

magnetic fusion device

High-order incompressible
Taylor-Green vortex

0 2 4 6 8 10 12 14 16 18 20

0.00

2.00

4.00

6.00

8.00

10.00

t

E
Reference

(
5123

)

p = 3, nx = 16
p = 3, nx = 32
p = 7, nx = 8
p = 15, nx = 8

More accurate resolution of enstrophy for equal
DOFs with high-order methods

2

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
▶ Extremely ill-conditioned
▶ Expensive to assemble
▶ High memory cost to store

We would like to construct linear solvers that:
▶ Converge quickly
▶ Have low memory requirements
▶ Are applicable to different types of physics
▶ Support end-to-end GPU acceleration
▶ Are available and easy to use in MFEM

3

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
▶ Extremely ill-conditioned
▶ Expensive to assemble
▶ High memory cost to store

We would like to construct linear solvers that:
▶ Converge quickly
▶ Have low memory requirements
▶ Are applicable to different types of physics
▶ Support end-to-end GPU acceleration
▶ Are available and easy to use in MFEM

3

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
▶ Extremely ill-conditioned
▶ Expensive to assemble
▶ High memory cost to store

We would like to construct linear solvers that:
▶ Converge quickly
▶ Have low memory requirements
▶ Are applicable to different types of physics
▶ Support end-to-end GPU acceleration
▶ Are available and easy to use in MFEM

3

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p 3D

Number of DOFs O(pd) p3

Matrix-based methods

Nonzeros in system matrix O(p2d) p6

Traditional (naı̈ve) assembly O(p3d) ops p9

Sum-factorized assembly O(p2d+1) ops p7

“Matrix-free” methods

Optimal memory usage O(pd) p3

Sum-factorized operator application O(pd+1) ops p4

Goal: Iterative solvers with:

optimal O(pd) memory O(pd+1) operations O(1) iterations

=⇒ Cannot assemble the matrix
=⇒ Must construct preconditioners without access to matrix entries

4

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p 3D

Number of DOFs O(pd) p3

Matrix-based methods

Nonzeros in system matrix O(p2d) p6

Traditional (naı̈ve) assembly O(p3d) ops p9

Sum-factorized assembly O(p2d+1) ops p7

“Matrix-free” methods

Optimal memory usage O(pd) p3

Sum-factorized operator application O(pd+1) ops p4

Goal: Iterative solvers with:

optimal O(pd) memory O(pd+1) operations O(1) iterations

=⇒ Cannot assemble the matrix
=⇒ Must construct preconditioners without access to matrix entries

4

Low-order-refined preconditioning

▶ High-order operator Ap

• Matrix-free operator evaluation
▶ Low-order-refined operator Ah

• Gauss–Lobatto refined mesh
• Ah is sparse: O(1) nonzeros per row
• Bh ∼ A−1

h uniform preconditioner

▶ Use Bh as a preconditioner for Ap

▶ LOR spectral equivalence (“FEM–SEM
equivalence”)

Ap

Ah

Theorem [Canuto, Quarteroni]

Ap,Ah are H1 discretizations of Poisson =⇒ Ah is spectrally
equivalent to Ap (constant independent of h and p).

5

H1

“nodes”
∇

Kinematics

H(curl)
“edges”

∇×

MHD

H(div)
“faces”

∇·

Rad. diffusion

L2

“elements”

Rad. transfer

Theorem [Dohrmann, Kolev, P.]

Spectral equivalence (independent of h and p) extends to curl-curl
problems in H(curl), grad-div problems in H(div), and DG diffusion
problems in L2 using the “interpolation–histopolation” basis.

Poisson
−∇ · ∇u = f
Lagrange H1

Maxwell
u+∇×∇× u = f

Nédélec H(curl)

Grad-div
u−∇(∇ · u) = f

Raviart–Thomas H(div)

2 4 6 8 10 12 14 16
0

10

20

30

p

It
er
a
ti
o
n
s

2 4 6 8 10 12 14 16
0

10

20

30

p

2 4 6 8 10 12 14 16
0

10

20

30

p

6

Solution Algorithm

▶ Setup phase
1. High-order operator setup
2. Low-order-refined matrix assembly
3. AMG setup

▶ Solve phase
1. High-order operator evaluation
2. AMG V-cycle

▶ Delegate the AMG setup and V-cycle to hypre

▶ LOR preconditioning =⇒ can use any matrix-based
preconditioner applied to the LOR system to precondition the
HO problem

7

High-order operator setup and application

▶ Use MFEM’s partial assembly approach

P

PT

T-vector

Global true dofs

G

GT

L-vector

Local subdomain dofs

B

BT

E-vector

Element dofs

D

Q-vector

Quadrature point values

Ap = P TGTBTDBGP

▶ Represent operator in matrix-free
format

• Nested product of linear operators

▶ Closely related to the CEED project
and libCEED library

8

High-order operator setup and application

▶ Optimal O(pd) memory requirements
▶ O(pd+1) computational complexity

102 103 104 105 106 107
0

1,000

2,000

3,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

High-Order Operator Setup

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 7.1 × 108 DOF/s

102 103 104 105 106 107
0

1,000

2,000

3,000

Degrees of Freedom (DOF)
T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

High-Order Operator Application

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 1.6 × 109 DOF/s

▶ Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation

▶ Typical behavior of high-order methods on GPU:
• Higher-order =⇒ faster performance

9

High-order operator setup and application

▶ Optimal O(pd) memory requirements
▶ O(pd+1) computational complexity

102 103 104 105 106 107
0

1,000

2,000

3,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

High-Order Operator Setup

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 7.1 × 108 DOF/s

102 103 104 105 106 107
0

1,000

2,000

3,000

Degrees of Freedom (DOF)
T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

High-Order Operator Application (libCEED)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 3.2 × 109 DOF/s

▶ Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation

▶ Typical behavior of high-order methods on GPU:
• Higher-order =⇒ faster performance

9

Low-order-refined matrix assembly

Until now, this was a major bottleneck in LOR preconditioning

▶ Creation and “bookkeeping” for the low-order refined mesh
induced significant overhead

▶ Actual matrix assembly either on host
(AssemblyLevel::LEGACY)

▶ Or more recently on device (AssemblyLevel::FULL)

→

10

Low-order-refined matrix assembly on GPU

Macro-element batching strategy

▶ Perform all work at the level of macro-elements
▶ Avoid generating LOR mesh
▶ Reuse all data structures and connectivity from high-order

(coarse) mesh
▶ Make use of local Cartesian structure

▶ One block of threads per
macro-element

▶ Thread over LOR “subelements”
▶ Assembly macro-elements into local

sparse matrices with fixed sparsity
▶ Assemble into global (parallel) CSR

format for use with AMG

11

LOR assembly throughput

Before After

103 104 105 106
0

5

10

15

20

25

Degrees of Freedom (DOF)

M
D
O
F/
s

FULL LOR (Reduced Alloc)
1x Tesla V100-SXM2

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106
0

5

10

15

20

25

Degrees of Freedom (DOF)

M
D
O
F/
s

Batched LOR (Reduced Alloc)
1x Tesla V100-SXM2

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Including only assembly kernels (no pre-processing)
12

LOR assembly throughput

Before After

103 104 105 106
0

5

10

15

20

25

Degrees of Freedom (DOF)

M
D
O
F/
s

FULL LOR (With Allocs)
1x Tesla V100-SXM2

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106
0

5

10

15

20

25

Degrees of Freedom (DOF)

M
D
O
F/
s

Batched LOR (Reduced Alloc)
1x Tesla V100-SXM2

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Including full assembly procedure (with pre-processing)
12

LOR assembly throughput

Before After

102 103 104 105 106 107
0

5

10

15

20

25

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

“Full” LOR Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 9.5 × 106 DOF/s

102 103 104 105 106 107
0

5

10

15

20

25

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Macro-Element LOR Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Peak: 2.1 × 107 DOF/s

Macro-element strategy: higher order =⇒ faster performance
(In constrast to “legacy” assembly algorithm)

12

CPU and GPU comparisons

CPU: 1.9 s

19.0 s

19.6 s

102.5 s

40.7 s

AMG Setup

LOR Assembly

HO Setup
Setup

HO Application

AMG V-cycle
Solve

(Total over all CG iterations)

Total: 181 s

3D Case, CPU

GPU:
253ms

478ms

2533ms

1048ms

228ms

AMG Setup

LOR Assembly

HO Setup
Setup

HO Application

AMG V-cycle
Solve

(Total over all CG iterations)

Total: 4540ms

3D Case, GPU

13

Nédélec and Raviart–Thomas elements

Nédélec Raviart–Thomas

101 102 103 104 105 106 107 108
0

10

20

30

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Macro-Element Nédélec LOR Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Peak: 2.5 × 107 DOF/s

101 102 103 104 105 106 107 108
0

50

100

150

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Macro-Element Raviart–Thomas LOR Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Peak: 1.5 × 108 DOF/s

14

▶ To solve curl-curl (electromagnetic diff.) and grad-div (radiation diff.)
problems, use hypre’s AMS and ADS auxiliary space preconditioners

▶ In addition to the system matrix, these solvers require:
• vertex coordinates, discrete gradient matrix, discrete curl matrix

102 103 104 105 106 107 108
0

5,000

10,000

15,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Discrete Gradient Matrix Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 1.2 × 1010 DOF/s

102 103 104 105 106 107 108
0

5,000

10,000

15,000

20,000

25,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Vertex Coordinates (E-Vector)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 2.2 × 1010 DOF/s

102 103 104 105 106 107 108
0

5,000

10,000

15,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Discrete Curl Matrix Assembly

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 4.5 × 109 DOF/s

102 103 104 105 106 107 108
0

5,000

10,000

15,000

20,000

25,000

Degrees of Freedom (DOF)

T
h
ro
u
g
h
p
u
t
[M

D
O
F
/
s]

Vertex Coordinates (T-Vector)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Peak: 2.3 × 1010 DOF/s

15

Parallel scalability

▶ Good strong and weak scalability (shown here up to 1024 GPUs)

22 23 24 25 26 27 28 29 2102−5

2−4

2−3

2−2

Number of GPUs

Ru
nt

im
e

(s
)

Strong and Weak Scaling of HO Setup

22 23 24 25 26 27 28 29 2102−4

2−3

2−2

2−1

Number of GPUs

Ru
nt

im
e

(s
)

Strong and Weak Scaling of LOR Assembly

22 23 24 25 26 27 28 29 2102−2

2−1

20

21

Number of GPUs

Ru
nt

im
e

(s
)

Strong and Weak Scaling of PT AP

Ideal Strong Scaling

Strong Scaling

Weak Scaling

Scaling Legend

8.4× 106 1.7× 107 3.4× 107

6.7× 107 1.4× 108 2.7× 108

5.4× 108 1.1× 109

Problem Size (DOFs)

16

LOR AMR preconditioning

▶ New LOR preconditioning method based on variational restriction

Ap = ΛT
p ÂpΛp, Ah = ΛT

p ÂhΛp

Ah ∼ Ap independent of p

17

Results: AMR

p DOFs NNZ NNZ per row Its. GPU Runtime (s)

1 6.0 × 104 1.7 × 106 28 28 0.4
2 6.1 × 105 2.2 × 107 36 43 0.7
3 2.2 × 106 8.8 × 107 40 42 1.1
4 5.5 × 106 2.3 × 108 42 44 2.0
5 1.1 × 107 5.0 × 108 45 45 3.3
6 1.9 × 107 9.2 × 108 48 46 5.7
7 3.1 × 107 1.6 × 109 52 47 9.9

18

Electromagnetic diffusion

▶ Solve for magnetic field induced by electric current running
through a coil

▶ Use A–ϕ formulation of magnetic diffusion
▶ Drive current by potential difference at two terminals
▶ Piecewise constant conductivity coefficient in two materials

(copper and air)

19

▶ Solve for electric scalar potential ϕ — LOR + AMG
▶ Compute electric field with discrete gradient
▶ Solve for magnetic vector potential A — LOR + AMS in H(curl)
▶ Compute magnetic field B in H(div) with discrete curl
▶ 1.5 × 106 hexahedral elements mesh
▶ 2.9 × 108 Nédélec DOFs with p = 4
▶ 45 CG iterations in H1, 22 CG iterations in H(curl)
▶ Wall clock runtime on 320 V100 GPUs 26 seconds

20

21

22

How can I use this?

▶ All of these methods are available and easy to use in MFEM
▶ GPU acceleration and macro-element batching are

automatically enabled if applicable
▶ Creating LOR solvers is one line of code

// For any SolverType (AMG, direct solver, etc.), form the

// corresponding LOR preconditioner

LORSolver <SolverType > lor_solver(a, ess_dofs);

// For example:

// if ’a’ is H1 diffusion...

LORSolver <HypreBoomerAMG > lor_amg(a, ess_dofs);

// if ’a’ is ND curl-curl...

LORSolver <HypreAMS > lor_ams(a, ess_dofs);

// if ’a’ is RT div-div...

LORSolver <HypreADS > lor_ads(a, ess_dofs);

23

Demo

▶ These methods are illustrated in the LOR solvers miniapp
(included with MFEM)

24

Demo

▶ These methods are illustrated in the LOR solvers miniapp
(included with MFEM)

24

Conclusions

▶ Matrix-free high-order solvers on the GPU
▶ MFEM supports end-to-end GPU acceleration of LOR

preconditioners
▶ Preconditioners for all of the de Rham complex

• H1, H(curl), H(div) problems

▶ Convergence independent of mesh size and polynomial degree h
▶ Easy to use API: usually just one line of code
▶ Illustrated in bundled solvers miniapp

Pazner, Kolev, Dohrmann. Low-order preconditioning for the
high-order de Rham complex (2022).

Pazner, Kolev, Camier. End-to-end GPU acceleration of
low-order-refined preconditioning for high-order finite element
discretizations (2022).

25

