The State of MFEM

MFEM Community Workshop October 26, 2023 Tzanio Kolev LLNL

LLNL-PRES-856457

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

MFEM

Cutting-edge algorithms for powerful applications on HPC architectures

Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral and hexahedral meshes.
- Local conforming and non-conforming AMR, mesh optimization.
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ...

High-order and scalable

- Arbitrary-order H1, H(curl), H(div)- and L2 elements.
- Arbitrary order curvilinear meshes.
- MPI scalable to millions of cores and GPU-accelerated.
- Enables application development from laptops to exascale machines.
- Built-in solvers and visualization
 - Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, ...
 - AMG preconditioners for full de Rham complex, geometric MG
 - Support for GPU solvers from: HYPRE, PETSc, AmgX
 - Accurate and flexible visualization with Vislt, ParaView and GLVis
- Open source
 - Available on GitHub under BSD license. 100+ example codes and miniapps.
 - Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...

A Brief History

We've been doing this for a long time

- 2000 "VIGRE seminar: Numerical Analysis," Texas A&M University
 - Research code: AggieFEM/aFEM
 - Some of the original contributors: @v-dobrev, @tzanio, @stomov
 - Used in summer internships at LLNL
- 2010 BLAST project at LLNL
 - Motivated high-order, non-conforming AMR and parallel scalability developments
 - MFEM repository created in May 2010
 - Some of the original contributors: @v-dobrev, @tzanio, @rieben1, @trumanellis
 - Project website mfem.org goes live in August 2015
- 2017 Development moved to GitHub
 - First GitHub commits in February 2017
 - Team expands to include many new developers at LLNL and externally
- 2017 CEED project in the ECP
 - Motivated partial assembly, GPU, and exascale computing developments

The Source Code is Growing

SLOC in MFEM releases over the last 13 years

mfem-4.6.tgz	v4.6	Sep 2023	3.6M	397K	
mfem-4.5.2.tgz	v4.5.2	Mar 2023	3.3M	367K	
mfem-4.5.tgz	v4.5	Oct 2022	3.3M	365K	
mfem-4.4.tgz	v4.4	Mar 2022	3.0M	341K	
mfem-4.3.tgz	v4.3	Jul 2021	2.8M	307K	
mfem-4.2.tgz	v4.2	Oct 2020	2.4M	258K	
mfem-4.1.tgz	v4.1	Mar 2020	7.9M	209K	
mfem-4.0.tgz	v4.0	May 2019	5.2M	167K	GPU support
mfem-3.4.tgz	v3.4	May 2018	4.4M	134K	
mfem-3.3.2.tgz	v3.3.2	Nov 2017	4.2M	123K	mesh optimization
mfem-3.3.tgz	v3.3	Jan 2017	4.0M	112K	
mfem-3.2.tgz	v3.2	Jun 2016	3.3M	92K	dynamic AMR, HPC miniapps
mfem-3.1.tgz	v3.1	Feb 2016	2.9M	80K	$\textit{fem} \leftrightarrow \textit{linear system interface}$
mfem-3.0.1.tgz	v3.0.1	Jan 2015	1,1M	61K	
mfem-3.0.tgz	v3.0	Jan 2015	1.1M	61K	non-conforming AMR
mfem-2.0.tgz	v2.0	Nov 2011	308K	40K	arbitrary order spaces, NURBS
mfem-v1.2.2.tgz	v1.2.2	Apr 2011	240K	28K	
mfem-v1.2.1.tgz	v1.2.1	Apr 2011	240K	28K	
mfem-v1.2.tgz	v1.2	Apr 2011	240K	28K	MPI parallelism based on hypre
mfem-v1.1.tgz	v1.1	Sep 2010	166K	23K	
mfem-v1.0.tgz	v1.0	Jul 2010	160K	22K	initial release

The Community is Growing

GitHub, downloads, and workshop stats

GitHub

- 133 contributors
- 250 lines of code / day
- 629 people in the mfem organization *join* to contribute + receive announcements
- 150 unique visitors / day
- 1390 stars thank you!

Downloads

- 250 downloads + clones / day · 91K / year
- 115 countries total

2023 Community Workshop

- 272 researchers
- 134 organizations
- 33 countries

Top contributors as of Oct 2023

MFEM has been downloaded from 115 countries

🚱 mfem.org	MFEM Community Workshop	October 2023
Aaron Fisher	Lawrence Livermore National Laboratory	fisher47@llnl.gov
Abdellatif Semmouri	FST, Sultan Moulay Slimane University	abd_semmouri@yahoo.fr
Abdelmajid Ezzine	Faculty of Sciences, Mohammed V University in Rabat	abdelmajid.ezzine@um5r.ac.m
Abdesslam Ouaziz	University Sidi Mohammed Ben Abdellah	abdesslam.ouaziz1994@gmail.co
Achraf El Omari	Hassan II University of Casablanca	achraf.elomari-etu@etu.univh2c.m
Achraf Zinihi	² aculty of Sciences and Technics, Moulay Ismail University of Mekne.	a.zinihi@edu.umi.ac.m
a Adel Babbah	abdelmalek essadi university	a.babbah@uae.ac.m
Aditya Parik	Utah State University	aditya.parik@usu.ed
Adolfo Rodriguez	Kappa Engineering	adantra@gmail.co
10 Adrian Butscher	Autodesk	adrian.butscher@autodesk.co
11 Ahdia Achabbak	Faculty of the science	ahdia.achabbak@etu.uae.ac.m
Alberto Padovan	University of Illinois at Urbana-Champaign	padovan3@illinois.ed
14 Alejandro Muñoz	Universidad de Granada	almuma@ugr.e
15 Alex Lindsay	Idaho National Laboratory	alexander.lindsay@inl.go
16 Alexander Blair	UK Atomic Energy Authority	alexander.blair@ukaea.u
17 Alexander Grayver	ETH Zurich	agrayver@ethz.c

2022 Community workshop had 258 registrations

Latest Releases Were Team Efforts

Versions 4.5.2 + 4.6 stats

- Released Mar + Sep, 2023
- 11 months in development
- 39 contributors
- 234 PRs merged
- 243 issues closed
- 58K new lines of code
- 2180 number of commits
- Many new features:
 - NURBS + TMOP meshing improvements
 - new H(div) matrix-free solver
 - SubMesh support for H(curl) and H(div)
 - HIP support for PETSc, SUNDIALS
 - stochastic PDEs, k-d tree, ultraweak DPG

Top 10 contributors to the last releases

<text><section-header><section-header><section-header>

 Image: state of the st

The mfem-4.5.2+4.6 CHANGELOG has 45 entries

MFEM contributors on GitHub

Examples

The first stop for new users

Example	Codes and	l Miniap	ps		
This page provides a brie documentation, or the d	f overview of MFEM's exa oc directory in the distrib	mple codes and mini- oution.	apps. For detailed documentati	on of the MFEM sources, including the e	examples, see the online Doxygen
The goal of the example or representative of the adv	codes is to provide a step-l vanced usage of the library	by-step introduction y in physics/application	to MFEM in simple model setti on codes. We recommend that r	ngs. The miniapps are more complex, an new users start with the example codes	d are intended to be more before moving to the miniapps.
Select from the categorie	es below to display example	les and miniapps that les can be visualized i	contain the respective feature	All examples support (arbitrarily) high-ord	ler meshes and finite element
Users are encouraged to Contact a member of the N	submit any example code: MFEM team to report bugs o	s and miniapps that the post questions or con	hey have created and would like	to share.	
Application (PDE)	Finite Elements		Discretization	Solver	
(All \$)	All	\$	(All	(All	*)
with homogeneous Diric mesh (linear by default, c The example highlights tt orresponding to the left of essential boundary co The example has a serial (c # PETsc modification in ex Partial assembly and GPU	hiet boundary conditions. uadratic for quadratic cur he use of mesh refinement -hand side and right-hand ditions, static condensati scl.cpp), a parollel (er.(p.cpp ample/petsc, a PUMI modi devices are supported. Linear Elast	$-\Delta u = 1$ Specifically, we discretion of the second seco	togeometric analysis PNUBB Adaptive methy definement (AV Partal assembly Sfor NURBS mesh, etc.) unictions, as well as linear and th linear system. We also cover the inear system. We also cover the connection to the (CVIs tool for connection to the (CVIs tool for enformance/cx1.cpp, performance and a Ginkgo modification in	ing from the illnear forms explicit elimination visualization.	
Example 2:	s a simple linear elasticity nate the weak form of	problem describing a	multi-material cantilever beam		
Example 2: This example code solves Specifically, we approxim	_di	$v(\sigma(\mathbf{u})) = 0$			
Example 2: This example code solves Specifically, we approxim					
Example 2: This example code solver Specifically, we approxim where		225 5.1 53			
Example 2: This example code solves Specifically, we approxim where	$\sigma(\mathbf{u}) = \lambda \operatorname{div}(\mathbf{u})$	$\mathbf{u})I + \mu \left(\nabla \mathbf{u} + \nabla \mathbf{u}\right)$	^r)	-	

- 38 example codes, most with both serial + parallel versions
- Tutorials to learn MFEM features
- Starting point for new applications
- Show integration with many external packages, miniapps

Miniapps

More advanced, ready-to-use physics solvers

Volta, Tesla, Maxwell and Joule Miniapps Static and transient electromagnetics

- Volta $-\nabla \cdot \epsilon \nabla \varphi = \rho \nabla \cdot \vec{P}$
- Tesla $\nabla \times \mu^{-1} \nabla \times \vec{A} = \vec{J} + \nabla \times \mu^{-1} \mu_0 \vec{M}$

• Maxwell · transient full-wave EM

$$\frac{\partial(\epsilon \vec{E})}{\partial t} = \nabla \times (\mu^{-1} \vec{B}) - \sigma \vec{E} - \vec{J}$$
$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$$

- Arbitrary order elements + meshes
- Adaptive mesh refinement

mfem.org/electromagnetics

Navier Miniapp *Transient incompressible Navier-Stokes equations*

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

- Arbitrary order elements
- Arbitrary order curvilinear mesh elements
- Adaptive IMEX (BDF-AB) time-stepping algorithm up to 3rd order
- State-of-the-art HPC performance
- GPU acceleration
- Convenient user interface

3D Taylor-Green

vortex, 7th order

Double shear layer, 5th order, Re = 100000

mfem.org/fluids

Applications

Some of the large-scale simulation codes powered by MFEM

Inertial confinement fusion (BLAST, LLNL)

Electric aircraft design (RPI)

Topology optimization for additive manufacturing (LiDO, LLNL)

MRI modeling

(Harvard Medical)

Hot strip mill slab modeling (U.S. Steel)

Heart modeling (Cardioid, LLNL/IBM)

Core-edge tokamak EM wave propagation (SciDAC, RPI)

Adaptive MHD island coalescence (SciDAC, LANL)

NURBS meshing and IGA

(Coreform LLC, SBIR)

📀 coreform

Adaptive Mesh Refinement

MFEM's unstructured AMR infrastructure

- AMR on library level
 - Conforming local refinement on simplex meshes
 - Non-conforming refinement for quad/hex meshes
 - Initial hp-refinement
- General approach
 - Any high-order finite element space, H1, H(curl), H(div), on any high-order curved mesh
 - 2D and 3D \cdot hexes, prisms, tets
 - Arbitrary order hanging nodes
 - Anisotropic refinement
 - Derefinement
 - Serial and parallel, including parallel load balancing
 - Independent of the physics
 - Easy to incorporate in applications

Example 15

Same AMR algorithms can be applied to a variety of high-order physics

Shaper miniapp

GPU Support

MFEM has provided GPU acceleration for over 5 years (since mfem-4.0)

- Backends are runtime selectable, can be mixed
- Coming soon: support for Intel/SYCL

GPU Support Recent GPU kernel improvements in MFEM

FEM Operator Decomposition + Partial Assembly

Decompose A into parallel, mesh, basis, and geometry/physics parts

- Partial assembly = store only D, evaluate B
- Optimal memory, near-optimal FLOPs compared to A
- MFEM + Enzyme

Roadmap for Next Year

Plans for FY24

- GPU support
 - Performance on AMD GPU: Frontier + El Capitan
 - Continued GPU porting and performance improvements
- Applications
 - Automatic differentiation · Design optimization
 - Compressible and incompressible flow
 - Fusion: both magnetic and ICF
 - Contact \cdot 4D \cdot mixed meshes \cdot new collaborations
- Code quality
 - Improve documentation, testing
 - Additional examples + miniapps
- New releases
 - v4.7 in Mar · start work on v5.0 *expect breaking changes!*
- What would you like to see?
 - Slack: <u>#meet-the-team</u> · GitHub: <u>github.com/mfem/issues</u> · Email: <u>mfem@llnl.gov</u>

MFEM Resources

					News		
		4/			140 2021	Version 4.2 released	
					Jul 10, 2021	MEEM Community Workshop in October.	
					Apr 22, 2021	MFEM featured on S&TR magazine cover.	
					Feb 16, 2021	New page on GPU performance.	
				Latest	Release		
				New features	Examples Code documentation Sou	rces	
					Download n	nfem-4.3.tgz	
					Older releases	Python wrapper	
MFEM is methods	s a free, lightwe 5.	ight, scalable C++	library for finite eleme	ent	Docum	nentation	
Feat	tures				Building MFEM	1 Getting Started Finite Elements	
Arbitrary high-order finite element meshes and spaces.				New users sho	uld start by examining the example codes		
 Wide variety of finite element discretization approaches. Conforming and nonconforming adaptive mesh refinement. Scalable from laptops to GPU-accelerated supercomputers. and many more. MFEM is used in many projects, including BLAST, Cardioid, Visit, RF-SciDAC, FASTMath, xSDK, and CEED in the Exascale Computing Project. See also our Gallery, Publications and News pages. 		es. ient. ters.	We also recommend using GLVis for visualization.				
			Contact				
		slt, RF- ing	Use the GitHub issue tracker to report bugs or post questions or comments. See the About page for citation information.				

Website: <u>mfem.org</u>

Software: github.com/mfem

Publications: mfem.org/publications

Email: mfem@llnl.gov

• Contribute to the code

Explore our publications

Thank you from the MFEM team at LLNL!

Bob

Anderson

@rw-anderson

Julian

Andrej

@jandrej

Nabil Atallah @atallah727

Jakub

Cerveny

@jakubcerveny

Dylan

Copeland

@dylan-copeland

Veselin

Dobrev

@v-dobrev

Yohann Dudouit @YohannDudouit

Aaron Fisher @acfisher

Milan Holec @homijan

Frank Wang @jwang125

Tzanio Kolev @tzanio

Boyan

Lazarov

@bslazarov

Ketan Mittal @kmittal2

Will

Pazner @pazner

Socratis Petrides @psocratis

Vladimir Mark Stowell @mlstowell @vladotomov

Tomov

Chris Vogl @cjvogl

mfem.org

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.