MFEM: Recent Developments

MFEM Workshop 2023

October 26, 2023, Virtual Meeting

New developments in MFEM

- Two new releases since last year: v4.5.2 (Mar '23) and v4.6 (Sep '23)
- SubMesh and ParSubMesh have been extended to support the transfer of Nedelec and Raviart-Thomas finite element spaces, see the new Examples 34 and 35
- Solving different physics on different subdomains or boundaries
- Transferring solutions between parent and child meshes
- More TMOP metrics (asymptotically-balanced), auto-balancing of compound metrics; new tool, tmop-metric-magnitude
- New miniapp for interface and boundary fitting to surfaces defined via level-set functions
- New DPG miniapps: diffusion, advection-diffusion, acoustics, Maxwell

New developments in MFEM (cont.)

- Improved lambda body debugging: use mfem::forall* functions instead of MFEM_FORALL* macros
- HIP support in the SUNDIALS and PETSc integrations
- Added support for pyramids in non-conforming meshes and import from Gmsh
- Added a fast normalization-based distance solver, see the Distance miniapp
- Added KDTree class for 2D/3D set of points, the new nodal-transfer miniapp
- Added a new GPU-enabled H(div) solver miniapps, see miniapps/hdiv-linear-solver
- Updated the MUMPS interface, added interface to MKL Pardiso

New developments in MFEM (cont.)

- Several NURBS meshing improvements: support for free connectivity of NURBS patches (Cmeshes), methods to set and get attributes on NURBS patches and patch boundaries, curve interpolation method for NURBS
- Added support for partial assembly on NURBS patches, and NURBS-patch sparse matrix assembly
- Four new examples:
- Example 34/34p solves a simple magnetostatic problem where source terms and boundary conditions are transferred with SubMesh objects.
- Example 35 p implements $\mathrm{H} 1, \mathrm{H}($ curl $)$ and $\mathrm{H}($ div $)$ variants of a damped harmonic oscillator with field transfer using SubMesh objects
- Example 36/36p demonstrates the solution of the obstacle problem with a new finite element method (proximal Galerkin)
- Example 37/37p demonstrates topology optimization with MFEM
- Many more ...

Multi-domain multi-physics coupling via SubMesh

- All domains are meshed together in a conforming global mesh
- Each sub-domain, volume or surface, is extracted as a SubMesh
- SubMesh inherits from Mesh, so PDE discretization on it can be done as usual
- Due to conformity, solutions can be transferred without approximation errors between parent and child mesh
- In parallel, ParSubMesh inherits the partitioning from the parent

- For an example, see the multidomain miniapp

Low-Order-Refined GPU Solvers

LOR solvers and GPU performance

- Using LOR + hypre's AMG, AMS and ADS solvers in MFEM on the GPU is one line of code
- MFEM is the FE interface to hypre for many apps
// For example
// if 'a' is H1 diffusion.
LORSolver <HypreBoomerAMG> lor_amg (a, ess_dofs);
// if 'a' is ND curl-curl.
LORSolver <HypreAMS> lor_ams (a, ess_dofs);
// if 'a' is RT div-div.
LORSolver<HypreADS> lor_ads (a, ess_dofs);
- We have performed end-to-end GPU acceleration of the entire solution algorithm
- Assembly, preconditioner setup, solve phase
- Details and performance metrics in End-to-end GPU acceleration of low-order-refined preconditioning for high-order finite element discretizations, IJHPCA, submitted

- Flexibility: solvers perform well
- For $\mathrm{H}^{1}, \mathrm{H}(\mathrm{curl}), \mathrm{H}($ div $)$
- With high-order elements
- On AMR meshes, etc.
- Excellent strong and weak scalability:
- Benchmarked up to 1024 GPUs, 1.1 billion DOFs

AMS Preconditioner Application

New GPU Solvers for Radiation Diffusion

Saddle-point formulation using LOR

- Radiation diffusion problems give rise to challenging linear systems (after linearization)
- Can be formulated as an H(div) problem, solved using ADS
- Works for high-order + GPU using LOR solvers
- But: not as fast as hybridization
- State of the art: algebraic hybridization solvers [SISC, 2019]
- Main solver in MARBL
- Not suitable for high-order, GPU acceleration
- Requires fully assembled matrices
- New approach:
- Works directly on the saddle-point system
- Fast DG mass inverse kernels
- Sparse approximate Schur complement
- Scalable, high-order, GPU-accelerated solvers for H(div) and radiation diffusion problems

$$
\partial \mathcal{N}(\mathbf{k})=\left[\begin{array}{ccccc}
\ddots & & \mathbf{0} & \vdots & \vdots \\
& L_{\rho_{k}}+\partial H_{k} & & -c \Delta t L_{\sigma_{k}} & 0 \\
\mathbf{0} & & \ddots & \vdots & \vdots \\
\cdots & -\partial H_{k} & \ldots & L+c \Delta t \sum_{k} L_{\sigma_{k}} & D \\
\cdots & 0 & \cdots & -\frac{1}{3} \Delta t D^{T} & \frac{1}{c} R_{\sigma}+\frac{1}{3} R_{n}
\end{array}\right]
$$

$$
\left(\begin{array}{cc}
\tilde{L}^{-1}+\mathrm{D} \tilde{R}^{-1} \mathrm{D}^{T} & 0 \\
0 & \tilde{R}
\end{array}\right)^{-1}\left(\begin{array}{cc}
-L^{-1} & \mathrm{D} \\
\mathrm{D}^{T} & R
\end{array}\right)
$$

Automatic Differentiation with Partial Assembly

Jacobians and derivatives of FEM operators in a user-friendly way

- FEM decomposition

$$
A=P^{T} G^{T} B^{T} D B G P
$$

- Parameters $\hat{\rho}=B_{\rho} G_{\rho} P_{\rho} \rho$
- Parametric nonlinear operator

$$
A(u ; \rho)=P^{T} G^{T} B^{T} D(\hat{u}, \hat{\rho})
$$

- Need to differentiate at Q-points only!

$$
\nabla_{u} A(u ; \rho)=P^{T} G^{T} B^{T} \nabla_{\hat{u}} D(\hat{u}, \hat{\rho}) B G P
$$

(Jacobian is FEM decomposed linear operator)

- Differentiate the Q-function D with Enzyme!
- AD at LLVM level, after compiler optimization
- Can mix code from different languages
- Differentiate across function calls (e.g. EOS)
- Many parallel small ADs instead of 1 big one
- Differentiate only what is necessary

Topology-optimized LED heat sink

MFEM + Enzyme

High-Order Mesh Optimization (TMOP)

MFEM provides both geometric and simulation-driven adaptivity

- User-controlled specification of the target mesh
- Control over: size/skew/aspect ratio/rotation
- Can be based on discrete dynamic simulation fields
- Variational minimization through FE operations
- Generality: dimension/element type/mesh order
- Facilitates matrix-free formulations and GPU porting

Adaptivity of shape and size to a discrete interface

Adaptivity in a high-velocity impact simulation in MARBL

Minimizes $\sum_{E \in \mathcal{M}} \int_{E_{t}} \mu\left(T\left(x_{t}\right)\right) \quad \begin{aligned} & \text { mesh quality metric } \\ & \text { computed at q-points }\end{aligned}$

- Numerous metric options in 2D and 3D; explicit combos
- Capability for hr-optimization of HO meshes
- Active ongoing theoretical research

The Target-Matrix Optimization Paradigm for high-order meshes, SISC, 2019
Simulation-driven optimization of high-order meshes in ALE hydrodynamics, Comput. Fluids, 2020 HR-adaptivity for nonconforming high-order meshes with TMOP, Eng. Comp, 2021
A target construction methodology for mesh quality improvement, Eng. Comp, 2022 CASC
$N \Delta^{\top} S$

High-Order Mesh Adaptivity in MFEM

GPU Acceleration

- TMOP-based high-order mesh optimization:
- Objective function based on user-defined target Jacobian and mesh quality metric is minimized for r adaptivity.
- Recent developments leverage GPU acceleration using partial assembly and matrix-free implementations.
- Kershaw benchmark and multi-material ALE problem show significant (20-40x) speedup.

Throughput for the action of the second derivative operator on CPU versus GPU.

Strong scaling on GPUs for the full TMOP problem.

	Time to solution (sec)				
	$p=1$	$p=2$	$p=3$	$p=4$	
CPU	18.8	43.0	129.6	224.3	
GPU	0.4	1.0	3.9	7.5	
	Speedup (GPU vs CPU)				
$\mathbf{4 7} \times$					

Kershaw benchmark on 36 IBM Power9 CPU cores versus 4 CPU cores with 1 V100 GPU per core shows 30x speed-up.

	Time $(p=2)$	Speedup
CPU $^{\text {PA }}$ Full TMOP problem	4730.830	-
CPU $^{\mathrm{PA}}$ 2nd Derivative	4713.426	-
GPU $^{\mathrm{PA}}$ Full TMOP problem	288.842	$\mathbf{1 6 . 3 7} \times$
GPU $^{\mathrm{PA}}$ 2nd Derivative	209.430	$\mathbf{2 2 . 5 1} \times$

ALE problem in BLAST on 80 IBM Power9 CPU cores versus 8 CPU cores with 1 V100 GPU per core shows 20x speed-up.

High-Order Mesh Adaptivity in MFEM

Boundary and Interface Alignment

- Mesh morphing for surface alignment:
- Domain boundary and/or multimaterial interface is prescribed using a discrete level-set function.
- Modified TMOP-based objective function is minimized to maintain good mesh quality while selected mesh nodes align with the prescribed interface/boundary.
- Powerful to obtain curvilinear meshes starting from easy-to-generate meshes.
- Robust in 2D and 3D for different element types.

Cartesian-aligned hex mesh morphed to align with the target boundary prescribed using a level-set function.

Fischer-Tropsch reactor domain.

Progress of the Python Wrapper (PyMFEM)

Continue to closely follow the major MFEM releases:

- 4.4 Oct 2022, 4.5 Jan 2023, and 4.5.02 Mar 2023
- 4.6 preparation in progress

Major overhaul of Just-in-Time compiled coefficients:

- JIT function receives numpy-like array, not a pointer
- JIT function can receive other coefficients in addition to position

```
@mfem.jit.scalar
def scalar_ex(ptx):
    return s_func0(ptx[0], ptx[1], ptx[2])
```

@mfem.jit.vector(vdim=3, dependency=(scalar_ex,))
def vector_ex(ptx, param):
return np.array([0., param, param], dtype=np.float64)
@mfem.jit.matrix(shape=(2,2), dependency=(vector_ex,),
td=True, complex=True)
def matrix_ex(ptx, t, param):
return np.array([[param[0], 1j*param[1]],
[param[2], 0j],], dtype=np.complex128)
Use @mfem.jit to generate JIT-ed coefficient

- Added supporting time-dependent coefficient and complex number coefficients

LLNL staff joining PyMFEM improvement starting January 2024. Initial scope includes:

- Documentation improvement
- Python example update and refreshing
- Adding missing Pythonic method calls
- ... any input for improvement is welcome!

MFEM events and resources

- FEM@LLNL seminar series, online, sign-up at mfem.org/seminar
- Online (cloud) tutorial: mfem.org/tutorial

FEM@LLNL

Center for Applied
Scientific Computing

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or mply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

