

MFEM COMMUNITY WORKSHOP 2023

Palace: PArallel LArge-scale Computational Electromagnetics

Sebastian Grimberg

Sr. Applied Scientist AWS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Palace: 3D finite element solver for computational electromagnetics

Palace is developed at the AWS Center for Quantum Computing to enable the design of quantum computing hardware

Palace: 3D finite element solver for computational electromagnetics

Uses MFEM and libCEED to perform full-wave 3D electromagnetic simulations in the frequency and time domain

Frequency and time domain electromagnetics models

Driven

 $\nabla \times \left(\mu^{-1} \nabla \times \boldsymbol{E}\right) + i\omega\sigma \boldsymbol{E} - \omega^{2}\varepsilon \boldsymbol{E} = 0$ $\boldsymbol{n} \times \boldsymbol{E} = 0, \ \boldsymbol{x} \in \partial\Omega_{D}$ $\boldsymbol{n} \times \left(\mu^{-1} \nabla \times \boldsymbol{E}\right) + i\omega Z_{s}^{-1} \boldsymbol{n} \times (\boldsymbol{n} \times \boldsymbol{E}) = \boldsymbol{U}_{s}, \ \boldsymbol{x} \in \partial\Omega_{R}$

Transient

$$oldsymbol{
abla} oldsymbol{
abla} imes oldsymbol{(} \mu^{-1} oldsymbol{
abla} imes oldsymbol{E}ig) + \sigma rac{\partial oldsymbol{E}}{\partial t} + arepsilon rac{\partial^2 oldsymbol{E}}{\partial t^2} = 0$$

 $oldsymbol{n} imes oldsymbol{E} = 0, \ oldsymbol{x} \in \partial \Omega_D$
 $oldsymbol{n} imes ig(\mu^{-1} oldsymbol{
abla} imes oldsymbol{E}ig) + Z_s^{-1} oldsymbol{n} imes igg(oldsymbol{n} imes oldsymbol{\partial} oldsymbol{E}igg) = oldsymbol{U}_s, \ oldsymbol{x} \in \partial \Omega_R$

- Lumped ports, numeric wave ports, scattering parameter calculations
- Anisotropic and lossy material properties
- Absorbing boundary conditions

aws

Frequency and time domain electromagnetics models

Eigenmode

$$\left(\boldsymbol{K}+i\omega\boldsymbol{C}-\omega^{2}\boldsymbol{M}\right)\boldsymbol{u}=0$$

$$\begin{bmatrix} 0 & \boldsymbol{I} \\ \boldsymbol{K} & i\boldsymbol{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \omega \boldsymbol{u} \end{bmatrix} = \omega \begin{bmatrix} \boldsymbol{I} & 0 \\ 0 & \boldsymbol{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \omega \boldsymbol{u} \end{bmatrix}$$

- Lumped ports, numeric wave ports, scattering parameter calculations
- Anisotropic and lossy material properties
- Absorbing boundary conditions

aws

Large-scale cloud-based electromagnetics simulation

- 3D models ranging from 242.2 million to 1.4 billion degrees of freedom
- Adaptive fast frequency sweep simulations: Smallest in 45 min. (10 samples), largest in 4 hours (40 samples)
- Up to 12,800 AWS Graviton3E cores (hpc7g.16xlarge), EFA network

Large-scale cloud-based electromagnetics simulation

- 3D models ranging from 242.2 million to 1.4 billion degrees of freedom
- Adaptive fast frequency sweep simulations: Smallest in 45 min. (10 samples), largest in 4 hours (40 samples)
- Up to 12,800 AWS Graviton3E cores (hpc7g.16xlarge), EFA network

aws

Adaptive mesh refinement

- Conforming refinement + rebalancing on tetrahedral meshes, general non-conforming refinement + coarsening + rebalancing for mixed meshes
- Non-conforming AMR for high-order Nédélec elements with triangular faces

Adaptive mesh refinement

- Conforming refinement + rebalancing on tetrahedral meshes, general non-conforming refinement + coarsening + rebalancing for mixed meshes
- Non-conforming AMR for high-order Nédélec elements with triangular faces

Adaptive mesh refinement

- Conforming refinement + rebalancing on tetrahedral meshes, general non-conforming refinement + coarsening + rebalancing for mixed meshes
- Non-conforming AMR for high-order Nédélec elements with triangular faces

- Matrix-free *p*-multigrid preconditioning with partial assembly of high-order operators
- Partial assembly support: Simplex elements and mixed meshes, (mixed) operators on H¹-, H(curl)-, and H(div)-conforming spaces, boundary integrators, matrix-valued coefficients, all using libCEED

• Special element restriction operator $\mathcal{E}_{ND} = \mathcal{T}\mathcal{E}_{H^1}$ for high-order Nédélec elements with triangular faces

Highlight: Higher-order H(curl) on tetrahedra

- Added support for *arbitrary global-to-element* DOF transformations
- For most FE types the DOF transformation is permutation + optional sign flip
- Allows for any tetrahedron orientation with HO (p >= 2) H(curl) FEs
- Also needed for HO (p >= 2) H(curl) FEs on prisms and pyramids

V. Dobrev's presentation at the 2021 MFEM Community Workshop

 Diagonally-scaled Chebyshev polynomial smoothers on each multigrid level only require assembly of operator diagonal

- Diagonally-scaled Chebyshev polynomial smoothers on each multigrid level only require assembly of operator diagonal
- Auxiliary-space smoothing for non-static Maxwell problems (time and frequency domain):

$$\boldsymbol{B} = \boldsymbol{B}_{ND} + \boldsymbol{G} \boldsymbol{B}_{H^1} \boldsymbol{G}^T$$

(construct the operator $A_{H^1} = G^T A_{ND} G$ for B_{H^1} directly without a sparse matrix triple product)

- Diagonally-scaled Chebyshev polynomial smoothers on each multigrid level only require assembly of operator diagonal
- Auxiliary-space smoothing for non-static Maxwell problems (time and frequency domain):

 $\boldsymbol{B} = \boldsymbol{B}_{ND} + \boldsymbol{G}\boldsymbol{B}_{H^1}\boldsymbol{G}^T$

(construct the operator $A_{H^1} = G^T A_{ND} G$ for B_{H^1} directly without a sparse matrix triple product)

• Coarse solve (p = 1, real-valued $A_0 = \operatorname{Re}\{A_0\} + \operatorname{Im}\{A_0\}$):

Electrostatics: Standard AMG (Hypre)

Magnetostatic and transient: Auxiliary-space Maxwell Solver (AMS)

Driven and eigenmode (complex symmetric, indefinite): AMS with SPD preconditioner matrix, or parallel sparse-direct solve (SuperLU_DIST, STRUMPACK, MUMPS)

Backends and GPU support

- Runtime backend selection for performance portability
- Support for NVIDIA and AMD GPUs using MFEM and libCEED's CUDA and HIP backends
- Work in progress, but expected to release in coming weeks

Thank you!

↔ Code · Issues 7 th P	ull requests 💈 🖓 Discussions 🕜) Actions 🗄 Project	ts 🗊 Wiki 🔅 Dunwatch 8 👻) Security ⊻ Insights ♀ Fork 30	
ף main → ף 20 branches	S 3 tags Go ull request #109 from awslabs	o to file Add file -	<> Code -	About 3D finite element solver for computational electromagnetics	
	Add Cl jobs to run Palace unit tests Fix default RPATH for installed target Merge branch 'main' into sjg/libceed- Address remaining PR comments, fix	s when using CMAK -integration-dev bug in BoundingBall	3 weeks ago 3 days ago 5 days ago 2 months ago	awslabs.github.lo/palace Readme Apache-2.0 license Code of conduct As security policy	
extern palace scripts	Small fix to MFEM parallel mesh patcl Disable PETSc signal handling, since Fix default RPATH for installed target	h (caught from valgr it's confusing as mo s when using CMAK	3 days ago 3 days ago 3 days ago	 小 Activity ☆ 151 stars O 8 watching ♀ 30 forks Report repository 	
singularity spack/local	Fixes for Spack and Singularity builds		last month		

https://github.com/awslabs/palace

Sebastian Grimberg sjg@amazon.com

Hugh Carson hughcars@amazon.com

Andrew Keller kllrak@amazon.com