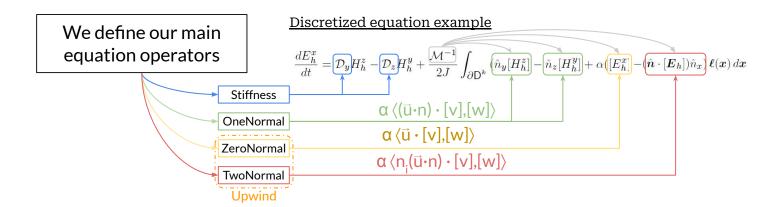
MFEM Workshop 2023

Discontinuous Galerkin in the Time Domain for Maxwell's Equations

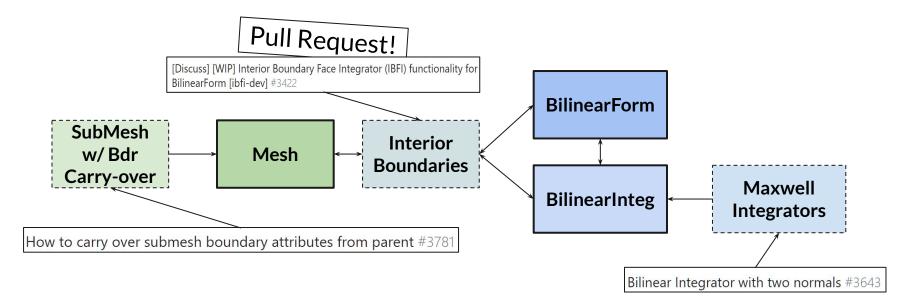
Alejandro Muñoz Manterola Luis Manuel Díaz Angulo

What do we want to solve?

Hesthaven, J.S. and Warburton, T. (2008) Nodal Discontinuous Galerkin Methods/Algorithms, Analysis, and Applications

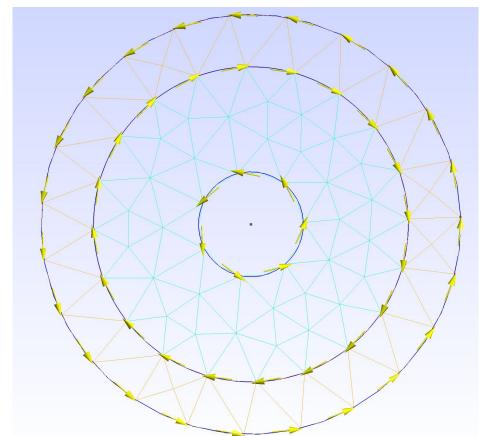

Maxwell's Equations

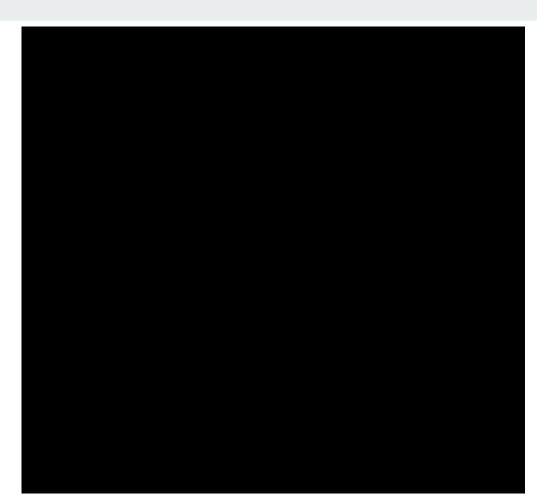
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} = -\nabla \times \boldsymbol{E}, \quad \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} = \nabla \times \boldsymbol{H} \xrightarrow{\text{IPP x2}} \begin{cases} \hat{\boldsymbol{n}} \cdot (\boldsymbol{F}_H - \boldsymbol{F}_H^*) = \frac{1}{2\{\!\{Y\}\!\}} \hat{\boldsymbol{n}} \times \left(Y^+[E] + \alpha \hat{\boldsymbol{n}} \times [\boldsymbol{H}]\right]) & \text{Jump terms} \\ \hat{\boldsymbol{n}} \cdot (\boldsymbol{F}_E - \boldsymbol{F}_E^*) = -\frac{1}{2\{\!\{Z\}\!\}} \hat{\boldsymbol{n}} \times \left(Z^+[\boldsymbol{H}] - \alpha \hat{\boldsymbol{n}} \times [\boldsymbol{E}]\right) \end{cases}$$


What do we need for our Multidimensional Maxwell <u>explicit</u> scheme solver in DGTD?

- ☐ Bilinear Integrators with <u>customised jump terms</u> for our Evolution TDO
- ☐ Total field & scattered field capabilities
- ☐ Designation of boundary conditions on <u>true</u> and <u>interior(!)</u> faces/edges
- Data extraction at specific faces/edges for post-processing purposes (RCS, Far-Field, ...)
- Spectral analysis for time step stability with high confidence
- And more...!

Briefly on Maxwell's Bilinear Integrators




Interacting with you! Expanding MFEM's capabilities

Prepping the simulations

Туре	Number	Name
Surface	1	Vacuum
Curve	2	SMA
Curve	3	PEC
Curve	301	TFSF

Thank you very much!

https://github.com/OpenSEMBA/dgtd