UK Atomic Energy Authority

Comparing Thermo-Mechanical Solves in MOOSE and MFEM

no.

25

25

65

60

8.93

63

10

William Ellis

A Fusion Environment

- The environment inside a fusion reactor is a materials nightmare
 - High heat fluxes,
 - High temperatures
 - Static and pulsed magnetic fields

UK Atomic Energy Authority

- We need to model how components react in this environment
 - Thermal expansion will be the focus of this talk

Figure 1: A tokamak's innards

Thermal Expansion

Figure 2: Thermal expansion of a simple beam model, showcasing the stresses introduced when thermal expansion is constrained.

UK Atomic Energy Authority

Thermal Expansion Modelling: Current Solutions

- Doesn't scale as well as alternatives
- Discrete physics modules
 - Lower degree of coupling
- And of course the cost ...
- Much more scalable than ANSYS

XX

UK Atomic Energy Authority

- But has limited FE types
- Limits use with electromagnetic problems
- Limited GPU support

Figure 4: MFEM results for beam example.

XXX

UK Atomic Energy Authority

Integrators and Initial Testing

5

The Hypervapotron Model

- What is it?
 - An efficient heat exchanger
 - More importantly, our fusion relevant test geometry
- Problem definition
 - Gaussian heat distribution across the top surface (Figure 5)
 - Convective heat transfer boundary applied in channels (Figure 6)
 - Fixed displacement boundaries on bottom

Figure 5: Hypervapotron model with temperature distribution shown across the top surface

Figure 6: Cross section of the hypervapotron, showing the internal fins along the channel length

Solve Methods

- MOOSE solves thermal expansion slightly differently
 - Thermal Expansion is a MOOSE 'material' object
 - Temperature is solved for first
 - Temperature becomes a coefficient for thermal expansion linear form
- MFEM can solve for both displacement and temperature in one monolithic matrix
 - Can also do the MOOSE method
- Results are included for both methods

Figure 7: Example graph showcasing all the solve methods

Hypervapotron Results

Figure 10: Number of linear iterations needed to solve

Figure 11: Time taken for the linear solve to complete

UK Atomic Energy Authority

What next?

- Results are looking good for MFEM and HYPRE so far!
- Further scaling testing
 - Initial results looks good for MFEM/ Hypre
- GPU testing
- Implement non-linear mechanics formulations