
LLNL-PRES-xxxxx. 1Prepared by LLNL under Contract DE-AC52-07NA27344. 

A Neural Network Surrogate Model for
Nonlocal Thermal Flux Calculations

Strategic Deterrence
Lawrence Livermore National Laboratory

MFEM Community Workshop

26 Oct 2023

Alexander Mote1, Colby Fronk2, Milan Holec3 
1Oregon State University, 2University of California Santa Barbara, 
3Lawrence Livermore National Laboratory

LLNL-PRES-854134. 1



LLNL-PRES-854134. 2

Physics Motivation
• NIF’s “break-even” fusion reaction in December 

consumed only 4% of its fuel
§ How do we achieve 5, 10, 20%?

• Higher-fidelity simulations allow for more accurate 
experimental modeling

§ Unfortunately, higher-fidelity calculations are a great 
deal more computationally expensive

• Nonlocal rad-hydro equations with closure can 
more accurately calculate thermal flux

§ Kinetic solver: 1012 operations

§ Neural network: 106 operations

• A neural network could approximate thermal flux in 
ICF simulations up to 1,000,000 times faster!
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Initial Model and Results
• Constructed a dataset of 300 MFEM 

Simulations
§ Kinetic solver, 1D2V Phasespace,

General-SN, 3rd-order

§ Swept over a range of temperature parameters

• Designed a feed-forward neural network
§ “Shifting window” used multiple neighboring 

input elements for each output prediction

• Model reports 99.3% accuracy across entire 
testing set
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Time Evolution of Temperature
• Existing simulations use a linear formula to 

evaluate temperature change:
§

!"
!#
= ∇ # (𝜅 + 𝛼𝑢)∇𝑢

• Experimenters want the more accurate (but 
complex) version of this formula:

§
!"
!#
= ∇ # (𝛼𝑢$)∇𝑢

• Using the NN predictions, we can more 
quickly approximate 𝛼

§ Retrained NN on 500 simulations

§ 5x spatial elements, improved mesh scaling

• NN-adjusted 𝜶 demonstrates improved 
temperature smoothing expected with 
nonlocal thermal flux values
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Future Development
• Modeling software could “take it from here”

§ Use NN output as a springboard in simulations to reduce number of iterations until convergence

• More Data is Always More Better
§ Expand time evolution dataset to include changes in ionization/electron density

§ Change more simulation parameters and include their effects on temperature

• Expand Model Domain
§ Incorporate temperature shift as hohlraum material is heated

§ Expand model to predict other moments of distribution function

§ Higher spatial dimensions, building up to full 7-dimensional phase space

• More Advanced Deep Learning Architectures
§ Convolutional Neural Networks (allows for “shifting windows” in 2D/3D)

§ Graph Neural Networks (add mean free path information into dataset)


