A Neural Network Surrogate Model for Nonlocal Thermal Flux Calculations

Alexander Mote¹, Colby Fronk², Milan Holec³ ¹Oregon State University, ²University of California Santa Barbara, ³Lawrence Livermore National Laboratory

MFEM Community Workshop

26 Oct 2023

Strategic Deterrence Lawrence Livermore National Laboratory

Physics Motivation

- NIF's "break-even" fusion reaction in December consumed only 4% of its fuel
 - How do we achieve 5, 10, 20%?
- Higher-fidelity simulations allow for more accurate experimental modeling
 - Unfortunately, higher-fidelity calculations are a great deal more computationally expensive
- Nonlocal rad-hydro equations with closure can more accurately calculate thermal flux
 - Kinetic solver: 10¹² operations
 - Neural network: 10⁶ operations
- A neural network could approximate thermal flux in ICF simulations up to 1,000,000 times faster!

Initial Model and Results

- Constructed a dataset of 300 MFEM Simulations
 - Kinetic solver, 1D2V Phasespace, General-SN, 3rd-order
 - Swept over a range of temperature parameters

- Designed a feed-forward neural network
 - "Shifting window" used multiple neighboring input elements for each output prediction
- Model reports 99.3% accuracy across entire testing set

Lawrence Livermore National Laboratory

Time Evolution of Temperature

• Existing simulations use a linear formula to evaluate temperature change:

• $\frac{du}{dt} = \nabla \cdot (\kappa + \alpha u) \nabla u$

- Experimenters want the more accurate (but complex) version of this formula:
 - $\frac{du}{dt} = \nabla \cdot (\alpha u^{\beta}) \nabla u$
- Using the NN predictions, we can more quickly approximate α
 - Retrained NN on 500 simulations
 - 5x spatial elements, improved mesh scaling
- NN-adjusted α demonstrates improved temperature smoothing expected with nonlocal thermal flux values

Future Development

- Modeling software could "take it from here"
 - Use NN output as a springboard in simulations to reduce number of iterations until convergence
- More Data is Always More Better
 - Expand time evolution dataset to include changes in ionization/electron density
 - Change more simulation parameters and include their effects on temperature
- Expand Model Domain
 - Incorporate temperature shift as hohlraum material is heated
 - Expand model to predict other moments of distribution function
 - Higher spatial dimensions, building up to full 7-dimensional phase space
- More Advanced Deep Learning Architectures
 - Convolutional Neural Networks (allows for "shifting windows" in 2D/3D)
 - Graph Neural Networks (add mean free path information into dataset)

