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Background : hot plasma has non-local responds RF waves 

Plasma

● Charged particles are freely moving (“collisionless”)

● External magnetic field restricts the parlendicuar excursion 

(“Gyro-motion”)
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Background : hot plasma has non-local responds RF waves 

Plasma

● Charged particles are freely moving (“collisionless”).

● External magnetic field restricts the parlendicuar excursion 

(“Gyro-motion”).

Acceleration from wave fields appears as current in different places 

(non-local). 

Dielectric response is written in wave-number (Fourier) space. In  

configuration space, the response becomes convolution integral.
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Question : How do we incorporate this in numerical full-wave simulations?

Fourier transformation 



FEM modeling of RF waves in plasma is widely used but 
majority of them employs local approximation.  

Numerical simulation properly including non-local nature tends 

to be more expensive and limited to mostly 2D sims.

E. H. Kim, et. al., Geophys. Res. Lett. (2023)
Á. Sánchez-Villar et al, Plasma Source Sci. Tech. (2021)
N. Bertelli, et. al., Nucl. Fusion (2022)

depends on x and ω, not k

Freq. domain Maxwell. Eqs. 

EMIC in magnetosphere

HHFW in NSTX-U spherical tokamakECR thruster



● Full spectral methods:
○  Full-dense matrix, costly to solve

● Construct a differential operator:

○ Typically up to 2nd order: valid only for k
⊥

ρ
i
 < 1 [1, 2].

○ Including high order derivative is possible[3] was in 1D.
○ To be precise, derivation is based on kinetic theory.

● Iterative addition non-local contribution:
○ ELD for the lower hybrid waves [4, 5].
○ Generalization was not straightforward.

● Convolution integrals:
○ Many publications in 80-90’s (in 1D).

Various approaches to include non-local response exist, but 
with various limitations

[1] M. Brambilla, Plasma Phys. Contr. Fusion (1999)
[2] J. C. Wright et. al., Phys. Plasmas (2004)
[3] D. V. Eester Plasma Phys. Control. Fusion (2013) 
[4] O. Meneghini, Phys Plasmas (2009)
[5] S. Shiraiwa, Phys Plasmas (2011)

Fast wave MC[2]

LH wave in 
C-Mod tokamak[5]

Expensive, limited to simpler geometry, not generic enough, and/or does 
not work well with FEM. 



We could consider this in the context of Green’s function 

For a given operator L, we want to solve

We look for a function G, which satisfies 

Solution can be written as a convolution

Method of Green’s Function

Thus, an approach could be….
1) Find L.
2) Solve a coupled PDEs. 

In our case, G is known by back Fourier 
transforming            . 

For example, for Maxwellian plasma,  the back Fourier 
transformation in the direction perpendicular to B can 
be done analytically, and the xx component is



In physical space, summed-”screened Poisson potential” fits well the 
conductivity kernel. In K-space, it corresponds to rational approximation

Using K-space simplifies the operator construction (we focus on the perpendicular direction for now)

Pros: 
● Approximation is valid in all range of k

⊥
.

● Differential operator is 2nd order.
● No global DoFs coupling (convolution, 

spectral).

Cons: 
● Coupled PDE consisting from E and J. 
● Not theoretically derived.



Hints were presented in MFEM community WS in 2022 !?

Non-integer power derivatives (fractional derivatives)

● “a non-integer fractional derivative of f at x = a depends on all values of f , even those far 

away from a” (Wikipedia)

Tobias Duswald, et al., 2022 MFEM 
community workshop

This is the same as the fractional Laplacian !  Except the conductivity is 
the tensor and plasma parameter changes in space (non-uniform plasma)



Modified AAA algorithm can be used to approximate 
exponentially scaled modified bessel using the same pole.

5 poles : |err|
max

 < 0.45% for 0 < k
perp

λ < 10

7 poles : |err|
max

 < 0.036% for 0 < k
perp

λ < 10

5 poles 7 poles
Fitting range

In order to handle non-uniform plasma, each Bessel 
function needs to be approximated separately.



Self-adjointness can be maintained by symmetrizing the operator

Coupled linear system: 

Symmetrizing the linear system:

Spatial variation of plasma 
parameters breaks self-adjointness.

Linear system for electric field (after eliminating J) becomes Hermitian

⊥

⊥

⊥



Mode conversion (MC) of electron Bernstein waves (EBW) in 1D

In 1D, the operator assembly can be readily done with MFEM 

because

18GHz, 0.5T

EM-Wave 
injection

Wave propagation features are captured well
● Backward phase propagation of EBW.
● Wavelength matches with the dispersion.

EBW

Wavelength ~ 0.75mm



MC efficiency reproduces the one in literature and 
Poynting flux agrees with kinetic energy

Energy conservation : 

● Poynting flux

● Kinetic energy (thermal motion of particles) 

E x B = 0.007

E x B = 0.0

T = 0.014

 Ram & Schultz, Phys. Plasmas (2000)



Same operator can be used in 2D (preliminary)

In 2D (and 3D), the operator becomes the perpendicular vector Laplacian, which doesn’t exist 

in MFEM. For now, we approximate it as  

Wave propagation seems to be captured. 
Needs further verifications. 
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Summary

Constructing a differential operator to handle non-local plasma dielectric response in FEM:

● Based on rational approximation of dielectric tensor.
● Avoid convolution integral.
● Includes up-to 2nd order derivatives (no high order derivatives).

Test simulation of the mode conversion of electromagnetic wave to electron Bernstein wave shows:

● Wavelength agrees with the one expected from the dispersion relationship.
● 100% conversion of Poynting flux to kinetic flux.
● MC efficiency agrees with literature.
● 2D MC in progress.

Questions and future work:

● Does this approach scale to 3D?
● What is appropriate boundary condition if hot plasma touches the material?
● How about using more complicated dielectric response, such as relativistic and parallel dispersion?
● Can we derive directly the operator from kinetic theory?


