Implementation of Hybridizable Discontinuous Galerkin Methods via the HDG BRANCH

Tamás Horváth
Oakland University

$3^{\text {rd }}$ MFEM Community Workshop
10. 26. 2023.

Contents

Initial version of the HDG branch

Updated version of the HDG branch

APPLICATIONS AND FUTURE WORK

COLLABORATORS

THANK YOU TO
Sander Rhebergen (University of Waterloo, Canada)
Abdullah Ali Sivas (University of Waterloo, Canada)
Tan Bui-Thanh (University of Texas at Austin)
Jau-Uei Chen (University of Texas at Austin)
Natasha S. Sharma (University of Texas at El Paso)
Giselle Sosa Jones (University of Waterloo, Canada \rightarrow Oakland University)

DIFFUSION PROBLEM*

Let $\Omega \subset \mathbb{R}^{d}, d \geq 1$ open domain, $f \in L^{2}(\Omega)$

$$
\begin{aligned}
-\nabla \cdot(\nu \nabla u) & =f & & \text { in } \Omega, \\
u & =g_{D} & & \text { on } \Gamma .
\end{aligned}
$$

Rewrite to a first order system

$$
\begin{aligned}
\mathbf{q}+\nu \nabla u & =0 & & \text { in } \Omega, \\
\nabla \cdot \mathbf{q} & =f & & \text { in } \Omega, \\
u & =g_{D} & & \text { on } \Gamma .
\end{aligned}
$$

HDG DISCRETIZATION

$$
\begin{aligned}
\mathbf{v}_{h} & =\left\{\mathbf{v}_{h} \in\left[L^{2}(\Omega)\right]^{d}:\left.\mathbf{v}\right|_{K_{i}} \in\left[P^{p}\right]^{d}, \forall K_{i} \in \mathcal{T}_{h}\right\} \\
W_{h} & =\left\{v_{h} \in L^{2}(\Omega):\left.v\right|_{k_{i}} \in P^{p}, \forall K_{i} \in \mathcal{T}_{h}\right\} \\
M_{h} & =\left\{\lambda_{h} \in L^{2}\left(\mathcal{E}_{h}\right):\left.\lambda_{h}\right|_{e} \in P^{p}(e), \forall e \in \mathcal{E}_{h}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&-\left(\mathbf{q}_{h}, \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}+\left(u_{h}, \nu \nabla \cdot \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}-\left\langle\lambda_{h}, \nu \mathbf{v}_{h} \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}}=0 \\
&\left(\nabla \cdot \mathbf{q}_{h}, w_{h}\right)_{\mathcal{T}_{h}}+\left\langle\tau u_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}}-\left\langle\tau \lambda_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}}=(f, w)_{\mathcal{T}_{h}}, \\
&-\left\langle\llbracket \mathbf{q}_{h} \cdot \mathbf{n} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}-\left\langle\llbracket \tau u_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}+\left\langle\llbracket \tau \lambda_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}=0
\end{aligned}
$$

where

$$
(u, v)_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}(u, v)_{K}, \quad\langle u, v\rangle_{\partial \mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}\langle u, v\rangle_{\partial K}, \quad\langle\lambda, \mu\rangle_{\mathcal{E}_{h}}=\sum_{f \in \mathcal{F}_{h}}\langle\lambda, \mu\rangle_{f},
$$

AdVECTION PROBLEM AND HDG DISCRETIZATION ${ }^{\dagger}$

$$
\begin{gathered}
\beta u+\nabla \cdot \mathbf{c} u=f \quad \text { in } \Omega \\
u=g \quad \text { on } \Gamma_{-}, \\
\left(\beta u_{h}, v_{h}\right)_{\mathcal{T}_{h}}-\left(\mathbf{c} u_{h}, \nabla v_{h}\right)_{\mathcal{T}_{h}}+\left\langle\mathbf{n} \cdot \mathbf{c} u_{h}, v_{h}\right\rangle_{\partial \mathcal{T}_{h+}}+\left\langle\mathbf{n} \cdot \mathbf{c} \lambda_{h}, v_{h}\right\rangle_{\partial \mathcal{T}_{h-}}=\left(f, v_{h}\right)_{\mathcal{T}_{h}} \\
\sum_{K}\left\langle\mathbf{n} \cdot \mathbf{c} u_{h}, \mu_{h}\right\rangle_{\partial K_{+}}+\sum_{K}\left\langle\mathbf{n} \cdot \mathbf{c} \lambda_{h}, \mu_{h}\right\rangle_{\partial K_{-}}-\left\langle\mathbf{c} \cdot \mathbf{n} \lambda_{h}, \mu_{h}\right\rangle_{\Gamma_{+}}=\left\langle g, \mu_{h}\right\rangle_{\Gamma_{-}}
\end{gathered}
$$

MATRIX FORM \& SchUR COMPLEMENT

Using U and Λ for the volume and skeletal coefficient vectors

BLOCK SYSTEM

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
U \\
\Lambda
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

MATRIX FORM \& SCHUR COMPLEMENT

Using U and Λ for the volume and skeletal coefficient vectors

BLOCK SYSTEM

A IS BLOCK DIAGONAL

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
U \\
\Lambda
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

$$
\begin{array}{r}
U=A^{-1}(F-B \Lambda) \\
C A^{-1}(F-B \Lambda)+D \Lambda=G
\end{array}
$$

MATRIX FORM \& SchUR COMPLEMENT

Using U and Λ for the volume and skeletal coefficient vectors

BLOCK SYSTEM

A IS BLOCK DIAGONAL

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
U \\
\Lambda
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

$$
\begin{array}{r}
U=A^{-1}(F-B \Lambda) \\
C A^{-1}(F-B \Lambda)+D \Lambda=G
\end{array}
$$

FinAl PROBLEM

$$
\begin{aligned}
\left(D-C A^{-1} B\right) \Lambda & =G-C A^{-1} F \\
U & =A^{-1}(F-B \Lambda)
\end{aligned}
$$

MATRIX FORM \& SchUR COMPLEMENT

Using U and Λ for the volume and skeletal coefficient vectors

BLOCK SYSTEM

A IS BLOCK DIAGONAL

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
U \\
\Lambda
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

$$
\begin{array}{r}
U=A^{-1}(F-B \Lambda) \\
C A^{-1}(F-B \Lambda)+D \Lambda=G
\end{array}
$$

FinAl PROBLEM

$$
\begin{aligned}
\left(D-C A^{-1} B\right) \Lambda & =G-C A^{-1} F \\
U & =A^{-1}(F-B \Lambda)
\end{aligned}
$$

A, B, C, D can be block matrices

DG Assembly

Algorithm 1 DG Assembly loop

1: loop Over all elements
2: Calculate the volume integrals
3: end loop
4: loop Over all faces
5: Calculate the face integrals, add contributions to two neighboring elements
6: end loop

Looping over faces only once

HDG Assembly

Algorithm 2 HDG Assembly
1: loop Over all elements
2: Calculate the volume integrals
3: loop Over all faces of the element
Calculate the face integrals for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, add contributions to local matrices
5: end loop
6: Invert A locally
7: Boundary elimination
8: \quad Calculate Schur complement locally $\left(D-C A^{-1} B\right)$
9: end loop

Looping over interior faces twice - once for both neighboring elements

HDG Reconstruction

Algorithm 3 HDG Reconstruction
1: Ioop Over all elements
2: \quad Calculate the volume integrals
3: loop Over all faces of the element
Calculate the face integrals for A and B only, add contributions to local matrices
5: end loop
6: Invert A locally
7: \quad Reconstruct $U=A^{-1}(F-B \Lambda)$ locally
8: end loop

Looping over interior faces twice - once for both neighboring elements
A, B can be stored during the Assembly process to save time (storage vs time)

CALCULATING THE VOLUME INTEGRALS

Volume integrators: One shot integrator, calculates all terms in the local A matrix

CALCULATING THE VOLUME INTEGRALS

Volume integrators: One shot integrator, calculates all terms in the local A matrix

For the diffusion problem the local matrix A is a block matrix (coefficients of q_{h} and u_{h})

CALCULATING THE VOLUME INTEGRALS

Volume integrators: One shot integrator, calculates all terms in the local A matrix

For the diffusion problem the local matrix A is a block matrix (coefficients of q_{h} and u_{h})

Most of the integrators in A are standard MFEM integrators

CALCULATING THE VOLUME INTEGRALS

Volume integrators: One shot integrator, calculates all terms in the local A matrix

For the diffusion problem the local matrix A is a block matrix (coefficients of q_{h} and u_{h})

Most of the integrators in A are standard MFEM integrators
We use problem specific integrators, abandoning the modular approach

CALCULATING THE VOLUME INTEGRALS

Volume integrators: One shot integrator, calculates all terms in the local A matrix

For the diffusion problem the local matrix A is a block matrix (coefficients of q_{h} and u_{h})
Most of the integrators in A are standard MFEM integrators
We use problem specific integrators, abandoning the modular approach
Could be done in a modular fashion, but needs bookkeeping (to which submatrix to assemble to)

Volume integrator example

$$
\begin{aligned}
-\left(\mathbf{q}_{h}, \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}+\left(u_{h}, \nu \nabla \cdot \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}-\left\langle\lambda_{h}, \nu \mathbf{v}_{h} \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} & =0 \\
\quad\left(\nabla \cdot \mathbf{q}_{h}, w_{h}\right)_{\mathcal{T}_{h}}+\left\langle\tau u_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}}-\left\langle\tau \lambda_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}} & =(f, w)_{\mathcal{T}_{h}}, \\
-\left\langle\llbracket \mathbf{q}_{h} \cdot \mathbf{n} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}-\left\langle\llbracket \tau u_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}+\left\langle\llbracket \tau \lambda_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}} & =0
\end{aligned}
$$

Algorithm 4 HDG Diffusion Integrator
1: loop Over all integration point
2: \quad Calculate the shape values, dshape values
3: \quad Calculate a MasssVectorIntegrator for $-\left(\mathbf{q}_{h}, \mathbf{v}_{h}\right)$
4: \quad Calculate a VectorDivergenceIntegrator for $\left(\nabla \cdot \mathbf{q}_{h}, w_{h}\right)$
5: end loop
6: Add the local matrices to A_{11}, A_{12}, A_{21}

InTERFACE INTEGRATOR

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

INTERFACE INTEGRATOR

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM

INTERFACE INTEGRATOR

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM
Normal in MFEM is calculated such that it is outward normal for Elem1

InTERFACE INTEGRATOR

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM
Normal in MFEM is calculated such that it is outward normal for Elem1
If we need the integrals including Elem2 unknowns: multiply with -1

InTERFACE INTEGRATOR

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM
Normal in MFEM is calculated such that it is outward normal for Elem1
If we need the integrals including Elem2 unknowns: multiply with -1
We need to keep a boolean called "elem1or2"

Interface integrator

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM
Normal in MFEM is calculated such that it is outward normal for Elem1
If we need the integrals including Elem2 unknowns: multiply with -1
We need to keep a boolean called "elem1or2"
We use problem specific integrators, abandoning the modular approach

Interface integrator

Interface integrators: One shot integrator, calculates all terms in the local A, B, C, D matrices

The skeletal unknown related integrators are not standard in MFEM
Normal in MFEM is calculated such that it is outward normal for Elem1
If we need the integrals including Elem2 unknowns: multiply with -1
We need to keep a boolean called "elem1or2"
We use problem specific integrators, abandoning the modular approach
Could be done in a modular fashion, but needs bookkeeping (to which submatrix to assemble to)

InTERFACE INTEGATOR EXAMPLE

$$
\begin{aligned}
-\left(\mathbf{q}_{h}, \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}+\left(u_{h}, \nu \nabla \cdot \mathbf{v}_{h}\right)_{\mathcal{T}_{h}}-\left\langle\lambda_{h}, \nu \mathbf{v}_{h} \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} & =0 \\
\left(\nabla \cdot \mathbf{q}_{h}, w_{h}\right)_{\mathcal{T}_{h}}+\left\langle\tau u_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}}-\left\langle\tau \lambda_{h}, w_{h}\right\rangle_{\partial \mathcal{T}_{h}} & =(f, w)_{\mathcal{T}_{h}} \\
-\left\langle\llbracket \mathbf{q}_{h} \cdot \mathbf{n} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}-\left\langle\llbracket \tau u_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}}+\left\langle\llbracket \tau \lambda_{h} \rrbracket, \mu_{h}\right\rangle_{\mathcal{E}_{h}} & =0
\end{aligned}
$$

Algorithm 5 HDG Diffusion Integrator
1: loop Over all integration point
2: \quad Calculate the shape values, dshape values, shape_facet values
3: Calculate a "MassInterfaceIntegrator" for $\left\langle\tau u_{h}, w_{h}\right\rangle$
4: Calculate a "MassSkeletonIntegrator" for $\left\langle\llbracket \tau \lambda_{h} \rrbracket, \mu_{h}\right\rangle$
5: \quad Calculate a "NormalSkeletonTraceJumpIntegrator" for $\left\langle\llbracket \mathbf{q}_{h} \cdot \mathbf{n} \rrbracket, \mu_{h}\right\rangle$
6: Calculate a "MassMixedSkeletonIntegrator" for $\left\langle\llbracket \tau u_{h} \rrbracket, \mu_{h}\right\rangle$
7: end loop
8: Add the local matrices to $A_{22}, B_{11}, B_{21}, C_{11}, C_{12}, D$

Unified HDG BilinearForm

One bilinear form for the advection and the diffusion problems

Unified HDG BilinearForm

One bilinear form for the advection and the diffusion problems
Arrays of FES and GridFunction

Unified HDG BilinearForm

One bilinear form for the advection and the diffusion problems
Arrays of FES and GridFunction
To make the code more user friendly: overload the functions

$$
\begin{aligned}
& \text { HDGBilinearForm (Array<FiniteElementSpace*> \&_volume_fes, } \\
& \text { Array<FiniteElementSpace*> \&_skeletal_fes, } \\
& \text { bool_parallel = false); }
\end{aligned}
$$

```
// Diffusion test case without FES arrays
HDGBilinearForm(FiniteElementSpace *_fes1,
    FiniteElementSpace *_fes2,
    FiniteElementSpace *_fes3,
    bool _parallel = false);
```


Unified HDG BilinearForm

One bilinear form for the advection and the diffusion problems
Arrays of FES and GridFunction
To make the code more user friendly: overload the functions

```
HDGBilinearForm(Array<FiniteElementSpace*> &_volume_fes,
    Array<FiniteElementSpace*> &_skeletal_fes,
    bool _parallel = false);
```

```
// Diffusion test case without FES arrays
HDGBilinearForm(FiniteElementSpace *_fes1,
    FiniteElementSpace *_fes2,
    FiniteElementSpace *_fes3,
    bool _parallel = false);
```

One single AssembleReconstruct function

Unified HDG BilinearForm

One bilinear form for the advection and the diffusion problems
Arrays of FES and GridFunction
To make the code more user friendly: overload the functions

```
HDGBilinearForm(Array<FiniteElementSpace*> &_volume_fes,
    Array<FiniteElementSpace*> &_skeletal_fes,
    bool _parallel = false);
```

```
// Diffusion test case without FES arrays
HDGBilinearForm(FiniteElementSpace *_fesl,
    FiniteElementSpace *_fes2,
    FiniteElementSpace *_fes3,
    bool _parallel = false);
```

One single AssembleReconstruct function

Turned into a miniapp

Assemblereconstruct loop

About 50\% of the Assemble and Reconstruct loops were the same

Assemblereconstruct Loop

About 50\% of the Assemble and Reconstruct loops were the same

Algorithm 7 HDG AssembleReconstruct
1: loop Over all elements
2: Calculate the volume integrals
3: loop Over all faces of the element
Calculate the face integrals for A, B and maybe C and D. Add contributions to local matrices
5: end loop
6: Invert A locally
7: if assembly then
8: \quad Boundary elimination
9: \quad Calculate Schur complement locally $\left(D-C A^{-1} B\right)$
10: else
11: \quad Reconstruct $U=A^{-1}(F-B \Lambda)$ locally
12: end if
13: end loop

WARNING - BOUNDARY FACES

Accessing a boundary face vs accessing the same face as interior face may give a different DoF order

Differences between GetFaceVDofs and GetBdrElementVDofs Issue 2514 https://github.com/mfem/mfem/issues/2514

WARNING - BOUNDARY FACES

Accessing a boundary face vs accessing the same face as interior face may give a different DoF order

Differences between GetFaceVDofs and GetBdrElementVDofs Issue 2514 https://github.com/mfem/mfem/issues/2514

We do not have a separate interior and boundary face integrator

WARNING - BOUNDARY FACES

Accessing a boundary face vs accessing the same face as interior face may give a different DoF order

Differences between GetFaceVDofs and GetBdrElementVDofs Issue 2514 https://github.com/mfem/mfem/issues/2514

We do not have a separate interior and boundary face integrator
Need to check if element boundary is an interior face or a boundary face

WARNING - BOUNDARY FACES

Accessing a boundary face vs accessing the same face as interior face may give a different DoF order

Differences between GetFaceVDofs and GetBdrElementVDofs Issue 2514 https://github.com/mfem/mfem/issues/2514

We do not have a separate interior and boundary face integrator Need to check if element boundary is an interior face or a boundary face

Projection of a function to the facet terms is different for interior and boundary faces

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES +2 skeletal FES

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES +2 skeletal FES Magnetohydrodynamics: 6 volume FES + 4 skeletal FES

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES + 2 skeletal FES Magnetohydrodynamics: 6 volume FES + 4 skeletal FES
Phase-field crystal: 7 volume FES +3 skeletal FES

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES +2 skeletal FES Magnetohydrodynamics: 6 volume FES + 4 skeletal FES
Phase-field crystal: 7 volume FES + 3 skeletal FES
Not all of the spaces are the same (different order, continuous/discontinuous facet spaces)

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES + 2 skeletal FES
Magnetohydrodynamics: 6 volume FES + 4 skeletal FES
Phase-field crystal: 7 volume FES + 3 skeletal FES
Not all of the spaces are the same (different order, continuous/discontinuous facet spaces)
The elimination and the integrators had to be modified for the particular cases

What have we used it for?

(Space-time) (Navier-)Stokes: 2 volume FES + 2 skeletal FES
Magnetohydrodynamics: 6 volume FES + 4 skeletal FES
Phase-field crystal: 7 volume FES +3 skeletal FES
Not all of the spaces are the same (different order, continuous/discontinuous facet spaces)
The elimination and the integrators had to be modified for the particular cases

Fast calculation of A inverse in some of the cases

Future of the branch

PLANNED UPDATES

Add the possibility of saving the local A and B matrices to accelerate reconstruction

Fix a PETSc issue (might be unrelated to the branch)

Future of the branch

PLANNED UPDATES

Add the possibility of saving the local A and B matrices to accelerate reconstruction

Fix a PETSc issue (might be unrelated to the branch)

NOT IN THE WORKS (ANYONE INTERESTED?)

More modular implementation of the integrator
Pros: more MFEM style, reusable integrators
Cons: hard bookkeeping (which submatrix to add to which block)

Future of the branch

PLANNED UPDATES

Add the possibility of saving the local A and B matrices to accelerate reconstruction

Fix a PETSc issue (might be unrelated to the branch)

NOT IN THE WORKS (ANYONE INTERESTED?)

More modular implementation of the integrator
Pros: more MFEM style, reusable integrators
Cons: hard bookkeeping (which submatrix to add to which block)
Nonconforming meshes
Pros: it would be nice
Cons: we never needed it, so we ignored it

Thank you!

