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MFEM Finite Element Library
Cutting-edge algorithms for powerful applications on HPC architectures

▪ Flexible discretizations on unstructured grids

— Triangular, quadrilateral, tetrahedral and hexahedral meshes

— Local conforming and non-conforming AMR, mesh optimization

— Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, HDG, …

▪ High-order and scalable
— Arbitrary-order H1, H(curl), H(div)- and L2 elements

— Arbitrary order curvilinear meshes

— MPI scalable to millions of cores and GPU-accelerated 

— Enables application development from laptops to exascale machines

▪ Built-in solvers and visualization
— Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, …

— AMG preconditioners for full de Rham complex, geometric MG

— Support for GPU solvers from: HYPRE, PETSc, AmgX

— Accurate and flexible visualization with VisIt, ParaView and GLVis

▪ Open source
— Available on GitHub under BSD license, many example codes and miniapps

— Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …

High-order 
curved elements Parallel non-conforming AMR

Core-edge 
tokamak

Compressible flow 
ALE simulations

Heart 
modeling

MFEM: A modular finite element methods library, CAMWA 2020
High-performance finite elements with MFEM, IJHPCA, 2024
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A Brief History
We’ve been doing this for a long time

▪ 2000 – “VIGRE seminar: Numerical Analysis” Texas A&M University

— Research code: AggieFEM/aFEM

— Some of the original contributors: @v-dobrev, @tzanio, @stomov

— Used in summer internships at LLNL

▪ 2010 – BLAST project at LLNL

— Motivated high-order, non-conforming AMR and parallel scalability developments

— MFEM repository created in May 2010

— Some of the original contributors: @v-dobrev, @tzanio, @rieben1, @trumanellis

— Project website mfem.org goes live in August 2015 

▪ 2017 – Development moved to GitHub

— First GitHub commits in February 2017

— Team expands to include many new developers at LLNL and externally

▪ 2017 – CEED project in the ECP

— Motivated exascale computing developments: GPUs, partial assembly, matrix-free

▪ 2024 – El Capitan, AD, Applications
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The Source Code is Growing
SLOC in MFEM releases over the last 14 years
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GitHub

▪ 149 contributors

▪ 694 people in the mfem organization – join 
to contribute + receive announcements

▪ 1691 stars – thank you!

Downloads

▪ 150+ unique visitors / day

▪ 200+ downloads + clones / day

▪ 100K+ / year

▪ 120+ countries total

2024 Community Workshop

▪ 200+ researchers

▪ 100+ organizations

▪ 25+ countries

The Community is Growing
GitHub, downloads, and workshop stats

Top contributors as of Oct 2024

MFEM has been downloaded from 121 countries

Community workshops have 200+ registrations
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▪ Released May, 2024

▪ 7 months in development

▪ 42 contributors

▪ 166 PRs merged

▪ 155 issues closed

▪ 25K new lines of code

▪ 1694 commits

▪ Many new features:

— meshing, NURBS improvements

— cutFEM, hyperbolic conservation laws

— single precision support

— GPU-accelerated DG diffusion

— runtime device selection with hypre

Latest Releases Were Team Efforts
Version 4.7 stats 

The making of mfem-4.7 video on YouTube

Top contributors to latest releases

New GLVis releases!

▪ 4.3 in August, 4.3.2 in September

(more than 2 years since glvis-4.2)

▪ Bugfixes, new features:

— visualization of quadrature data

— support for integral elements

— 1D elements embedded in 2D/3D

— improved auto refinement

— new font and number formatting options

▪ Updated pyglvis, glvis.org/live

New PyMFEM releases!

▪ 4.7 in August, 4.6 in January

— improved testing, Python examples

https://glvis.org/live/
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mfem.org/examples

▪ 40 example codes, most with both serial + parallel versions

▪ Tutorials to learn MFEM features

▪ Starting point for new applications

▪ Show integration with many external packages, miniapps

Examples
The first stop for new users

http://mfem.org/examples
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mfem.org/electromagnetics

▪ Volta

▪ Tesla

▪ Maxwell · transient full-wave EM

▪ Joule · transient magnetics + Joule heating

▪ Arbitrary order elements + meshes

▪ Adaptive mesh refinement

Volta, Tesla, Maxwell and Joule Miniapps
Static and transient electromagnetics

mfem.org/fluids

▪ Arbitrary order elements

▪ Arbitrary order curvilinear mesh elements

▪ Adaptive IMEX (BDF-AB) time-stepping 
algorithm up to 3rd order

▪ State-of-the-art HPC performance

▪ GPU acceleration

▪ Convenient user interface

3D Taylor-Green
vortex, 7th order

Double shear layer, 
5th order, Re = 100000

Navier Miniapp
Transient incompressible Navier-Stokes equations

Miniapps
More advanced, ready-to-use physics solvers
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Applications
Some of the large-scale simulation codes powered by MFEM

Heart modeling 
(Cardioid, LLNL/IBM)

Topology optimization for 
additive manufacturing (LiDO, LLNL)

Hot strip mill slab
modeling (U.S. Steel)

Adaptive MHD island
coalescence (SciDAC, LANL)

Electric aircraft 
design (RPI)

Core-edge tokamak EM
wave propagation (SciDAC, RPI)

MRI modeling 
(Harvard Medical)

Inertial confinement 
fusion (BLAST, LLNL)

NURBS meshing and IGA 
(Coreform LLC, SBIR)
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▪ Large-scale multi-physics in BLAST code @ LLNL
• Compressible hydro +  rad. diffusion + EM diffusion
• Split ALE discretization
• Explicit hydrodynamics + implicit diffusion

▪ de Rham complex connect different physics

▪ High-order finite elements on high-order meshes
• Critical for robustness, symmetry, conservation
• Better match for new hardware
• Need new (interesting!) R&D for full benefits:
— meshing, discretizations, linear solvers, AMR, …

High-order 
thermodynamics

High-order 
MHD

High-order 
rad. diffusion

“nodes” “elems”“edges” “faces”

High-order 
kinematics

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase (~c = ~0)

M omentum Conservat ion: ⇢d~v
dt

= r · σ

M ass Conservat ion:
d⇢
dt

= − ⇢r ·~v

Energy Conservat ion: ⇢de
dt

= σ : r ~v

Equat ion of M ot ion:
d~x
dt

= ~v

t = 0

⌧= 0

⌧= 0.5

⌧= 1

t = 1.5

t = 3.0

Galerkin FEM

DG

Gauss-Lobatto basis

Bernstein basis

Advect ion phase (~c = − ~vm)

M omentum Conservat ion:
d(⇢~v)

d⌧
= ~vm · r (⇢~v)

M ass Conservat ion:
d⇢
d⌧

= ~vm · r ⇢

Energy Conservat ion:
d(⇢e)

d⌧
= ~vm · r (⇢e)

M esh velocity: ~vm =
d~x
d⌧

R. Anderson, V. Dobrev, Tz. Kolev, R. Rieben and V. Tomov, High-Order Multi-Material ALE 
Hydrodynamics, SISC., 40(1):B32-B58, 2018

V. Dobrev, Tz. Kolev, R. Rieben and V. Tomov, Multi-material closure model for high-order finite 
element Lagrangian hydrodynamics, IJNMF, 82(10), pp. 689–706, 2016

R. Anderson, V. Dobrev, Tz. Kolev and R. Rieben, Monotonicity in High-Order Curvilinear Finite 
Element ALE Remap, IJNMF, (77), pp. 249-273, 2015

V. Dobrev, Tz. Kolev and R. Rieben, High-Order Curvilinear Finite Element Methods for 
Lagrangian Hydrodynamics, SISC, (34), pp.B606–B641, 2012

BLAST: High-Order ALE Multiphysics at LLNL
New algorithms enable us to solve more complex problems each year
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AMReX CoPA ExaGraphCEED CODAR ExaLearn

Codesign played a critical role

ExaBiom
e

MFIX-Exa

Combustio
n 

PELE
ExaSGD

ExaWind ExaAM

GAMESS NNSA
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9 out of 11 KPP-1 projects surpassed ambitious 50x performance target

3 out of 4 NNSA KPP-2 
projects demonstrated 

exascale capability

7 out of 10 SC KPP-2 
projects demonstrated 

exascale capability
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2024: ECP Application Results Exceeded Expectations
Additional 1.5 –70x improvements due to improved algorithms

slide from Lori Diachin, ECP director
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FEM Operator Decomposition + Partial Assembly for HPC
Decompose A into parallel, mesh, basis, and geometry/physics parts 

▪ Enables AMR, HO, GPUs

▪ AD-friendly

▪ Partial assembly = store only D, evaluate B

▪ Optimal memory, near-optimal FLOPs compared to A

T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

P

PT

G

GT

B

BT

D
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GPU

CPU

HardwareBackendsKernelsLibrary

Kernel

Memory

Execution

RWR Wlinalg

fem

mesh

CUDA

HIP

GPU Support
MFEM has provided GPU acceleration for over 5 years (since mfem-4.0) 

▪ memory manager ▪ WIP: SYCL support▪ runtime-selectable backends

C++ lambdas



mfem

Performance-Portable GPU Finite Element Kernels
MFEM results on the CEED bake-off problems

V100 MI100 A100 H100

Scalability of high-performance PDE solvers, IJHPCA 2020
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3D ALE: 36-core CPU vs 4 GPUs (3 nodes) 

3D throughput / 1 node 
CPU-based systems vs 
NVIDIA V100 (ATS-2) 

AMD MI250X (EAS-3) 

PA CPU/GPU

Phase FA CPU PA CPU PA GPU Speedup

Time Loop 3854.16 2866.54 221.03 12.9
Lagrange 1773.68 1098.42 69.73 15.7
Remesh 557.98 366.24 42.67 8.5
Remap 1513.99 1393.34 100.95 13.8

Partially Assembled Methods Perform Better on GPUs
High-order elements yield higher throughput in BLAST

Matrix-free approaches for GPU acceleration of a high-order finite element
hydrodynamics application using MFEM, Umpire, and RAJA, IJHPCA 2022

500 cycles, ALE period = 50
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▪ AMR on library level

— Conforming local refinement on simplex meshes

— Non-conforming refinement for all element types

▪ General approach

— Any high-order finite element space, H1, H(curl), 
H(div), on any high-order curved mesh

— 2D and 3D; hexes, prisms, tets

— Arbitrary order hanging nodes

— Anisotropic refinement (serial)

— Derefinement

— Serial and parallel, including parallel load balancing

— Independent of the physics

— Easy to incorporate in applications

▪ Coming soon

— hp-FEM · general anisotropic · SubMesh + AMR

Scalability to 400K MPI tasksSame AMR algorithms can 
be applied to a wide variety 

of high-order physics
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Adaptive Mesh Refinement on Unstructured Grids
Same AMR algorithms applied to a variety of high-order physics

Dynamic AMR in BLAST

CTS-2

Nonconforming mesh refinement for high-order finite elements, SISC 2019
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Low-Order-Refined (LOR) Solvers
Spectrally equivalent low-order operator on a refined grid

I

I
HO LOR

▪ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

▪ ALOR is sparse and spectrally equivalent to AHO 

▪ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR  - can use AMG, AMS, ADS

Low-order preconditioning for the high-order 
de Rham complex, SISC 2022
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GPU Performance of LOR Solvers
Efficient matrix-free solvers for PA operators

▪ Using LOR + hypre’s AMG, AMS and ADS solvers in 
MFEM on the GPU is one line of code
—MFEM is the FE interface to hypre for many apps

▪ We have performed end-to-end GPU acceleration 
of  the entire solution algorithm
—Assembly, preconditioner setup, solve phase
—Details and performance metrics in End-to-end GPU 

acceleration of low-order-refined preconditioning for high-order 
finite element discretizations, IJHPCA, submitted

▪ Flexibility: solvers perform well 
—For H1, H(curl), H(div)
—With high-order elements
—On AMR meshes, etc.

▪ Excellent strong and weak scalability: 
—Benchmarked up to 1024 GPUs, 1.1 billion DOFs

End-to-end GPU acceleration of low-order-refined preconditioning
for high-order finite element discretizations, IJHPCA 2023
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∂FEM: Autodiff for Partially Assembled Operators
Jacobians and derivatives of FEM operators in a user-friendly way 

T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

P

PT

G

GT

B

BT

D

▪ FEM decomposition

▪ Parameters

▪ Parametric nonlinear operator

▪ Need to differentiate at Q-points only!

(Jacobian is FEM decomposed linear operator)

▪ Differentiate the Q-function D with Enzyme! 
— AD at LLVM level, after compiler optimization
— Can mix code from different languages
— Differentiate across function calls (e.g. EOS)
— AD with minimal code changes
— Differentiate only what is necessary

Meshing Finite Elements SolversParameters Functional

Topology-optimized 
LED heat sink

MFEM + Enzyme
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▪ El Capitan

— Large-scale performance on MI300

— Application porting and optimizations

▪ Differentiable Simulations

— dFEM AD in next release

— AD on GPU · Enzyme collaboration

— Design optimization · ALE multi-physics

▪ R&D

— Compressible and incompressible flow · Fusion: both magnetic and ICF

— AMR improvements · pyramids · high-order simplices · matrix-free solvers

— Robust meshing, discretizations and solvers for automated workflows

▪ New releases

— mfem-4.8 in Mar · switch to C++17

▪ What would you like to see?

— Slack: #meet-the-team · GitHub: github.com/mfem/mfem/issues · Email: mfem@llnl.gov

Roadmap for Next Year
Plans for FY25

https://mfemworkshop.slack.com/archives/C02J42P29K6
http://github.com/mfem/mfem/issues
mailto:mfem@llnl.gov
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Website:
mfem.org

Software: 
github.com/mfem

Publications: 
mfem.org/publications

Email: 
mfem@llnl.gov

MFEM Resources

▪ Explore our publications▪ Contribute to the code▪ Contact us with questions + feedback

http://mfem.org/
https://github.com/mfem
http://mfem.org/publications
mailto:mfem@llnl.gov
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