The State of MFEM

MFEM Community Workshop October 22, 2024 Tzanio Kolev LLNL

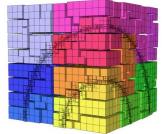
LLNL-PRES-856457

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

MFEM Finite Element Library

Cutting-edge algorithms for powerful applications on HPC architectures


Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral and hexahedral meshes
- Local conforming and non-conforming AMR, mesh optimization -
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, HDG, ... •

High-order and scalable

- Arbitrary-order H1, H(curl), H(div)- and L2 elements
- Arbitrary order curvilinear meshes
- MPI scalable to millions of cores and GPU-accelerated ______
- Enables application development from laptops to exascale machines
- Built-in solvers and visualization
 - Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, ...
 - AMG preconditioners for full de Rham complex, geometric MG
 - Support for GPU solvers from: HYPRE, PETSc, AmgX
 - Accurate and flexible visualization with Vislt, ParaView and GLVis -
- Open source
 - Available on GitHub under BSD license, many example codes and miniapps
 - Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...

High-order curved elements

Parallel non-conforming AMR

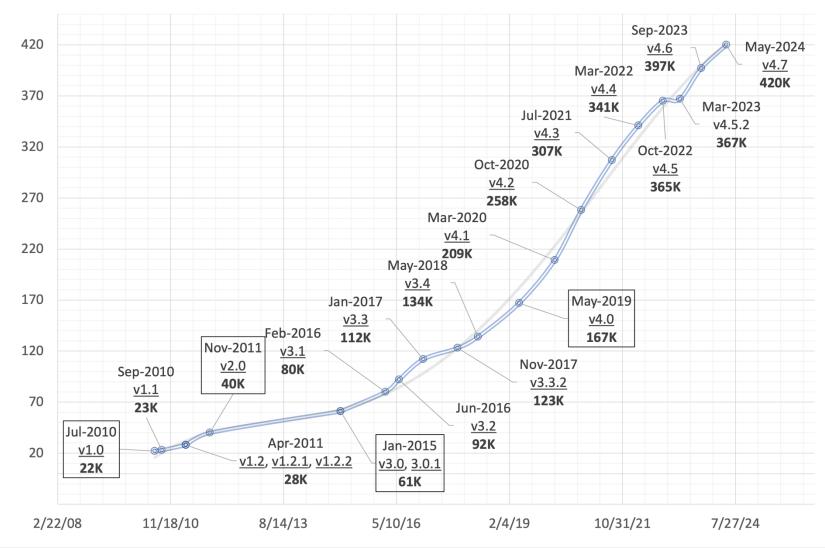
Heart

modeling

A Brief History

We've been doing this for a long time

- 2000 "VIGRE seminar: Numerical Analysis" Texas A&M University
 - Research code: AggieFEM/aFEM
 - Some of the original contributors: @v-dobrev, @tzanio, @stomov
 - Used in summer internships at LLNL
- 2010 BLAST project at LLNL
 - Motivated high-order, non-conforming AMR and parallel scalability developments
 - MFEM repository created in May 2010
 - Some of the original contributors: @v-dobrev, @tzanio, @rieben1, @trumanellis
 - Project website mfem.org goes live in August 2015
- 2017 Development moved to GitHub
 - First GitHub commits in February 2017
 - Team expands to include many new developers at LLNL and externally
- 2017 CEED project in the ECP
 - Motivated exascale computing developments: GPUs, partial assembly, matrix-free
- 2024 El Capitan, AD, Applications



The Source Code is Growing

SLOC in MFEM releases over the last 14 years

mfem-4.7.tgz	v4.7	May 2024	3.8M	420K	
mfem-4.6.tgz	v4.6	Sep 2023	3.6M	397K	
mfem-4.5.2.tgz	v4.5.2	Mar 2023	3.3M	367K	
mfem-4.5.tgz	v4.5	Oct 2022	3.3M	365K	
mfem-4.4.tgz	v4.4	Mar 2022	3.0M	341K	
mfem-4.3.tgz	v4.3	Jul 2021	2.8M	307K	
mfem-4.2.tgz	v4.2	Oct 2020	2.4M	258K	
mfem-4.1.tgz	v4.1	Mar 2020	7.9M	209K	
mfem-4.0.tgz	v4.0	May 2019	5.2M	167K	GPU support
mfem-3.4.tgz	v3.4	May 2018	4.4M	134K	
mfem-3.3.2.tgz	v3.3.2	Nov 2017	4.2M	123K	mesh optimization
mfem-3.3.tgz	v3.3	Jan 2017	4.0M	112K	
mfem-3.2.tgz	v3.2	Jun 2016	3.3M	92K	dynamic AMR, HPC miniapps
mfem-3.1.tgz	v3.1	Feb 2016	2.9M	80K	$\textit{fem} \leftrightarrow \textit{linear system interface}$
mfem-3.0.1.tgz	v3.0.1	Jan 2015	1.1M	61K	
mfem-3.0.tgz	v3.0	Jan 2015	1.1M	61K	non-conforming AMR
mfem-2.0.tgz	v2.0	Nov 2011	308K	40K	arbitrary order spaces, NURBS
mfem-v1.2.2.tgz	v1.2.2	Apr 2011	240K	28K	
mfem-v1.2.1.tgz	v1.2.1	Apr 2011	240K	28K	
mfem-v1.2.tgz	v1.2	Apr 2011	240K	28K	MPI parallelism based on hypre
mfem-v1.1.tgz	v1.1	Sep 2010	166K	23K	
mfem-v1.0.tgz	v1.0	Jul 2010	160K	22K	initial release

The Community is Growing

GitHub, downloads, and workshop stats

GitHub


- 149 contributors
- **694** people in the mfem organization *join* to contribute + receive announcements
- 1691 stars thank you! + Starred 1.7k

Downloads

- 150+ unique visitors / day
- 200+ downloads + clones / day
- 100K+ / year
- 120+ countries total

2024 Community Workshop

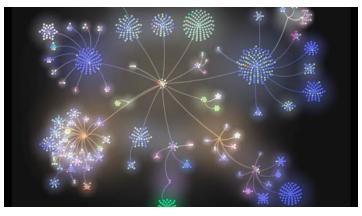
- 200+ researchers
- 100+ organizations
- 25+ countries

Top contributors as of Oct 2024

MFEM has been downloaded from 121 countries

🚱 mfem.org	MFEM Community Workshop	October 2023	
Aaron Fisher	Lawrence Livermore National Laboratory	fisher47@llnl.gov	
Abdellatif Semmouri	FST, Sultan Moulay Slimane University	abd_semmouri@yahoo.fr	
Abdelmajid Ezzine	Faculty of Sciences, Mohammed V University in Rabat	abdelmajid.ezzine@um5r.ac.ma	
Abdesslam Ouaziz	University Sidi Mohammed Ben Abdellah	abdesslam.ouaziz1994@gmail.com	
Achraf El Omari	Hassan II University of Casablanca	achraf.elomari-etu@etu.univh2c.ma	
Achraf Zinihi	⁷ aculty of Sciences and Technics, Moulay Ismail University of Mekne.	a.zinihi@edu.umi.ac.ma	
Adel Babbah	abdelmalek essadi university	a.babbah@uae.ac.ma	
88 Aditya Parik	Utah State University	aditya.parik@usu.edu	
Adolfo Rodriguez	Kappa Engineering	adantra@gmail.com	
Adrian Butscher	Autodesk	adrian.butscher@autodesk.com	
Ahdia Achabbak	Faculty of the science	ahdia.achabbak@etu.uae.ac.ma	
Alberto Padovan	University of Illinois at Urbana-Champaign	padovan3@illinois.edu	
14 Alejandro Muñoz	Universidad de Granada	almuma@ugr.es	
Alex Lindsay	Idaho National Laboratory	alexander.lindsay@inl.gov	
Alexander Blair	UK Atomic Energy Authority	alexander.blair@ukaea.uk	
17 Alexander Grayver	ETH Zurich	agrayver@ethz.cl	

Community workshops have 200+ registrations



Latest Releases Were Team Efforts

Version 4.7 stats

- Released May, 2024
- 7 months in development
- 42 contributors
- 166 PRs merged
- 155 issues closed
- 25K new lines of code
- 1694 commits
- Many new features:
 - meshing, NURBS improvements
 - cutFEM, hyperbolic conservation laws
 - single precision support
 - GPU-accelerated DG diffusion
 - runtime device selection with hypre

The making of mfem-4.7 video on YouTube

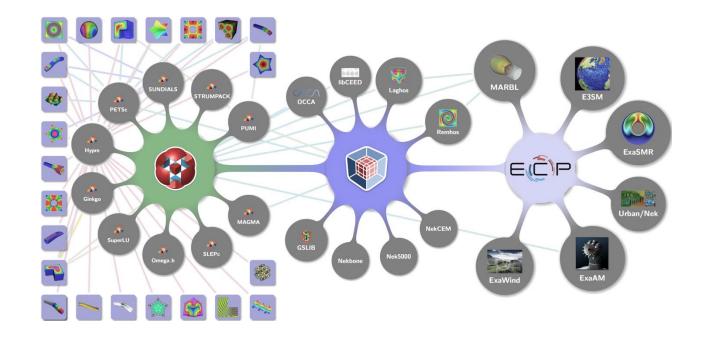
Top contributors to latest releases

New GLVis releases!

- **4.3** in August, **4.3.2** in September (more than 2 years since glvis-4.2)
- Bugfixes, new features:
 - visualization of quadrature data
 - support for integral elements
 - 1D elements embedded in 2D/3D
 - improved auto refinement
 - new font and number formatting options
- Updated pyglvis, glvis.org/live

New PyMFEM releases!

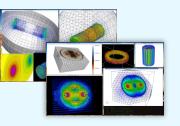
- **4.7** in August, **4.6** in January
 - improved testing, Python examples



Examples

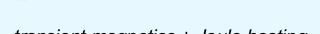
The first stop for new users

- 40 example codes, most with both serial + parallel versions
- Tutorials to learn MFEM features
- Starting point for new applications
- Show integration with many external packages, miniapps



Miniapps

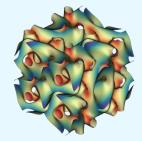
More advanced, ready-to-use physics solvers


Volta, Tesla, Maxwell and Joule Miniapps Static and transient electromagnetics

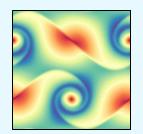
- Volta $-\nabla \cdot \epsilon \nabla \varphi = \rho \nabla \cdot \vec{P}$
- Tesla $\nabla \times \mu^{-1} \nabla \times \vec{A} = \vec{J} + \nabla \times \mu^{-1} \mu_0 \vec{M}$

Maxwell · transient full-wave EM

$$\frac{\partial(\vec{e}\vec{E})}{\partial t} = \nabla \times (\mu^{-1}\vec{B}) - \sigma\vec{E} - \vec{J}$$
$$\frac{\partial\vec{B}}{\partial t} = -\nabla \times \vec{E}$$



- Joule · transient magnetics + Joule heating
- Arbitrary order elements + meshes
- Adaptive mesh refinement


mfem.org/electromagnetics

Navier Miniapp *Transient incompressible Navier-Stokes equations*

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

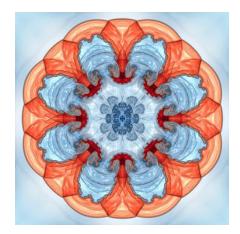
- Arbitrary order elements
- Arbitrary order curvilinear mesh elements
- Adaptive IMEX (BDF-AB) time-stepping algorithm up to 3rd order
- State-of-the-art HPC performance
- GPU acceleration
- Convenient user interface

3D Taylor-Green

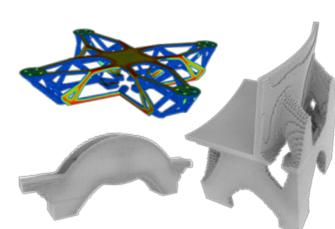
vortex, 7th order

Double shear layer, 5th order, Re = 100000

mfem.org/fluids



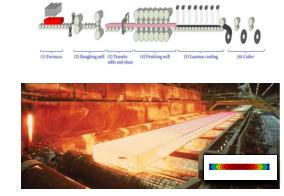
Applications


Some of the large-scale simulation codes powered by MFEM

Inertial confinement fusion (BLAST, LLNL)

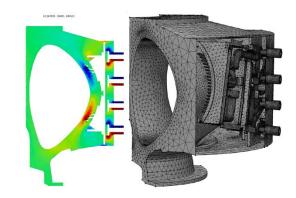
Electric aircraft design (RPI)

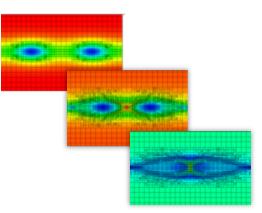
Topology optimization for additive manufacturing (LiDO, LLNL)


MRI modeling (Harvard Medical)

NURBS meshing and IGA

(Coreform LLC, SBIR)

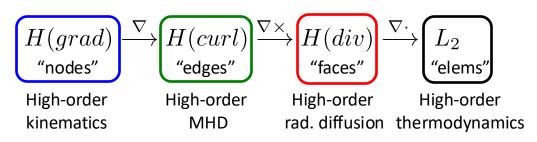

📀 coreform

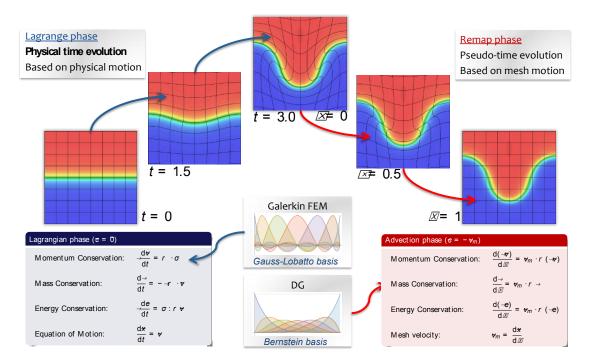

Hot strip mill slab modeling (U.S. Steel)

Heart modeling (Cardioid, LLNL/IBM)

Core-edge tokamak EM wave propagation (SciDAC, RPI)

Adaptive MHD island coalescence (SciDAC, LANL)




BLAST: High-Order ALE Multiphysics at LLNL

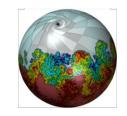
New algorithms enable us to solve more complex problems each year

- Large-scale multi-physics in BLAST code @ LLNL
 - Compressible hydro + rad. diffusion + EM diffusion
 - Split ALE discretization
 - Explicit hydrodynamics + implicit diffusion
- de Rham complex connect different physics

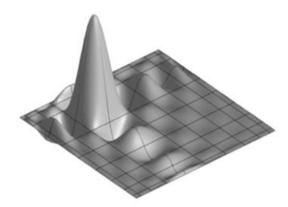
- High-order finite elements on high-order meshes
 - Critical for robustness, symmetry, conservation
 - Better match for new hardware
 - Need new (interesting!) R&D for full benefits:
 - meshing, discretizations, linear solvers, AMR, ...

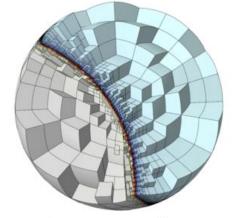
R. Anderson, V. Dobrev, Tz. Kolev, R. Rieben and V. Tomov, High-Order Multi-Material ALE Hydrodynamics, SISC., 40(1):B32-B58, **2018**

V. Dobrev, Tz. Kolev, R. Rieben and V. Tomov, Multi-material closure model for high-order finite element Lagrangian hydrodynamics, IJNMF, 82(10), pp. 689–706, **2016**


R. Anderson, V. Dobrev, Tz. Kolev and R. Rieben, Monotonicity in High-Order Curvilinear Finite Element ALE Remap, IJNMF, (77), pp. 249-273, **2015**

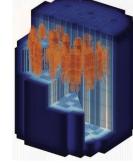
V. Dobrev, Tz. Kolev and R. Rieben, High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics, SISC, (34), pp.B606–B641, **2012**




Co-Design motives

- PDE-based simulations on unstructured grids
- high-order and spectral finite elements

✓ any order space on any order mesh ✓ curved meshes,
 ✓ unstructured AMR ✓ optimized low-order support



10th order basis function

non-conforming AMR, 2nd order mesh

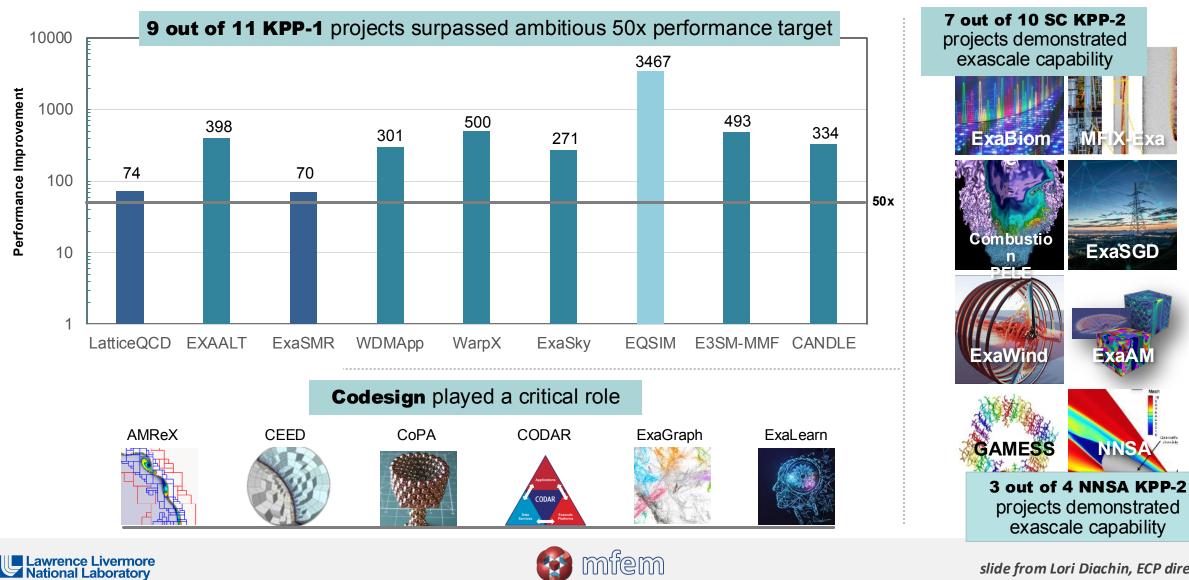
Compressible flow (MARBL)

Modular Nuclear Reactors (ExaSMR)

Target applications

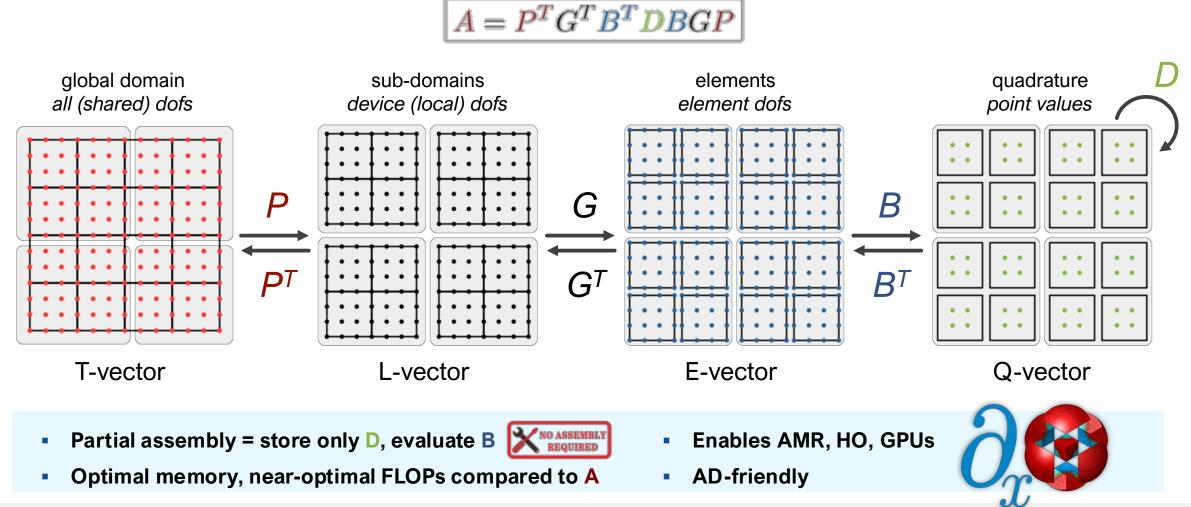
Climate (E3SM)

Wind Energy (ExaWind)



Urban systems (Urban)

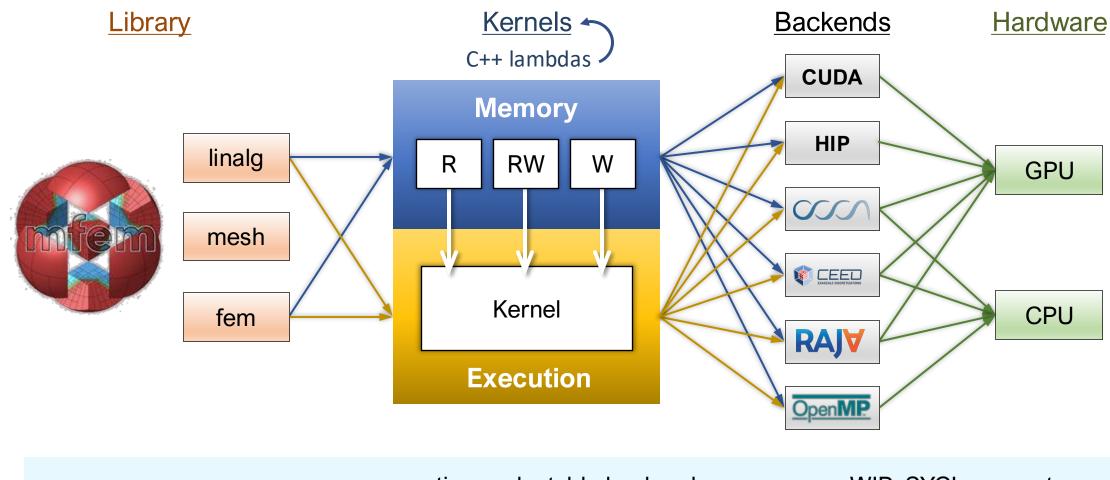
Additive Manufacturing (ExaAM)


2024: ECP Application Results Exceeded Expectations Additional 1.5 –70x improvements due to improved algorithms

slide from Lori Diachin, ECP director

FEM Operator Decomposition + Partial Assembly for HPC

Decompose A into parallel, mesh, basis, and geometry/physics parts



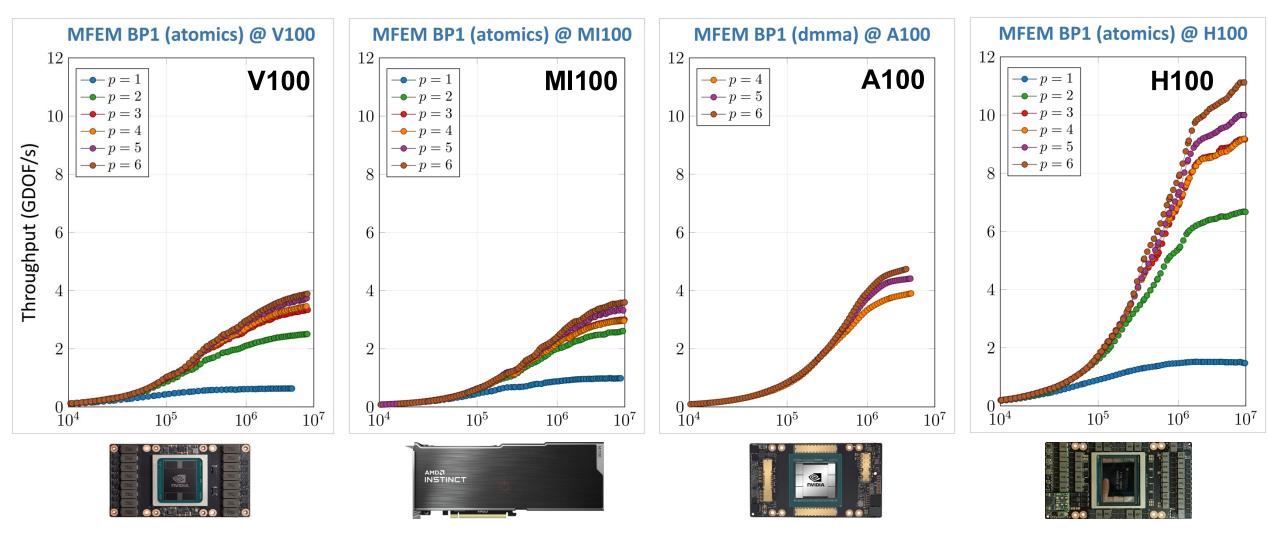
GPU Support

MFEM has provided GPU acceleration for over 5 years (since mfem-4.0)

memory manager

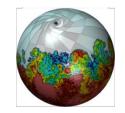
runtime-selectable backends

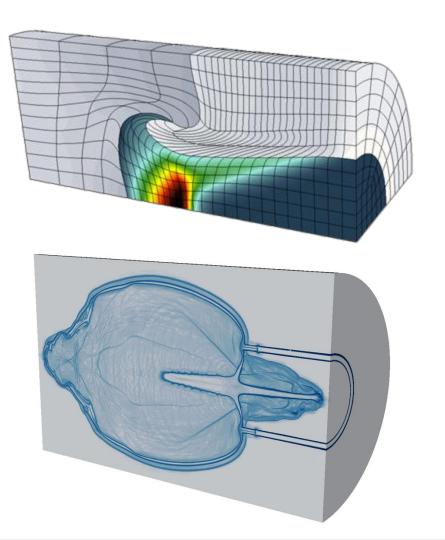
• WIP: SYCL support

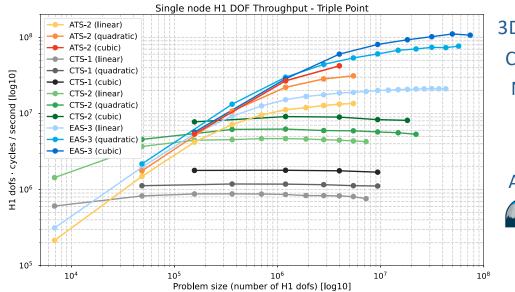


Performance-Portable GPU Finite Element Kernels

MFEM results on the CEED bake-off problems







Partially Assembled Methods Perform Better on GPUs

High-order elements yield higher throughput in BLAST

3D throughput / 1 node CPU-based systems vs NVIDIA V100 (**ATS-2**)

AMD MI250X (EAS-3)

PA CPU/GPU 500 cycles, ALE period = 50

Phase	FA CPU	PA CPU	PA GPU	Speedup
Time Loop	3854.16	2866.54	221.03	12.9
Lagrange	1773.68	1098.42	69.73	15.7
Remesh	557.98	366.24	42.67	8.5
Remap	1513.99	1393.34	100.95	13.8

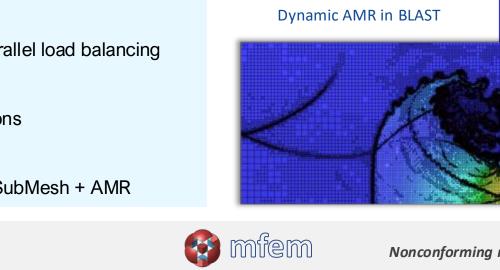
3D ALE: 36-core CPU vs 4 GPUs (3 nodes)

Matrix-free approaches for GPU acceleration of a high-order finite element hydrodynamics application using MFEM, Umpire, and RAJA, IJHPCA 2022

Adaptive Mesh Refinement on Unstructured Grids

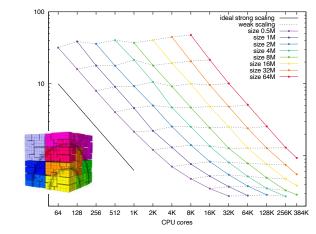
Same AMR algorithms applied to a variety of high-order physics

AMR on library level


- Conforming local refinement on simplex meshes
- Non-conforming refinement for all element types
- General approach
 - Any high-order finite element space, H1, H(curl), H(div), on any high-order curved mesh
 - 2D and 3D; hexes, prisms, tets
 - Arbitrary order hanging nodes
 - Anisotropic refinement (serial)
 - Derefinement
 - Serial and parallel, including parallel load balancing
 - Independent of the physics
 - Easy to incorporate in applications
- Coming soon

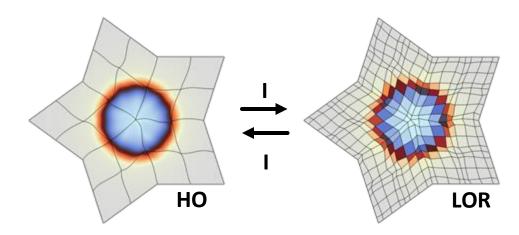
Lawrence Livermore

National Laboratory


hp-FEM · general anisotropic · SubMesh + AMR

Same AMR algorithms can

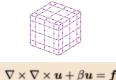
be applied to a wide variety of high-order physics

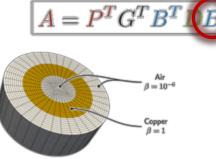


Scalability to 400K MPI tasks

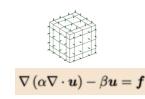
Low-Order-Refined (LOR) Solvers

Spectrally equivalent low-order operator on a refined grid




- Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)
- A_{LOR} is sparse and spectrally equivalent to A_{HO}

Theorem 2. Let M_{\star} and K_{\star} denote the mass and stiffness matrices, respectively, where \star represents one of the above-defined finite element spaces with basis as in Section 4.3. Then we have the following spectral equivalences, independent of mesh size h and polynomial degree p.


 $\begin{aligned} & M_{V_h} \sim M_{V_p}, & K_{V_h} \sim K_{V_p}, \\ & M_{\mathbf{W}_h} \sim M_{\mathbf{W}_p}, & K_{\mathbf{W}_h} \sim K_{\mathbf{W}_p}, \\ & M_{\mathbf{X}_h} \sim M_{\mathbf{X}_p}, & K_{\mathbf{X}_h} \sim K_{\mathbf{X}_p}, \\ & M_{Y_h} \sim M_{Y_{p-1}}, \\ & M_{Z_h} \sim M_{Z_p}, & K_{Z_h} \sim K_{Z_p}. \end{aligned}$

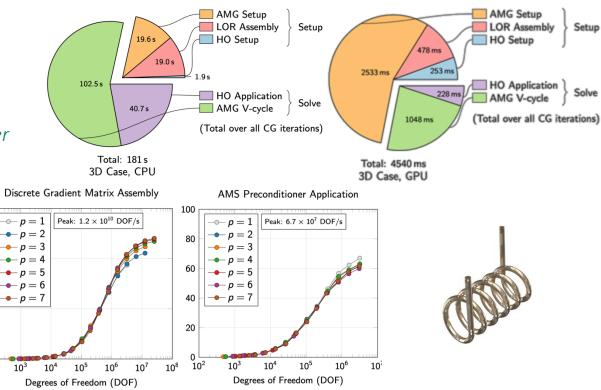
• $(A_{HO})^{-1} \approx (A_{LOR})^{-1} \approx B_{LOR}$ - can use AMG, AMS, ADS

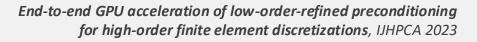
LOR-AMS								
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ		
2	41	0.082	0.277	0.768	516,820	1.65×10^{7}		
3	63	0.251	0.512	2.754	1,731,408	$5.64 imes10^7$		
4	75	0.679	1.133	7.304	4,088,888	$1.34 imes10^8$		
5	62	1.574	2.185	11.783	7,968,340	$2.61 imes 10^8$		
6	89	3.336	4.024	30.702	13,748,844	$4.51 imes 10^8$		
	Matrix-Based AMS							
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ		
2	39	0.140	0.385	1.423	516,820	5.24×10^{7}		
3	44	1.368	1.572	9.723	1,731,408	4.01×10^{8}		
4	49	9.668	5.824	45.277	4,088,888	$1.80 imes 10^9$		
5	53	61.726	15.695	148.757	7,968,340	$5.92 imes10^9$		
6	56	502.607	40.128	424.100	13.748.844	1.59×10^{1}		

	LOF	R-ADS	Matrix-I		
p	Runtime (s)	Memory (GB)	Runtime (s)	Memory (GB)	Speedup
2	2.11	0.04	2.98	0.20	$1.41 \times$
3	6.64	0.15	22.58	1.84	3.40 imes
4	17.40	0.35	114.35	9.13	6.57 imes
5	43.70	0.68	422.74	32.21	9.67 imes
6	92.76	1.18	1324.94	91.09	$14.28 \times$

Low-order preconditioning for the high-order de Rham complex, SISC 2022

GPU Performance of LOR Solvers


Efficient matrix-free solvers for PA operators


- Using LOR + hypre's AMG, AMS and ADS solvers in MFEM on the GPU is one line of code

 MFEM is the FE interface to hypre for many apps
- We have performed end-to-end GPU acceleration of the entire solution algorithm
 - -Assembly, preconditioner setup, solve phase
 - —Details and performance metrics in *End-to-end GPU* acceleration of low-order-refined preconditioning for high-order finite element discretizations, IJHPCA, submitted
- Flexibility: solvers perform well
 - -For H¹, H(curl), H(div)
 - -With high-order elements
 - -On AMR meshes, etc.
- Excellent strong and weak scalability:
 - -Benchmarked up to 1024 GPUs, 1.1 billion DOFs

// For example: // if 'a' is H1 diffusion... LORSolver <HypreBoomerAMG> lor_amg(a, ess_dofs); // if 'a' is ND curl-curl... LORSolver <HypreAMS> lor_ams(a, ess_dofs); // if 'a' is RT div-div... LORSolver <HypreADS> lor_ads(a, ess_dofs);

15.000

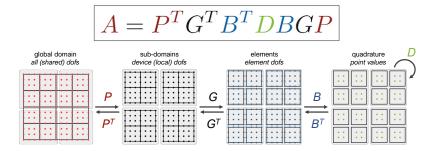
10,000

5,000

 10^{2}

[hroughput [MDOF/s]

∂FEM: Autodiff for Partially Assembled Operators


Meshing

Jacobians and derivatives of FEM operators in a user-friendly way

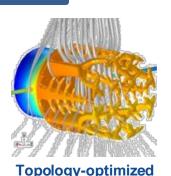
Parameters

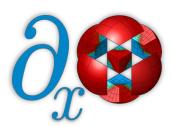
Lawrence Livermore **National Laboratory**

- Parameters $\hat{\rho} = B_{\rho}G_{\rho}P_{\rho}\rho$
- Parametric nonlinear operator

 $A(u;\rho) = P^T G^T B^T D(\hat{u},\hat{\rho})$

Need to differentiate at Q-points only! $\nabla_u A(u;\rho) = P^T G^T B^T \nabla_{\hat{u}} D(\hat{u},\hat{\rho}) B G P$

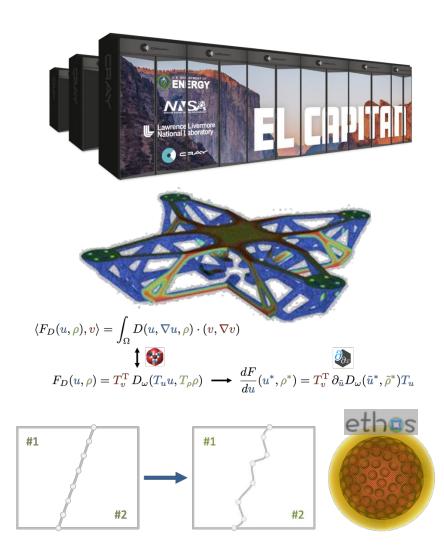

(Jacobian is FEM decomposed linear operator)


Solvers

- Differentiate the Q-function *D* with Enzyme!
 - AD at LLVM level, *after* compiler optimization
 - Can mix code from different languages
 - Differentiate across function calls (e.g. EOS)
 - AD with minimal code changes
 - Differentiate only what is necessary

Finite Elements

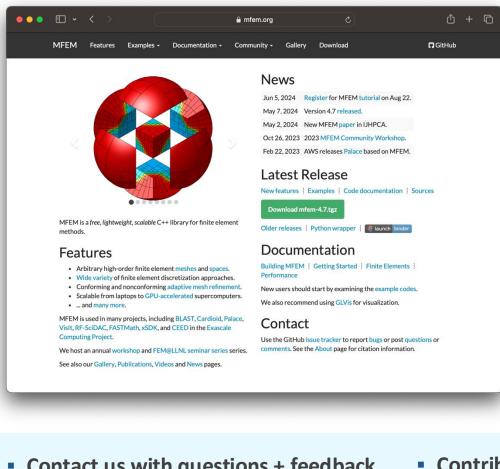
LED heat sink



Functional

Roadmap for Next Year Plans for FY25

- El Capitan
 - Large-scale performance on MI300
 - Application porting and optimizations
- Differentiable Simulations
 - dFEM AD in next release
 - AD on GPU · Enzyme collaboration
 - Design optimization · ALE multi-physics
- R&D
 - Compressible and incompressible flow · Fusion: both magnetic and ICF
 - AMR improvements \cdot pyramids \cdot high-order simplices \cdot matrix-free solvers
 - Robust meshing, discretizations and solvers for automated workflows
- New releases
 - mfem-4.8 in Mar · switch to C++17
- What would you like to see?
 - Slack: <u>#meet-the-team</u> · GitHub: <u>github.com/mfem/issues</u> · Email: <u>mfem@llnl.gov</u>



MFEM Resources

Website: mfem.org

Software: github.com/mfem

Publications: mfem.org/publications

Email: mfem@llnl.gov

Contact us with questions + feedback

Contribute to the code

Explore our publications

Thank you from the MFEM team at LLNL!

Julian Andrej @jandrej

John Camier @camierjs

Will

Pazner

@pazner

Dylan Copeland @dylan-copeland Veselin

Dobrev @v-dobrev

Aaron Fisher @acfisher

Andrew Ho @helloworld922

Tzanio Kolev @tzanio

Justin Laughlin @justinlaughlin

Boyan Lazarov @bslazarov

Ketan Mittal @kmittal2

Jan Nikl @najlkin

Socratis Petrides @psocratis

Sohail Reddy @sohailreddy

Mathias Schmidt @SchmidtMat

Mark Stowell @mlstowell

Vladimir Tomov @vladotomov

Chris Vogl @cjvogl

mfem.org

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.