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Outline

1. Motivation: topology optimization of parts in an assembly

2. Level set updates that preserve interfaces between parts in assemblies

3. Simultaneous level set-based topology optimization of parts and their interfaces



Topology Optimization of Parts in Assemblies

Audi’s double-wishbone
pushrod suspension
assembly

Credit: Audi



Topology Optimization of Parts in Assemblies
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Some Related Work

useless
support

Figure 9: Coupled support locations

and structure optimization

(A) Left part (B) Right part (C) Assembly

Rakotondrainibe, Allaire Ambrozkiewicz and
and Orval [2020] Kriegesman [2020]

® Optimized shape and support locations

® Optimized shape and joint positions

® Optimized shape, loads and support locations
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(b) Final optimized design

(a) Initial design with allowable load (blue) and
support (red) regions

Alacoque and James [2021]
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Our Approach

® Enhancement of level set-based topology

optimization

® Provides the ability to preserve the nature of

assembly interfaces

® Gives parametric control (translation, rotation and

scaling) over any interface region
o Loads and supports

o Jointinterfaces

® Allows simultaneous optimization of free

geometry and interface parameters

Inertial force

Z

-
- Q

Joint reaction forces

vy

Spring/damper
force



A Constrained Topology Optimization Problem

minimize J(£2)
subject to 0% contains interfaces of the specified nature

over all admissible shapes £ and all allowed interface parameters




Methodology

1. A level set representation for a shape that includes interface data:

Q :={F(x) <0} with 09 containing interfaces of specified types

2. An interface-preserving level set update procedure:

F— Fhew

Qpew 1= {FneW(X) < 0}
02w contains new interfaces of the same types

3. A method to choose such an update based on sensitivity analysis, ensuring that we
obtain a descent direction for the optimization objective 7, namely:

T (Qpew) < T(Q)



Level Set Representation with Interfaces

Level set function F

e As usual

Interfaces I are subsets of 02 with
o Type
[.type = weld, revolute joint, etc.

e Simple parametric geometry

[.params = location, orientation, size, etc.
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Conventional Level Set Updates

To update a level set function F

¥

e We prescribe a velocity field © on a
domain surrounding the zero level set
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e Then we solve the transport equation « :
in a prescribed time interval [0, tpew| N
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e The updated level set function is
Note: circular region is distorted!

Frew = Ft,,ew



Allowed Motions at the Interfaces

The velocity © must be such that the nature of the interface is preserved by transport

[.type = revolute joint [l hew].type = revolute joint
[.params.radius = r [l hew]-params.radius = ar
[.params.centre = p [l hew]-params.centre = p+ b



Interface-Preserving Motions

e Motions that are combinations of translation, rotation, and orthotropic scaling
will preserve the nature of the interface

x(t) := Translate(Rotate(Scale(x))) ***Note order of operations!
1 1 1

time t time t
direction a € R3 scale factor ¢ € R3

time t
angular velocity
B € Antisym(R3*3)

e Velocity fields that produce these motions have the form

allowed

©%5:C (x,t):= a+ B(x — at) + Rotate (diag(c)(Rotate_l(X — at))>



Interface-Preserving Level Set Updates

So: To update a level set function F in an
interface-preserving way

e Impose the constraint
_ a)B)C
O = eallowed

near interfaces, with appropriate a, B, ¢
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e Solve the transport equation for Fey
using the constrained vector field

Note: circular region remains circular!



Choice of Update Velocity

Requirement: © must be a descent direction for the optimization objective

® Recall that we have R
j(QneW) ~ j(Q) + thew 8Q @J_ C 09
o0 o — o)
where gq is the shape gradient

/

gq as a scalar function on 0f2

® Therefore we need a vector field satisfying
(1) / go O+ <0
Bl9)

(2) 0= @3’,5)";(, near interfaces, where a, B, ¢ are to be determined by (1)



Hilbert Space Velocity Extension Procedure

Reminder: Descent directions can be found using the following procedure

e Consider velocity fields defined on a
narrow band B of 012

o Let H be a smoothing inner product on
the Hilbert space of vector fields on B

e Solve the variational problem

1
Onse = argmin —H(©,0) —/ gq O+
e 2 o0

e Then —Opyse is a descent direction

[7sHel



HSE Means Solving a PDE
The smoothing inner product often has the form

H(@, @) = / (@ - O + ’yve : V@) ~ a smoothing parameter

B
Therefore ©yse satisfies the PDE
O —vAO = gq in B
) MFEM ©
Essential & natural BCs on OB

where we now view go as a distributional source term supported on 0f2



Imposing Interface-Preservation Constraints

How: We obtain our desired extension velocity © cysg in two steps.

Step 1: We modify the HSE procedure by adding allowed velocity constraints

a,B,c
allowed

® Allowed velocities satisfy © (x,t =0) = a+ Bx + diag(c)x for some a, B, c

® Thus we let ©, solve the constrained variational problem

1
minimize ~H(©,0) —/ go ©F
2 0
subject to © = a+ Bx + diag(c)x near the interface I

over © and all a, B, ¢

N——
determined by the variational problem!



Imposing Interface-Preservation Constraints

Step 2: We create the correct time-dependence near the interfaces

® Define the extension velocity © cyse(x, t) by “blending” it with the known
time-dependent velocity near the interface

Ochse(x, t) = (1 — n(x))O.(x) + n(x) O (x,t)
0

cut-off function for I

Result: By construction —© s is spacetime-continuous, satisfies the allowed velocity
constraints, and is a descent direction for the optimization objective



Example

© cHse with translation constraint
imposed near the revolute joint
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Example

Transport with respect to Oyse Transport with respect to © cyse

Revolute joint
is preserved




Results — Bracket

Consider an L-bracket with an aperture (blue) for
a revolute joint

We pose a simplified*** load scenario:

® Fixed boundary conditions on the top
and right surfaces

® A constant load applied to the surface of the
aperture

*** A single-part load scenario representative of the type of loading the part
might experience within an assembly, but much simpler
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Results — Bracket

And we pose a design optimization problem for
this load scenario:

Minimize compliance with a volume
fraction constraint and the restrictions

® The fixed interfaces (red) must not move
or change

® The aperture must remain cylindrical




Results — Bracket

Case 1: Frozen Constraint
Here, the aperture is not allowed to move

Final shape:




Results — Bracket

Case 2: Translation Constraint
Here, the aperture is allowed to translate freely

Final shape:




Results — Cantilever

We now pose a new asymmetric cantilever load
scenario

And a new design optimization problem:

Minimize compliance with a volume
fraction constraint and the restrictions

® The red interfaces must not move

® The orange box is allowed to translate
vertically




Results — Cantilever

The load regions translates such that the result
approaches a symmetric Michell Truss




Future work

® More complicated parametric geometry and variations of interfaces
® Full-assembly simulation with shape-dependent reaction forces at the interfaces

® Simultaneous optimization of multiple parts in the assembly



Conclusion

® New shape update framework for level set-based topology optimization, meant for optimization of
parts within assemblies

® We use it to give parametric control (translation, rotation and scaling) over any interface region:

o Loads and supports

o Jointinterfaces
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