
LLNL-PRES-870644
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Interpolation at Arbitrary Points in High-Order
Meshes on GPUs

MFEM Community Workshop

Ketan Mittal
Aditya Parik (USU), Tzanio Kolev (LLNL)

22-24 October 2024

LLNL-PRES-870644
2

Motivation

▪ Interpolation at arbitrary points is required in FEM for:

▪ Querying the solution at desired locations.

▪ Exchanging information between overlapping grids.

▪ Detecting contact between meshes.

 mesh for triple-point problemp = 3 meshes for overlapping gridsp = 2 meshes in contactp = 1

This is a challenging problem, especially for unstructured curvilinear meshes distributed
on many MPI ranks in HPC.

LLNL-PRES-870644
3

Background

▪ Each tensor-product element in the mesh is represented using
Lagrange interpolants on Gauss-
Lobatto-Legendre points in the reference element .

▪

▪ Similar mapping is used for any function, e.g., Velocity and
Temperature .

ϕi(r), i = 1…ND, D = [1,3],
Ω̄ ∈ [0,1]D

x(r) |Ωe =
ND

∑
l=1

xe
l ϕl(r) =

N

∑
i=1

N

∑
j=1

N

∑
k=1

xe
ijkϕi(r)ϕj(s)ϕk(t), r ∈ Ω̄

u(r)
T(r)

Quad mesh on 4 MPI ranks

Ωe

For a given point , we need to know the element on MPI rank that overlaps the point,
and the corresponding reference-space coordinates () inside .

x* e* p*
r* Ωe*

Ω̄

LLNL-PRES-870644
4

Methodology

▪One time setup

▪ Compute data structures to quickly map a given point, , first to MPI ranks () and then to candidate

elements () locally on each rank.

▪ Compute element-wise bounding boxes to quickly test if a given point is inside an element.

▪ Search a given set of points

▪Newton search to compute reference-space coordinates in the candidate elements:

▪ Interpolate the discrete solution

▪

x* = {x*, y*, z*} p

e

𝚊𝚛𝚐𝚖𝚒𝚗
r

| |x* − x(r) | |2
2

2

u(x* = Φ(r*)) =
N

∑
i=1

N

∑
j=1

N

∑
k=1

ue
ijkϕi(r*)ϕj(s*)ϕk(t*)

Implementation based on gslib developed by James Lottes in the context of SEM for Nek5000

LLNL-PRES-870644
5

Setup

LLNL-PRES-870644
6

Axis-Aligned Bounding Box

▪ Compute bounds on to determine { , , , }.x(r) |Ωe =
N

∑
i=1

N

∑
j=1

xe
ijϕi(r)ϕj(s) x𝚖𝚒𝚗 x𝚖𝚊𝚡 y𝚖𝚒𝚗 y𝚖𝚊𝚡

Axis-Aligned Bounding Boxes

LLNL-PRES-870644
7

Oriented Bounding Box

▪ AABB are suboptimal for curvilinear elements.

▪ OBB provide tighter bounds around each element.

▪ Represented by OBB center and a transformation matrix () with respect to the reference element.AD×D

Oriented Bounding Boxes
Bounding boxes around a

curvilinear element

LLNL-PRES-870644
8

Local Map for x* → {e}

▪ Generate a uniform Cartesian mesh () over

the domain of the union of processor-local AABB

.

▪ is never explicitly constructed.

▪ Compute intersection between elements of and :

▪ Intersection of AABB and cells of is trivial.

▪ Given , determine which cell of it is located in, and

look-up candidate element using the map.

NL × NL ℳL

{xL, min, xL, max, yL, min, yL, max}

ℳL

ℳ ℳL

𝚜𝚝𝚍 :: 𝚖𝚊𝚙 < 𝚒𝚗𝚝 𝚎ℳ𝙻
, 𝙰𝚛𝚛𝚊𝚢 < 𝚒𝚗𝚝 > 𝚎ℳ >

ℳL

x* ℳL

NL = 5

LLNL-PRES-870644

▪ Generate a uniform Cartesian mesh () over the

entire mesh .

▪ is globally partitioned. Each rank checks intersection of its

elements with elements of , and communicates to

corresponding MPI ranks:

▪ Given , determine which cell of it is located in, and

send to corresponding MPI rank. Then locally look-up the list

of ranks that can contain the point and forward the point to

those ranks.

NG × NG ℳG

{xG, min, xG, max, yG, min, yG, max}

ℳG

ℳG

𝚜𝚝𝚍 :: 𝚖𝚊𝚙 < 𝚒𝚗𝚝 𝚎ℳ𝙶
, 𝙰𝚛𝚛𝚊𝚢 < 𝚒𝚗𝚝 > 𝚙ℳ >

x* ℳG

9

Global Map for x* → {p}

NG = 24

Cartesian mesh overlapping the entire domain.

AABB for one of the elements of .ℳ

LLNL-PRES-870644
10

FindPoints

LLNL-PRES-870644
11

CPU GPU Data Movement ↔

▪ Data Movement:

[]

▪ Mesh nodes -

▪ Should already be on GPU.

▪ Bounding boxes -

▪ Local hash mesh -

▪ Coordinates of points to be found -

𝚒𝚗𝚙𝚞𝚝

D ⋅ NE ⋅ ND

(3D + D2)NE

O(ND
E)

D ⋅ Npt

[]

▪ Element index -

▪ Reference-space coordinates -

▪ Distance between actual and found point -

▪ code (inside element/border/not found) -

𝚘𝚞𝚝𝚙𝚞𝚝

Npt

D ⋅ Npt

Npt

Npt

▪ access.

▪ for fast data access of work arrays used with SIMD instructions.

𝙲𝚘𝚊𝚕𝚎𝚜𝚌𝚎𝚍 𝚖𝚎𝚖𝚘𝚛𝚢

𝚂𝚑𝚊𝚛𝚎𝚍 𝚖𝚎𝚖𝚘𝚛𝚢

LLNL-PRES-870644
12

Initial Element Look-up and Bounding Box Test

▪ For each point, look up candidate elements based on the hash

table. Then check bounding boxes for each candidate elements:

▪ AABB test

▪

▪ OBB test

▪ , where captures the OBB

size and orientation, and is the OBB center.

(x*i − xe
i,𝚖𝚒𝚗)(xe

i,𝚖𝚊𝚡 − x*i) > 0 ∀i ∈ [1,D], i ∈ ℤ

−1 ≤ A−1
D×D(x* − xc) ≤ 1 AD×D

xc

LLNL-PRES-870644
13

FindPoints - Newton’s Method

▪ Minimize using Newton’s method with trust-region.

▪ based on closest mesh node.

▪
, .

▪ when searching inside the element, 1 if searching on element edge/face.

▪ is a trust-region factor that depends on the quality of most recent Newton update.

f(r) = 1
2 | |x* − x(r) | |2

2 = 1
2 | |Δxi | |2

2

r0

rl+1 = rl − ℋ−1
ji 𝒥j

Δrl

rl+1 ∈ [−1,1]D, Δrl ∈ αl [−1,1]D

β = 0

αl

Gij = ∂xi

∂rj
𝒥j = ∂f

∂rj
= ∑

i
Δxi(−

∂xi

∂rj
) = − GT

ij Δxi, ℋjk = ∂2f
∂rj∂rk

= GjiGik−βΔxi
∂2xi

∂rj∂rk
,

LLNL-PRES-870644
14

Newton’s Method - Searching interior to an
element

▪ Ignoring the second derivative term in the Hessian simplifies the Newton update to

.

▪ Requires evaluation of and .

▪ We use thread blocks (1 for each point to be found), and each block has threads.

▪ Tensor-product structure is leveraged to use 1D operator, which maps well to the threads.

rl+1 = rl + G−1
ij Δxi

Δxi(rl) = x*i − xi(rl) Gij(rl) = ∂xi(rl)
∂rj

Npt N ⋅ D

N

LLNL-PRES-870644
15

SIMD Instructions for Parallelizing Work

▪ First evaluate basis functions and their derivatives:

▪ threads - and .

▪ threads - and .

▪ Next, evaluate the inner summation:

▪ threads - . Same for .

▪ threads - . Same for .

▪ Finally, thread 0 accumulates the outer summation.

N ϕi(r) ∂ϕi(r)
∂r

N ϕi(s)
∂ϕj(s)

∂s

N xi =
N

∑
j=1

xe
ijϕi(r)ϕj(s) ∂xi

∂r
, ∂xi

∂s

N yi =
N

∑
j=1

ye
ijϕi(r)ϕj(s) ∂yi

∂r
, ∂yi

∂s

xe(r) =
N

∑
i=1

N

∑
j=1

xe
ijϕi(r)ϕj(s), ye(r) =

N

∑
i=1

N

∑
j=1

ye
ijϕi(r)ϕj(s)

∂x
∂r

=
N

∑
i=1

N

∑
j=1

xe
ij

∂ϕi(r)
∂r

ϕj(s), ∂y
∂r

=
N

∑
i=1

N

∑
j=1

ye
ij

∂ϕi(r)
∂r

ϕj(s)

∂x
∂s

=
N

∑
i=1

N

∑
j=1

xe
ijϕi(r)

∂ϕj(s)
∂s

, ∂y
∂s

=
N

∑
i=1

N

∑
j=1

ye
ijϕi(r)

∂ϕj(s)
∂s

LLNL-PRES-870644
16

Searching on Element Face/Edge

▪ After the first Newton iteration, we check to search either inside an element, on the face (in

3D), or on the edge of the element.

▪ Fewer unconstrained variables when searching on face (2 in 3D) or edge (1).

▪ For example, and for edge corresponding to .

rl

𝒥 = ∂f
∂r

ℋ = ∂2f
∂2r

s ± 1

LLNL-PRES-870644
17

Logic for Points Not Found Locally

▪ Points that are not found in the local mesh are routed to other MPI

ranks using the global map.

▪ For points found outside the element, we use element that returns

minimum .| |Δx | |

Point inside the bounding box but
not the element

Point inside the hash mesh but not
in any element’s bounding box.

LLNL-PRES-870644
18

Interpolation

▪ blocks, 1 for each point, with threads in each block.

▪ Interpolation done first for processor local points, and then for

points originating on other ranks but owned by elements on

current rank.

Npt Ñd

u(x(r)) = u(r) |Ωe =
Ñ

∑
i=1

Ñ

∑
j=1

Ñ

∑
k=1

ue
ijkϕi(r)ϕj(s)ϕk(t),

LLNL-PRES-870644
19

Extension to Surface Meshes

Aditya Parik’s talk at 1:20 PM

LLNL-PRES-870644
20

Results

LLNL-PRES-870644
21

Spiral ()p = 9

▪ Time to find up-to 100 million points in a 9th order element on 1 GPU ().

▪ 5 Newton iterations per point on average.

𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚖𝚎𝚜𝚑𝚒𝚗𝚐/𝚙𝚏𝚒𝚗𝚍𝚙𝚝𝚜

Npt

LLNL-PRES-870644
22

Triple Point Problem ()p = 3
▪ , for the triple point problem on 4 GPUs.

▪ Lassen supercomputer @ LLNL

▪ 756 Nodes: 40 IBM Power9 CPU Cores + 4 Nvidia V100 GPUs per Node.

▪ In GPU mode, we typically run on 4 GPUs + 4 CPU cores with all computation on GPUs.

NE = 65,536 p = 3

Npt

LLNL-PRES-870644
23

Applications - Solving PDEs on Overlapping Grids

▪ 𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚐𝚜𝚕𝚒𝚋/𝚜𝚌𝚑𝚠𝚊𝚛𝚣_𝚎𝚡𝟷𝚙

Overlapping grids on overlapping grids−∇2u = f

LLNL-PRES-870644
24

Applications - Mesh to Mesh Remap during r-
adaptivity

▪ 𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚖𝚎𝚜𝚑𝚒𝚗𝚐/𝚙𝚖𝚎𝚜𝚑 − 𝚘𝚙𝚝𝚒𝚖𝚒𝚣𝚎𝚛

Initial mesh Discrete function on initial mesh
Mesh adapted to discrete

function with GSLIB-based remap
during mesh optimization.

LLNL-PRES-870644
25

Some Remarks on Usage!

▪ Do not duplicate list of points on all the

ranks.
▪ New methods enable

custom interpolation where

we do not directly use a

GridFunction.

▪ All MPI ranks must call the methods

simultaneously.

LLNL-PRES-870644
26

Summary & Future Work

▪ Thanks to Yohann Dudouit for the discussions.

▪ Robust arbitrary point search in high-order meshes
on GPUs.

▪ Future work will extend implementation to
simplices on GPUs.

▪ Paper under preparation with all the technical
details!

mfem.org

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

