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Motivation

▪ Interpolation at arbitrary points is required in FEM for: 

▪ Querying the solution at desired locations. 

▪ Exchanging information between overlapping grids. 

▪ Detecting contact between meshes.

 mesh for triple-point problemp = 3  meshes for overlapping gridsp = 2  meshes in contactp = 1

This is a challenging problem, especially for unstructured curvilinear meshes distributed 
on many MPI ranks in HPC.
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Background

▪ Each tensor-product element in the mesh is represented using 
Lagrange interpolants  on Gauss-
Lobatto-Legendre points in the reference element . 

▪  

▪ Similar mapping is used for any function, e.g., Velocity  and 
Temperature .

ϕi(r), i = 1…ND, D = [1,3],
Ω̄ ∈ [0,1]D
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u(r)
T(r)

Quad mesh on 4 MPI ranks

Ωe

For a given point , we need to know the element  on MPI rank  that overlaps the point, 
and the corresponding reference-space coordinates ( ) inside .

x* e* p*
r* Ωe*

Ω̄
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Methodology

▪One time setup 

▪ Compute data structures to quickly map a given point, , first to MPI ranks ( ) and then to candidate 

elements ( ) locally on each rank. 

▪ Compute element-wise bounding boxes to quickly test if a given point is inside an element. 

▪ Search a given set of points 

▪Newton search to compute reference-space coordinates in the candidate elements: 

 

▪ Interpolate the discrete solution 

▪  

x* = {x*, y*, z*} p

e

𝚊𝚛𝚐𝚖𝚒𝚗
r

| |x* − x(r) | |2
2

2

u(x* = Φ(r*)) =
N

∑
i=1

N

∑
j=1

N

∑
k=1

ue
ijkϕi(r*)ϕj(s*)ϕk(t*)

Implementation based on gslib developed by James Lottes in the context of SEM for Nek5000
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Setup
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Axis-Aligned Bounding Box

▪ Compute bounds on  to determine { , , , }.x(r) |Ωe =
N

∑
i=1

N

∑
j=1

xe
ijϕi(r)ϕj(s) x𝚖𝚒𝚗 x𝚖𝚊𝚡 y𝚖𝚒𝚗 y𝚖𝚊𝚡

Axis-Aligned Bounding Boxes
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Oriented Bounding Box

▪ AABB are suboptimal for curvilinear elements. 

▪ OBB provide tighter bounds around each element. 

▪ Represented by OBB center and a transformation matrix ( ) with respect to the reference element.AD×D

Oriented Bounding Boxes
Bounding boxes around a 

curvilinear element
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Local Map for x* → {e}

▪ Generate a uniform  Cartesian mesh ( ) over 

the domain of the union of processor-local AABB 

. 

▪  is never explicitly constructed. 

▪ Compute intersection between elements of  and : 

 

▪ Intersection of AABB and cells of  is trivial. 

▪ Given , determine which cell of  it is located in, and 

look-up candidate element using the map.

NL × NL ℳL

{xL, min, xL, max, yL, min, yL, max}

ℳL

ℳ ℳL

𝚜𝚝𝚍 :: 𝚖𝚊𝚙 < 𝚒𝚗𝚝 𝚎ℳ𝙻
, 𝙰𝚛𝚛𝚊𝚢 < 𝚒𝚗𝚝 > 𝚎ℳ >

ℳL

x* ℳL

NL = 5
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▪ Generate a uniform  Cartesian mesh ( ) over the 

entire mesh . 

▪  is globally partitioned. Each rank checks intersection of its 

elements with elements of , and communicates to 

corresponding MPI ranks: 

 

▪ Given , determine which cell of  it is located in, and 

send to corresponding MPI rank. Then locally look-up the list 

of ranks that can contain the point and forward the point to 

those ranks.

NG × NG ℳG

{xG, min, xG, max, yG, min, yG, max}

ℳG

ℳG

𝚜𝚝𝚍 :: 𝚖𝚊𝚙 < 𝚒𝚗𝚝 𝚎ℳ𝙶
, 𝙰𝚛𝚛𝚊𝚢 < 𝚒𝚗𝚝 > 𝚙ℳ >

x* ℳG

9

Global Map for x* → {p}

NG = 24

Cartesian mesh overlapping the entire domain.

AABB for one of the elements of .ℳ
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FindPoints
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CPU GPU Data Movement ↔

▪ Data Movement: 

[ ] 

▪ Mesh nodes -   

▪ Should already be on GPU. 

▪ Bounding boxes -  

▪ Local hash mesh -  

▪ Coordinates of  points to be found - 

𝚒𝚗𝚙𝚞𝚝

D ⋅ NE ⋅ ND

(3D + D2)NE

O(ND
E )

D ⋅ Npt

[ ] 

▪ Element index -  

▪ Reference-space coordinates -  

▪ Distance between actual and found point -  

▪ code (inside element/border/not found) - 

𝚘𝚞𝚝𝚙𝚞𝚝

Npt

D ⋅ Npt

Npt

Npt

▪  access. 

▪  for fast data access of work arrays used with SIMD instructions.

𝙲𝚘𝚊𝚕𝚎𝚜𝚌𝚎𝚍 𝚖𝚎𝚖𝚘𝚛𝚢

𝚂𝚑𝚊𝚛𝚎𝚍 𝚖𝚎𝚖𝚘𝚛𝚢
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Initial Element Look-up and Bounding Box Test

▪ For each point, look up candidate elements based on the hash 

table. Then check bounding boxes for each candidate elements: 

▪ AABB test 

▪  

▪ OBB test 

▪ , where  captures the OBB 

size and orientation, and  is the OBB center.

(x*i − xe
i,𝚖𝚒𝚗)(xe

i,𝚖𝚊𝚡 − x*i ) > 0 ∀i ∈ [1,D], i ∈ ℤ

−1 ≤ A−1
D×D(x* − xc) ≤ 1 AD×D

xc
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FindPoints - Newton’s Method

▪ Minimize  using Newton’s method with trust-region. 

▪  based on closest mesh node. 

▪
,      . 

▪  when searching inside the element, 1 if searching on element edge/face. 

▪  is a trust-region factor that depends on the quality of most recent Newton update.

f(r) = 1
2 | |x* − x(r) | |2

2 = 1
2 | |Δxi | |2

2

r0

rl+1 = rl − ℋ−1
ji 𝒥j

Δrl

rl+1 ∈ [−1,1]D, Δrl ∈ αl [−1,1]D

β = 0

αl

Gij = ∂xi

∂rj
𝒥j = ∂f

∂rj
= ∑

i
Δxi(−

∂xi

∂rj
) = − GT

ij Δxi, ℋjk = ∂2f
∂rj∂rk

= GjiGik−βΔxi
∂2xi

∂rj∂rk
,
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Newton’s Method - Searching interior to an 
element

▪ Ignoring the second derivative term in the Hessian simplifies the Newton update to 

. 

▪ Requires evaluation of  and . 

▪ We use  thread blocks (1 for each point to be found), and each block has  threads. 

▪ Tensor-product structure is leveraged to use 1D operator, which maps well to the  threads.

rl+1 = rl + G−1
ij Δxi

Δxi(rl) = x*i − xi(rl) Gij(rl) = ∂xi(rl)
∂rj

Npt N ⋅ D

N
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SIMD Instructions for Parallelizing Work

▪ First evaluate basis functions and their derivatives: 

▪  threads -  and .   

▪  threads -  and .  

▪ Next, evaluate the inner summation: 

▪  threads - . Same for . 

▪  threads - . Same for . 

▪ Finally, thread 0 accumulates the outer summation.
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Searching on Element Face/Edge

▪ After the first Newton iteration, we check  to search either inside an element, on the face (in 

3D), or on the edge of the element. 

▪ Fewer unconstrained variables when searching on face (2 in 3D) or edge (1). 

▪ For example,  and  for edge corresponding to .

rl

𝒥 = ∂f
∂r

ℋ = ∂2f
∂2r

s ± 1
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Logic for Points Not Found Locally

▪ Points that are not found in the local mesh are routed to other MPI 

ranks using the global map. 

▪ For points found outside the element, we use element that returns 

minimum .| |Δx | |

Point inside the bounding box but 
not the element

Point inside the hash mesh but not 
in any element’s bounding box.
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Interpolation

▪  blocks, 1 for each point, with  threads in each block. 

▪ Interpolation done first for processor local points, and then for 

points originating on other ranks but owned by elements on 

current rank.

Npt Ñd

u(x(r)) = u(r) |Ωe =
Ñ

∑
i=1

Ñ

∑
j=1

Ñ

∑
k=1

ue
ijkϕi(r)ϕj(s)ϕk(t),
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Extension to Surface Meshes

Aditya Parik’s talk at 1:20 PM
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Results
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Spiral ( )p = 9

▪ Time to find up-to 100 million points in a 9th order element on 1 GPU ( ). 

▪ 5 Newton iterations per point on average.

𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚖𝚎𝚜𝚑𝚒𝚗𝚐/𝚙𝚏𝚒𝚗𝚍𝚙𝚝𝚜

Npt
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Triple Point Problem ( )p = 3
▪ ,  for the triple point problem on 4 GPUs. 

▪ Lassen supercomputer @ LLNL  

▪ 756 Nodes: 40 IBM Power9 CPU Cores + 4 Nvidia V100 GPUs per Node. 

▪ In GPU mode, we typically run on 4 GPUs + 4 CPU cores with all computation on GPUs.

NE = 65,536 p = 3

Npt
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Applications - Solving PDEs on Overlapping Grids

▪ 𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚐𝚜𝚕𝚒𝚋/𝚜𝚌𝚑𝚠𝚊𝚛𝚣_𝚎𝚡𝟷𝚙

Overlapping grids  on overlapping grids−∇2u = f



LLNL-PRES-870644
24

Applications - Mesh to Mesh Remap during r-
adaptivity

▪ 𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚖𝚎𝚜𝚑𝚒𝚗𝚐/𝚙𝚖𝚎𝚜𝚑 − 𝚘𝚙𝚝𝚒𝚖𝚒𝚣𝚎𝚛

Initial mesh Discrete function on initial mesh
Mesh adapted to discrete 

function with GSLIB-based remap 
during mesh optimization.
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Some Remarks on Usage!

▪ Do not duplicate list of points on all the 

ranks.
▪ New methods enable 

custom interpolation where 

we do not directly use a 

GridFunction.

▪ All MPI ranks must call the methods 

simultaneously.
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Summary & Future Work

▪ Thanks to Yohann Dudouit for the discussions. 

▪ Robust arbitrary point search in high-order meshes 
on GPUs. 

▪ Future work will extend implementation to 
simplices on GPUs. 

▪ Paper under preparation with all the technical 
details!

mfem.org
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