Arbitrary Point Search and Interpolation on Surface
Meshes

Aditya Parik, Ketan Mittal

PhD candidate, Mechanical Engineering, Mechanical and Aerospace Engineering

Utah State University, Logan, Utah



[ 1
-

Alil . . . -
STATE Motivation and some surface element peculiarities

* Surface elements map a N dimensional physical space
to a (N-1) dimensional reference space element.

 Thus, we encounter a lack of information in the normal
direction, which volume elements have.

* This peculiarity results in substantial changes to the
evaluation of axis-alighed and oriented bounding
boxes. 7

* A bounding box algorithm for dedicated surface
meshes would reduce the physical space required to be
searched for the poin, thus reducing the cost of finding
process.



o—o
¢ o oo O o o
>
;, o o _o o ¢ o
Qe
‘ 5” o—o o—o X o—eo
ND NlDNlDNlD

X“(r) = Z ) = ) Y. Y xeh (NP ()h(D), T EQ

[=1

i=1 j=1 k=1

* An element (Q°) in the physical space is described by a transformation ®(7) on the

reference element Q.

* To search for a point x*, we identify the element (¢ it belongs to and the corresponding

rank p, and the corresponding reference coordinate r*.




Overview of the Search process

Rapidly identify the rank that
contains the point x*

Y

Rapidly Identify the candidate
elements in the local mesh that
could contain the point x*

Requires the construction (per mesh) of data
structures that map:

The cells of a local map to all contributing local
elements, and

e The cells of a global map to all contributing ranks.

ONE-TIME COST for each mesh!
Called the “Setup” stage of the search process.

Y

Do an iterative search based on
Newton’s method on each
candidate element until the point
is found.

* Only performed on the list of candidate elements
that cannot be further narrowed down by explicit
fast evaluations.

* Used to determine the reference space coordinates
corresponding to the given point and candidate
element, if the point is found.




The Setup Process: Bounding Boxes
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Global Cartesian Mesh M spanning Local Cartesian Mesh M, spanning the
the entire mesh partition of a specific Rank

Finding intersections of high order elements with M or M is not trivial. So, how to do this efficiently?

By testing contributions of corresponding Axis-Aligned (linear) Bounding Boxes!




Axis Aligned Bounding Boxes (AABB)
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* For a high order element, generating a AABB is non-
trivial since the maxima/minima need not lie on a
node.

* We instead bound each Lagrange polynomial through a
piecewise-linear function, which can be bound trivially
just using its nodal locations.

* x¢(1) can hence be bounded using a linear
combination of piecewise functions, and hence the
corresponding AABB can be obtained.

 The elements of the surface mesh of this blade mesh
are bounded using axis-aligned bounding boxes.
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= AABBS perfectly aligned with an axis may have zero bounds

» A surface element could be perfectly
aligned with one of the physical
coordinate axes, resulting in zero-
bounding length along the normal
direction.

* We provide an additional tolerance in
the normal direction for this case.

* Thisis not an issue for volume
elements, since the number of
dimensions in the reference and
physical space are the same.




Oriented Bounding Boxes (OBB)

* OBBs provide a stricter yet fast check if a point possibly lies within an element.

* AABBs, compared to OBBs, would allow points in a much larger space to pass the
bounding box tests, and thus increase the number of candidate elements that would

have to be searched using Newton’s minimization methods.




Procedure for obtaining OBBs In 2D space
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OBBs AABBs

Depending on the orientation of the element, its AABB may contain more or less volume. When the
element is aligned with any of the two axes, the corresponding AABB occupies the smallest volume and is
then coincident to an OBB of that same element.
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Obtain the tangential —R T2
direction (Jacobian) at the LRx
element center (r = 0). 1)
Translate the element nodes (=1,-1) A
such thatther = O is at
origin. X = X — X 2 We scale the
[ — [ll 2] lengths of
0 % the ABB to
size 2
. e e . X2 ¢
Given any point inside the OBB of Xo = Rx4
the element ()¢, its transformation > T~ la
(2) lands it inside a square of Let R be the [
[-1,1]% transformation
required to align the We calculate the
tangent with x-axis center of this obbox




Obtain the tangential
direction (Jacobian) at the
element center (7, s = 0,0).

Translate the element nodes
such that the x, is at origin.

Rotate the element such
that n is aligned with z.

Obtain the Jacobian for the

xy-projection of the rotated

element and use its inverse
to finally orient all 3 axes.

A length scaling
transformation is defined.

[_111]3

X|] =X — X¢

(1) Gives us a single transformation to test if a point lies inside the OBB.
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The AABB (in red) contributes to 30 cells of M; and the
corresponding information to the ranks owning the cells.

The AABB contributes to 8 cells of M; and we store a list
of all the elements that contribute to a particular cell.

the point.

* Given an arbitrary point, we first find the ranks that contribute the the cell of M that contains the point.
* We then query the candidate rank for all the elements (their AABBs) that contribute to the cell of M that contains

* Finally, the OBBs of all candidate elements are tested for the presence of the point, which provides us the final list
of elements that must be searched using a Newton’s minimization method.




Performance Tests

= 2D Triple Point problem mesh transformed into a p = 3 surface mesh.

. N = 1000N,,
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Thank You
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