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Motivation and some surface element peculiarities
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• Surface elements map a N dimensional physical space 
to a (N-1) dimensional reference space element.

• Thus, we encounter a lack of information in the normal 
direction, which volume elements have.

• This peculiarity results in substantial changes to the 
evaluation of axis-aligned and oriented bounding 
boxes.

• A  bounding box algorithm for dedicated surface 
meshes would reduce the physical space required to be 
searched for the poin, thus reducing the cost of finding 
process.



• An element (Ω𝑒) in the physical space is described by a transformation Φ(𝒓) on the 
reference element ഥΩ.

• To search for a point 𝑥∗, we identify the element Ω𝑒 it belongs to and the corresponding 
rank p, and the corresponding reference coordinate 𝒓∗.

What does “Searching” for a point mean?
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𝑒



Rapidly identify the rank that 
contains the point 𝒙∗

Overview of the Search process
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Rapidly Identify the candidate 
elements in the local mesh that 

could contain the point 𝒙∗

Do an iterative search based on 
Newton’s method on each 

candidate element until the point 
is found.

Requires the construction (per mesh) of data 
structures that map:
• The cells of a local map to all contributing local 

elements, and
• The cells of a global map to all contributing ranks.

ONE-TIME COST for each mesh!
Called the “Setup” stage of the search process.

• Only performed on the list of candidate elements 
that cannot be further narrowed down by explicit 
fast evaluations.

• Used to determine the reference space coordinates 
corresponding to the given point and candidate 
element, if the point is found.



Global Cartesian Mesh ℳ𝐺  spanning 
the entire mesh

The Setup Process: Bounding Boxes
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Local Cartesian Mesh ℳ𝐿 spanning the 
partition of a specific Rank

Finding intersections of high order elements with ℳ𝐺  or ℳ𝐿 is not trivial. So, how to do this efficiently?

By testing contributions of corresponding Axis-Aligned (linear) Bounding Boxes!



• For a high order element, generating a AABB is non-
trivial since the maxima/minima need not lie on a 
node.

• We instead bound each Lagrange polynomial through a 
piecewise-linear function, which can be bound trivially 
just using its nodal locations.

• 𝑥𝑒(𝒓) can hence be bounded using a linear 
combination of piecewise functions, and hence the 
corresponding AABB can be obtained.

• The elements of the surface mesh of this blade mesh 
are bounded using axis-aligned bounding boxes.

Axis Aligned Bounding Boxes (AABB)
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AABBs perfectly aligned with an axis may have zero bounds
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• A surface element could be perfectly 
aligned with one of the physical 
coordinate axes, resulting in zero-
bounding length along the normal 
direction.

• We provide an additional tolerance in 
the normal direction for this case.

• This is not an issue for volume 
elements, since the number of 
dimensions in the reference and 
physical space are the same.



Oriented Bounding Boxes (OBB)
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• OBBs provide a stricter yet fast check if a point possibly lies within an element.

• AABBs, compared to OBBs, would allow points in a much larger space to pass the 
bounding box tests, and thus increase the number of candidate elements that would 
have to be searched using Newton’s minimization methods.



Procedure for obtaining OBBs in 2D space
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• Depending on the orientation of the element, its AABB may contain more or less volume. When the 
element is aligned with any of the two axes, the corresponding AABB occupies the smallest volume and is 
then coincident to an OBB of that same element.

OBBs AABBs



Procedure for obtaining OBBs in 2D space
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Obtain the tangential 
direction (Jacobian) at the 

element center ( 𝑟 = 0).

Let ℛ be the 
transformation 

required to align the 
tangent with x-axis

We scale the 
lengths of 
the ABB to 

size 2

We calculate the 
center of this obbox

Translate the element nodes 
such that the 𝑟 = 0 is at 

origin.

Given any point inside the OBB of 
the element Ω𝑒 , its transformation 

(2) lands it inside a square of 
−1,1 2.

(1)



Procedure for obtaining OBBs in 3D space
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Obtain the tangential 
direction (Jacobian) at the 

element center ( 𝑟, 𝑠 = 0,0).

A length scaling 
transformation is defined.

Translate the element nodes 
such that the 𝑥𝑐 is at origin.

Rotate the element such 
that 𝒏 is aligned with z.

Obtain the Jacobian for the 
xy-projection of the rotated 
element and use its inverse 
to finally orient all 3 axes.

(1) Gives us a single transformation to test if a point lies inside the OBB. 

(1)



Some OBB tests
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Global 
Cartesian 
Mesh ℳ𝐺

The Setup Process: Bounding Boxes
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Local 
Cartesian 
Mesh ℳ𝐿

The AABB (in red) contributes to 30 cells of ℳ𝐺  and the 
corresponding information to the ranks owning the cells. 

The AABB contributes to 8 cells of ℳ𝐿 and we store a list 
of all the elements that contribute to a particular cell. 

• Given an arbitrary point, we first find the ranks that contribute the the cell of ℳ𝐺  that contains the point.

• We then query the candidate rank for all the elements (their AABBs) that contribute to the cell of ℳ𝐿 that contains 
the point.

• Finally, the OBBs of all candidate elements are tested for the presence of the point, which provides us the final list 
of elements that must be searched using a Newton’s minimization method.



Performance Tests
1
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Thank You
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