
Exploring generalized Jacobi preconditioners and
smoothers in MFEM

Gabriel Pinochet-Soto 1 Tzanio Kolev 2 Chak Shing
Lee 2

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State
University

2Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory

October 21, 2024

Preliminaries

Consider A = (aij)ij ∈ Rn×n an SPD operator.

A-convergent smoother
We say M is an A-convergent smoother if M+MT −A is SPD, i.e.,
(Ax, x) < (Mx, x) + (MT x, x) = 2(Mx, x), for all x ∈ Rn.

Boundedness of off-diagonal entries
A C.B.S. inequality implies |aij | ≤

√
aii
√
ajj .

Two-level preconditioner
The two-level preconditioner will be SPD provided M being a
A-convergent smoother.

B−1
TL = M(MT + M − A)−1MT + SPSD term .

ℓp,q-Jacobi preconditioners

We define the family of (diagonal) ℓp,q-Jacobi preconditioners
{Dp,q}p,q, for p ≥ 0, q ∈ R, by

(Dp,q)i ,i :=
∑
j

 |aij |

a
1− q

p

ii a
q
p

jj

p

aii , (1)

which can conveniently written as Dp,q = diag(D1+q−p|A|pD−q1),
where D is the diagonal matrix of A, i.e., (D)ii := aii , and we
understand the operations as entry-wise operations.

Specific examples of Jacobi-type preconditioners

Under the assumption of a diagonally dominant matrices
(aii = maxj |aij |), we have some examples.

1. p = 0, q = 0 7→ Row-wise re-scaled Jacobi smoother
(D0,0)ii = nnzi aii .

2. p = 1, q = 0 7→ ℓ1-Jacobi smoother
(D1,0)ii = aii +

∑
j ̸=i |aij |.

3. p = 2, q = 0 7→ D2,0 = arg minD ∥Id − D−1A∥Fro

(D2,0)ii = aii +
∑

j ̸=i
|aij |2
aii

.
4. p = ∞, q = 0 7→ Jacobi smoother

(D∞,0)ii = aii .

Properties of the ℓp,q-Jacobi family

1. Dp1,q1 ≤ Dp2,q2 , if q1 − q2 = p1−p2
2 and p1 ≥ p2.

2. A weighted Young’s inequality is the key step to prove
A ≤ Dp,q for 0 ≤ p ≤ 1 and all q.

3. All Dp,q, for 0 ≤ p ≤ 1 and all q, are A-convergent smoothers.

Question
Can we get a better smoother (or preconditioner) when increasing
p?

Absolute-value ℓ1-Jacobi preconditioner

In the context of finite element methods, we usually have an
operator of the form

We know that the ℓ1-Jacobi preconditioner is convergent: A ≤ D1.
A rough approximation of the ℓ1-Jacobi smoother can be made by
just employing triangle inequality.

DAbs−ℓ1 = diag(|P|T |G |T |B|TD|B||G ||P|1), (2)

so we have A ≤ D1 ≤ DAbs−ℓ1 .

Numerical Results: Diffusion Problem on ICF Mesh

Figure: ICF mesh
0.5 1 1.5 2

50

60

70

p-order

N
um

be
r

of
ite

ra
tio

ns

Multigrid, with ℓp,q-Jacobi smoothing

q = 0

q = p/2

Ord. N. Iter. N. DoF.

1 235 3,721
2 587 14,609
3 941 32,665
4 1,370 57,889
5 1,824 90,281
6 2,323 129,841
7 2,855 176,569
8 3,399 230,465
9 3,949 291,529

10 4,531 359,761

(a) Without
preconditioner

Ord. N. Iter. N. DoF.

1 155 3,721
2 351 14,609
3 569 32,665
4 766 57,889
5 895 90,281
6 1,125 129,841
7 1,314 176,569
8 1,596 230,465
9 1,812 291,529

10 2,068 359,761

(b) Abs. ℓ1-Jacobi
precond.

Ord. N. Iter. N. DoF.

1 49 3,721
2 98 14,609
3 143 32,665
4 148 57,889
5 192 90,281
6 190 129,841
7 227 176,569
8 247 230,465
9 271 291,529

10 272 359,761

(c) MG, abs.
ℓ1-Jacobi smooth.

Table: Diffusion problem on icf.mesh, with partial assembly, utilizing
PCG.

Current status

Main modifications
1. Current PR #4498

Jacobi-type of
preconditions/smoothers

2. Implementation of AbsMult
on matrices.

3. AddAbsMult on domain
integrators.

4. Miniapp with Multigrid
wrappers (cf. Example 26p).

5. Comparable with previous
examples (cf. Example 1p,
2p, 3p).

Examine the current status!

(a) MFEM website

(b) PR #4498

https://github.com/mfem/mfem/pull/4498
https://github.com/mfem/mfem/pull/4498
https://github.com/mfem/mfem/pull/4498

Implementation of absolute-value multiplication: CurlCurl
kernel

Let us consider uh a FE discretization for the definite Maxwell
problem:

curl uh =
∑
i

ui curlϕh,i .

The curl of a function of the form (e.g.) v = ϕ3D(x)e1 is

curl v = (0, ∂2ϕ
3D(x),−∂1ϕ

3D(x)).

We get the absolute-value application of B by taking the absolute
value of the basis function on the quadrature points and making
sure the curl does not introduce a negative sign.

Implementation of absolute-value multiplication: CurlCurl
kernel
1 template<int T_D1D = 0, int T_Q1D = 0>
2 inline void PACurlCurlApply3D(const int d1d,
3 const int q1d,
4 const bool symmetric,
5 const int NE,
6 const Array<real_t> &bo,
7 const Array<real_t> &bc,
8 const Array<real_t> &bot,
9 const Array<real_t> &bct,

10 const Array<real_t> &gc,
11 const Array<real_t> &gct,
12 const Vector &pa_data,
13 const Vector &x,
14 Vector &y,
15 bool useAbs = false)
16 {
17 // ...
18 // x component
19 for (int qx = 0; qx < Q1D; ++qx)
20 {
21 // \hat{\nabla}\times\hat{u} is [0, (u_0)_{x_2}, -(u_0)_{x_1}]
22 curl[qz][qy][qx][1] += gradXY[qy][qx][1] * wDz; // (u_0)_{x_2}
23 if (!useAbs) { curl[qz][qy][qx][2] -= gradXY[qy][qx][0] * wz; } //

-(u_0)_{x_1}↪→
24 else { curl[qz][qy][qx][2] += gradXY[qy][qx][0] * wz; } // +(u_0)_{x_1}
25 }
26 // ...
27 }

	p,q-Jacobi preconditioners
	Absolute-value 1-Jacobi preconditioner
	Numerical results with MFEM
	Final remarks
	Appendix

