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Background: Low-Precision Computation

◼ Half-precision hardware support is now almost ubiquitous.

◼ We have been witnessing a trend towards lower precision in ML & AI.

◼ But NOT so prevalent in scientific computation
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Background: Low Precision + Linear Solver

◼ Many scientific simulations rely on numerical solutions to PDE problems

◼ Essential part: linear solver of 𝐴𝑥 = 𝑏

◼ Stricter accuracy requirement than AI

◼ More sensitive to precision
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◼ Common strategy:

❑ FP64 solver

❑ Lower precision preconditioner
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Background: Why multigrid (MG) ?

◼ Optimal computational complexity 𝑂(𝑁) in solving large-scale sparse linear systems.

◼ Widely used    s          r s  r h s,        us r  l s   w r , …

◼ Variable smoothers can cover many other “one-level” preconditioners.

❑ Jacobi

❑ Gauss-Seidel (GS) 

❑ Incomplete Lower-Upper (ILU)

❑ ……
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◼ Theoretical foundation: tolerance of 

errors introduced by lower-precision [1].

◼ Practical benefits: greater lower-precision 

s    u s  h   “   -l v l”  r           rs.

❑ A larger proportion of time in workflows

[1] https://doi.org/10.1137/20M1348571

https://doi.org/10.1137/20M1348571


Challenges

77

Multigrid: Multi levels, complicated 

procedures, variable components
Real world: Large spans, wide gaps, 

multi scales of values

               s

                   s

FP16: narrow range & limited accuracy



Related work: Mix-precision in Multigrid

◼ Popular AMG libraries (hypre, MueLu, AmgX) lack mix-precision support.

◼ Practice ahead of theory for a long time

❑ Most of them use only FP32 as the lowest precision in MG preconditioner. They are safe and 

efficient with similar #iters of mix-FP32/FP64 to those of full-FP64

❑ Utilizing half-precision is scarce. Ginkgo [6] is a recent three-precision MG, supporting arbitrary 

precisions (FP64, FP32, FP16) for matrices and vectors on different levels.
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Ref Type Scaling?
Precond.
Precision

Precond.
Speedup

E2E
Speedup

[1] GMG No FP32 ~2.0x ~1.7x

[2] AMG No FP32 1.1x~1.5x Unclear

[3] AMG No FP32 Unclear 1.19x

[4] GMG No FP32 1.9x 1.6x

[5] GMG No FP32 2.0x 1.18x

[6] AMG Yes FP16, FP32 Unclear 1.05x~1.35x

Ours AMG Yes FP16, FP32 2.7x 1.9x

[1] https://doi.org/10.1109/TPDS.2010.61

[2] https://doi.org/10.1016/j.procs.2010.04.020

[3] https://doi.org/10.1049/cp.2014.0185

[4] https://doi.org/10.1007/978-3-642-33134-3_68

[5] https://doi.org/10.1016/j.procs.2016.05.502

[6] https://doi.org/10.1016/j.future.2023.07.024

❑ Lack of guidelines in how to choose the 

best configurations. Too many changeable 

options may overwhelm users.

https://doi.org/10.1109/TPDS.2010.61
https://doi.org/10.1016/j.procs.2010.04.020
https://doi.org/10.1049/cp.2014.0185
https://doi.org/10.1007/978-3-642-33134-3_68
https://doi.org/10.1016/j.procs.2016.05.502
https://doi.org/10.1016/j.future.2023.07.024


Related work: Mix-precision in Multigrid
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Guidelines

Gains and risks of FP16
Worthwhile combinations

ImplementationsAlgorithms

How to adapt setup and 
solve phases to FP16

How to avoid precision 
conversion overhead

◼ In our work:



FP16 Utilization Guidelines

◼ MG’s   m   𝑇tot = 𝑇setup + #iter · 𝑇single

❑ 𝑇setup is setup time, 𝑇single is single-iteration time, #iter is number of iterations.

❑ 𝑇setup is only slightly affected by mix-precision.

◼ Lower-precision reduces 𝑇single, but may increase #iter.

◼ Rule: balance between performance (𝑇single ↓) and convergence (#iter ↑)

10



Guideline 1: Eagerly convert matrices to FP16

◼ Matrix 𝑨 is the hotspot of storage.

◼ The percent of matrix 𝐴 in storage in 𝐴𝑥 = 𝑏:

percent𝐴 =
memory(𝐴)

memory 𝐴 + 2 ∗ memory 𝑥

◼ Statistics of matrices indicate large 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝑨.

◼ Th    s rv      s r    h  s    MG’s mul  -level 

context as the coarser matrices are usually denser [1].

◼ Reducing the lower bounds of memory volumes 

of matrices by FP16 is the top-priority task.
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[1] https://doi.org/10.1137/140952570
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Guideline 2: Use FP16 from the finest possible level

◼ Matrices and vectors may have different precisions on different levels.

◼ 9𝑛 possible combinations for a 𝑛-level MG ? Only limited choices are worthwhile !

◼ MG’s     ur s   r     m l    y 𝐶G and operator complexity 𝐶O

◼ Low complexities are common. 

❑ 𝐶G < 1.20, 𝐶O < 1.50 in 80% cases

❑ 𝐶G < 1.15, 𝐶O < 1.22 in 60% cases
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Complexity statistics for 60 MFEM cases.

◼ Most overheads on the finest level. 

◼ Common “mistake”: use lower 

precision on coarser levels.

𝐶G =
σ𝑙 𝑚𝑙

𝑚0
           𝐶O =

σ𝑙 𝑛𝑛𝑧𝑙

𝑛𝑛𝑧0



Guideline 3: Avoid using FP16 for vectors

◼ The matrix 𝐴 is static throughout the solving.

◼ The vectors are changing dynamically.

◼ Difficult to predict which element may 

overflow or underflow sometime.
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◼ Safe to keep the precision of vectors ≥ FP32, with limited performance impact

❑ Recalling Guideline 1 that matrix is the hotspot.

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

1.E+04

1.E+07

0 10 20 30 40 50

Iterative Number

Max absolute values with iterations

f0 x0 FP16_MAX FP16_MIN



Guideline 4: Prefer structured matrix formats that do 

not use per-element index arrays.
◼ Integers in large matrices are difficult to compress.

❑ necessary in unstructured formats, such as CSR, CSC, COO

◼ Index-free format (e.g., SG-DIA [1]) without integer arrays are more preferred.

❑ Can be used in structured- and semi-structured-specific MGs, such as SMG, PFMG, SysPFMG, 

SSAMG from hypre (LLNL), RegionMG from Trilinos (SNL), and our StructMG, Semi-StructMG, …

◼ Upper bound of speedup can be estimated based on minimal memory access volume.
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[1] https://doi.org/10.1137/120883153 𝛿 = #row + 1 /#nnz. 𝛿 = 15% in average of 2216 matrices in SuiteSparse.

https://doi.org/10.1137/120883153


Guidelines => Algorithms

◼ The above four guidelines instruct the following algorithmic designs.

❑ Vectors should be kept in FP32.

❑ FP16 should compress the memory volumes of matrices as fine-level as possible. 

❑ Structured or semi-structured grids should have higher priority to discretize the PDE 

of interest.
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Algorithms notations

◼ Variables in different colors are in different precisions:

16

usually as FP64 or FP32, is the computation and storage precision of 

iterative solvers, determined by users’ applications

usually as FP32

usually as FP16



Setup Algorithm: Setup-then-scale

 Idea: prevent FP16 from 

interfering with multi-level effect

◼ Essential role: triple matrix products 

(RAP) that build connections in the 

hierarchy

◼ A normal setup is completed first in 

high precision, followed by scaling (if 

needed) and truncation.

◼ 𝑨𝒊 and 𝑸𝒊 in high precision are no 

longer needed after the setup.

❑ Limited additional memory overhead. 17



Solve Algorithm: Recover-and-rescale on the fly

◼ Solve phase consists of the iterative solver and the MG preconditioner.

◼ Everything is normal about iterative solvers.

❑ Researches of mix-precision iterative solvers are orthogonal to this study.
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◼ A stationary iterative solver illustrates 

how an FP16-accelerated preconditioner 

is employed.

❑ Other solvers (CG, GMRES, etc.) are similar.



Solve Algorithm: Recover-and-rescale on the fly

 Idea : FP16 in storage of matrices (hotspots) 

to reduce memory access volumes

◼ Nothing in iterative precision inside the MG.

❑ Matrices are stored in FP16 and need restoration.

❑ V    rs’  r   s     s u  h     , usu lly  s     .

◼ If 𝑨𝒊 was scaled, it must be recovered and rescaled

❑ Recover: 𝑨𝒊 → 𝑨𝒊 (precision promotion)

❑ Rescale: 𝑨𝒊 → 𝑸𝒊
𝟏/𝟐

𝑨𝒊𝑸𝒊
𝟏/𝟐

(to original values)

◼ On-the-fly: 𝑨𝒊 in FP32 are NOT explicitly maintained.
19



Practical Remarks
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◼ Additional overhead of 𝑸𝒊 ? 

Why not scale-then-setup ?

❑ Setup-then-scale has two fold 

advantages over scale-then-setup.

◼    l      s    MG w  h u  us rs’ 

involvement

◼ Scale-then-setup performs triple 

matrix products (RAP) in FP16 range 

even if with FP64 precision.

❑ In practice, 𝑄𝑖 is cost-efficient 

compared to more #iter.
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Kernel: SIMD to amortize fcvt overhead

◼ Mix-precision kernel introduces additional overhead of precision conversion (fcvt).

◼ Based on structured-specific MGs that use AOS (array of structure) format. Nonzero 

entries within a row are stored contiguously.
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◼ AOS is good enough for full-FP32

❑ Only one ldr instruction for each 4-byte 

entry to prepare for multiplication.

◼ For matrices in FP16, data preparation 

has 4-times-high arithmetic intensity

❑ One ldr, one fcvt for each 2-byte entry

Bandwidth efficiency drops !



Kernel: SIMD to amortize fcvt overhead
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◼ Transforming from AOS to SOA enables vectorization 

◼ Floating-point conversion overhead is amortized.

◼ Only one ldr, and two fcvt for every eight 2-byte entries when SIMD length is 128-bit.

Bandwidth 

efficiency recovers.



Experiments

◼ Problems

❑ Covering scalar- and vector-type PDE, different and complex numerical features

❑ 3 benchmark problems: laplace27, laplace27*108, solid-3D

❑ 5 real-world problems: rhd, rhd-3D, oil, oil-4C, weather 

23

Problem Type Domains

laplace27

Scalar

-type 

PDE

Benchmark problem in HPCG

laplace27*108 Coefficients of laplace27 multiplied by 108

Rhd Radiation hydrodynamics

Oil Petroleum reservoir simulation. SPE1 and SPE10 benchmarks are combined via OpenCAEPoro.

Weather Atmospheric dynamics, from GRAPES-MESO of 2-km resolution of Chinese region in Dec 2018

rhd-3T Vector

-type 

PDE

Radiation hydrodynamics. 3T: three temperatures (radiation, electron, and ion).

oil-4C Petroleum reservoir simulation. 4C: four components (oil, water, gas, and dissolved gas in oil).

solid-3D Linear elasticity in solid mechanics. 3D: three displacements associated with each element
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Problem
Real-

world ?

Out-of-

FP16 ?
Distance Anisotropy

Cond. 

Number
Precision Solver 𝑪𝐆 𝑪O

laplace27 No No Within None 3e+03 FP64/FP32/FP16 CG 1.14 1.14

laplace27*108 No Yes Far None 3e+03 FP64/FP32/FP16 CG 1.14 1.14

rhd Yes Yes Far Low 1e+08 FP64/FP32/FP16 CG 1.14 1.14

oil Yes No Within High 1e+04 FP64/FP32/FP16 GMRES 1.14 1.14

weather Yes Yes Near High 1e+05 FP32/FP32/FP16 GMRES 1.31 1.44

rhd-3T Yes Yes Far High 1e+15 FP64/FP32/FP16 CG 1.14 1.14

oil-4C Yes Yes Near High 1e+05 FP64/FP32/FP16 GMRES 1.14 1.14

solid-3D No Yes Far Low 1e+07 FP64/FP32/FP16 CG 1.14 1.26

Anisotropy (i.e., multi-scale property) statistics. Numerical distributions of nonzero entries.



Experiments

◼ Solvers

❑ Us rs’    l       s     rm     h  iterative precisions.

❑ StructMG [1] is used. Other structured-specific MGs can also be used, such as hypre’s 

 MG,   MG,  ys  MG,   AMG, …

❑ Only one V-cycle is applied, with one pre- and post-smoothing.
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◼ Machines

❑ ARM and X86 platforms

◼ Results are similar on two platforms.

◼ ARM with NEON, x86 with AVX2

❑ Best results among various 

MPI/OpenMP ratios reported.

[1] https://doi.org/10.1145/3627535.3638482

https://doi.org/10.1145/3627535.3638482


Results & Analysis

◼ The results will be presented in a local-to-global perspective.
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A controlled variables 

experiment to verify 

algorithmic effect.

Kernel performance to 

demonstrate amortizing FP 

conversion overhead

Overall speedups in 

a single processor

Scalability 

tests

Local Global



‘K’: iterative precision
‘ ’: computation precision of P.C.
‘D’: storage precision of P.C.

Full64
K64P32D32
K64P32D16-no-scaling
K64P32D16-scale-then-setup
K64P32D16-setup-then-scale

All 5 curves overlap.
4 curves overlap 
 x     ‘K64 32D16-no-       ’ 

Results & Analysis: Algorithmic Effect
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◼ Descending curves of residual norms in a 

controlled variable comparison.

◼ 5 problems feature distinct numerical ranges 

and distributions.

◼ Idealized problems cannot distinguish 

candidates.

◼ FP16 delays convergence in complicated 

problems.

◼ Setup-then-scale is better than scale-then-

setup in complicated problems.



Results & Analysis: 

Kernel Optimization Effect

◼ Two essential kernels: SpTRSV and SpMV

◼ Baselines: ‘MG-fp32/fp32’

❑ full-FP32 kernels of AOS format, without fcvt

❑ ~3.5x and ~1.8x faster than ARMPL on ARM

❑ ~2.2x and ~1.2x faster than MKL on x86

◼ ‘Max-fp16/fp32’: maximum speedups in theory

◼ ‘MG-fp16/fp32(naive)’: straightforward 

extensions of baselines

❑ severe bandwidth efficiency degradation

◼ ‘MG-fp16/fp32(opt)’: SOA format with SIMD

❑ time reduction proportional to memory volume reduction

❑ very close to the theoretical upper bounds 28



A single processor performance on ARM

Results & Analysis: End-to-end Improvement

◼ Setup-then-scale introduces limited setup overhead.

◼ Speedups are case-dependent.

❑ 3.70x in laplace27: close to the upper-bound (4.0x).

❑ The additional 𝑸𝒊 reduce speedups.

❑ Vector-type PDEs are more favored by FP16.

❑ Increases of #iter in rhd, rhd-3T, weather slow down 

speeds.

◼ Speedups are 2.4x, 2.2x, 1.7x, 1.7x, 1.9x, 1.8x, 

2.3x, 2.4x per iteration for eight problems.
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Results & Analysis: Scalability Test

◼ Mix-precision weakens scalability

❑ FP16 in storage: computation time ↓, comm. proportion ↑.

❑ In most cases, leveraging FP16 acceleration at the cost of 

scalability is still worthwhile.

◼ Parallel efficiencies reach 96%, 89%, 63%, 99%, 

98%, 71%, 93%, 62% of the full-iterative-precision

counterpart.

◼ Nearly perfect scalability in medium and large sizes.

❑ Given enough workloads per core, speedups are as 

expected based on reduction of memory volumes.

◼ Degraded scalability in small sizes.

❑ E.g., rhd, rhd-3T, solid-3D

❑ SIMD underutilization when too few workloads per core.
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Discussion (skipped, see the article)

◼ 1. More numbers of times of V-cycle or smoothing, more significant speedups.

◼ 2. BF16 may probably be less suitable than FP16 for linear solvers.

◼ 3. Transformation from AOS to SOA extends to GPU.

◼ 4. A simple rollback is effective when underflow is severe.
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Conclusion

◼ Average 2.7x speedups in MG preconditioner and 1.9x in E2E workflow of 8 problems.

◼ All is about balance between performance (𝑇single ↓) and convergence (#iter ↑).

❑   r  rm              m  r   s’ s  r   ,     r   v r-and-rescale on the fly

❑ Convergence: setup-then-scale avoids damaging multi-level quality

◼ Guidelines, algorithms, and implementations form the balance together.

❑ Guidelines and algorithms also apply to unstructured multigrids with CSR format. 

❑ Kernel implementations can be ported to hypre’s (s m -)structured-specific multigrids, such as SMG, 

  MG,  ys  MG,   AMG, …
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Thanks for your listening!

Q & A
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