
FP16 Acceleration in Structured Multigrid
Preconditioner for Real-World Applications

Yi Zong, Peinan Yu, Haopeng Huang, Wei Xue

Dept. Computer Science & Technology

Tsinghua University

Oct 22, 2024 @ MFEM Workshop

https://doi.org/10.1145/3673038.3673040

https://doi.org/10.1145/3673038.3673040

Background: Low-Precision Computation

◼ Half-precision hardware support is now almost ubiquitous.

◼ We have been witnessing a trend towards lower precision in ML & AI.

◼ But NOT so prevalent in scientific computation

2

Civil Engineering Manufacturing

Weather

Forecasting

Earthquake

Analysis

Floating point numbers formats

Background: Low Precision + Linear Solver

◼ Many scientific simulations rely on numerical solutions to PDE problems

◼ Essential part: linear solver of 𝐴𝑥 = 𝑏

◼ Stricter accuracy requirement than AI

◼ More sensitive to precision

3

Background: Low Precision + Linear Solver

◼ Many scientific simulations rely on numerical solutions to PDE problems

◼ Essential part: linear solver of 𝐴𝑥 = 𝑏

◼ Stricter accuracy requirement than AI

◼ More sensitive to precision

4

◼ Common strategy:

❑ FP64 solver

❑ Lower precision preconditioner

Background: Low Precision + Multigrid

◼ Many scientific simulations rely on numerical solutions to PDE problems

◼ Essential part: linear solver of 𝐴𝑥 = 𝑏

◼ Stricter accuracy requirement than AI

◼ More sensitive to precision

5

◼ Common strategy:

❑ FP64 solver

❑ Lower precision preconditioner

Background: Why multigrid (MG) ?

◼ Optimal computational complexity 𝑂(𝑁) in solving large-scale sparse linear systems.

◼ Widely used s r s r h s, us r l s w r , …

◼ Variable smoothers can cover many other “one-level” preconditioners.

❑ Jacobi

❑ Gauss-Seidel (GS)

❑ Incomplete Lower-Upper (ILU)

❑ ……

6

◼ Theoretical foundation: tolerance of

errors introduced by lower-precision [1].

◼ Practical benefits: greater lower-precision

s u s h “ -l v l” r rs.

❑ A larger proportion of time in workflows

[1] https://doi.org/10.1137/20M1348571

https://doi.org/10.1137/20M1348571

Challenges

77

Multigrid: Multi levels, complicated

procedures, variable components
Real world: Large spans, wide gaps,

multi scales of values

 s

 s

FP16: narrow range & limited accuracy

Related work: Mix-precision in Multigrid

◼ Popular AMG libraries (hypre, MueLu, AmgX) lack mix-precision support.

◼ Practice ahead of theory for a long time

❑ Most of them use only FP32 as the lowest precision in MG preconditioner. They are safe and

efficient with similar #iters of mix-FP32/FP64 to those of full-FP64

❑ Utilizing half-precision is scarce. Ginkgo [6] is a recent three-precision MG, supporting arbitrary

precisions (FP64, FP32, FP16) for matrices and vectors on different levels.

8

Ref Type Scaling?
Precond.
Precision

Precond.
Speedup

E2E
Speedup

[1] GMG No FP32 ~2.0x ~1.7x

[2] AMG No FP32 1.1x~1.5x Unclear

[3] AMG No FP32 Unclear 1.19x

[4] GMG No FP32 1.9x 1.6x

[5] GMG No FP32 2.0x 1.18x

[6] AMG Yes FP16, FP32 Unclear 1.05x~1.35x

Ours AMG Yes FP16, FP32 2.7x 1.9x

[1] https://doi.org/10.1109/TPDS.2010.61

[2] https://doi.org/10.1016/j.procs.2010.04.020

[3] https://doi.org/10.1049/cp.2014.0185

[4] https://doi.org/10.1007/978-3-642-33134-3_68

[5] https://doi.org/10.1016/j.procs.2016.05.502

[6] https://doi.org/10.1016/j.future.2023.07.024

❑ Lack of guidelines in how to choose the

best configurations. Too many changeable

options may overwhelm users.

https://doi.org/10.1109/TPDS.2010.61
https://doi.org/10.1016/j.procs.2010.04.020
https://doi.org/10.1049/cp.2014.0185
https://doi.org/10.1007/978-3-642-33134-3_68
https://doi.org/10.1016/j.procs.2016.05.502
https://doi.org/10.1016/j.future.2023.07.024

Related work: Mix-precision in Multigrid

9

Guidelines

Gains and risks of FP16
Worthwhile combinations

ImplementationsAlgorithms

How to adapt setup and
solve phases to FP16

How to avoid precision
conversion overhead

◼ In our work:

FP16 Utilization Guidelines

◼ MG’s m 𝑇tot = 𝑇setup + #iter · 𝑇single

❑ 𝑇setup is setup time, 𝑇single is single-iteration time, #iter is number of iterations.

❑ 𝑇setup is only slightly affected by mix-precision.

◼ Lower-precision reduces 𝑇single, but may increase #iter.

◼ Rule: balance between performance (𝑇single ↓) and convergence (#iter ↑)

10

Guideline 1: Eagerly convert matrices to FP16

◼ Matrix 𝑨 is the hotspot of storage.

◼ The percent of matrix 𝐴 in storage in 𝐴𝑥 = 𝑏:

percent𝐴 =
memory(𝐴)

memory 𝐴 + 2 ∗ memory 𝑥

◼ Statistics of matrices indicate large 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝑨.

◼ Th s rv s r h s MG’s mul -level

context as the coarser matrices are usually denser [1].

◼ Reducing the lower bounds of memory volumes

of matrices by FP16 is the top-priority task.

11
[1] https://doi.org/10.1137/140952570

>0.70

>0.80 0.78

0.90

>0.78
>0.86 0.84

0.93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

85% of
SuiteSparse

60% of
SuiteSparse

Structured
3d7

Structured
3d27

Statistics of percentA

Only FP values + Integer of CSR

https://doi.org/10.1137/140952570

Guideline 2: Use FP16 from the finest possible level

◼ Matrices and vectors may have different precisions on different levels.

◼ 9𝑛 possible combinations for a 𝑛-level MG ? Only limited choices are worthwhile !

◼ MG’s ur s r m l y 𝐶G and operator complexity 𝐶O

◼ Low complexities are common.

❑ 𝐶G < 1.20, 𝐶O < 1.50 in 80% cases

❑ 𝐶G < 1.15, 𝐶O < 1.22 in 60% cases

12
Complexity statistics for 60 MFEM cases.

◼ Most overheads on the finest level.

◼ Common “mistake”: use lower

precision on coarser levels.

𝐶G =
σ𝑙 𝑚𝑙

𝑚0
 𝐶O =

σ𝑙 𝑛𝑛𝑧𝑙

𝑛𝑛𝑧0

Guideline 3: Avoid using FP16 for vectors

◼ The matrix 𝐴 is static throughout the solving.

◼ The vectors are changing dynamically.

◼ Difficult to predict which element may

overflow or underflow sometime.

13

◼ Safe to keep the precision of vectors ≥ FP32, with limited performance impact

❑ Recalling Guideline 1 that matrix is the hotspot.

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

1.E+04

1.E+07

0 10 20 30 40 50

Iterative Number

Max absolute values with iterations

f0 x0 FP16_MAX FP16_MIN

Guideline 4: Prefer structured matrix formats that do

not use per-element index arrays.
◼ Integers in large matrices are difficult to compress.

❑ necessary in unstructured formats, such as CSR, CSC, COO

◼ Index-free format (e.g., SG-DIA [1]) without integer arrays are more preferred.

❑ Can be used in structured- and semi-structured-specific MGs, such as SMG, PFMG, SysPFMG,

SSAMG from hypre (LLNL), RegionMG from Trilinos (SNL), and our StructMG, Semi-StructMG, …

◼ Upper bound of speedup can be estimated based on minimal memory access volume.

14
[1] https://doi.org/10.1137/120883153 𝛿 = #row + 1 /#nnz. 𝛿 = 15% in average of 2216 matrices in SuiteSparse.

https://doi.org/10.1137/120883153

Guidelines => Algorithms

◼ The above four guidelines instruct the following algorithmic designs.

❑ Vectors should be kept in FP32.

❑ FP16 should compress the memory volumes of matrices as fine-level as possible.

❑ Structured or semi-structured grids should have higher priority to discretize the PDE

of interest.

15

Algorithms notations

◼ Variables in different colors are in different precisions:

16

usually as FP64 or FP32, is the computation and storage precision of

iterative solvers, determined by users’ applications

usually as FP32

usually as FP16

Setup Algorithm: Setup-then-scale

 Idea: prevent FP16 from

interfering with multi-level effect

◼ Essential role: triple matrix products

(RAP) that build connections in the

hierarchy

◼ A normal setup is completed first in

high precision, followed by scaling (if

needed) and truncation.

◼ 𝑨𝒊 and 𝑸𝒊 in high precision are no

longer needed after the setup.

❑ Limited additional memory overhead. 17

Solve Algorithm: Recover-and-rescale on the fly

◼ Solve phase consists of the iterative solver and the MG preconditioner.

◼ Everything is normal about iterative solvers.

❑ Researches of mix-precision iterative solvers are orthogonal to this study.

18

◼ A stationary iterative solver illustrates

how an FP16-accelerated preconditioner

is employed.

❑ Other solvers (CG, GMRES, etc.) are similar.

Solve Algorithm: Recover-and-rescale on the fly

 Idea : FP16 in storage of matrices (hotspots)

to reduce memory access volumes

◼ Nothing in iterative precision inside the MG.

❑ Matrices are stored in FP16 and need restoration.

❑ V rs’ r s s u h , usu lly s .

◼ If 𝑨𝒊 was scaled, it must be recovered and rescaled

❑ Recover: 𝑨𝒊 → 𝑨𝒊 (precision promotion)

❑ Rescale: 𝑨𝒊 → 𝑸𝒊
𝟏/𝟐

𝑨𝒊𝑸𝒊
𝟏/𝟐

(to original values)

◼ On-the-fly: 𝑨𝒊 in FP32 are NOT explicitly maintained.
19

Practical Remarks

20

◼ Additional overhead of 𝑸𝒊 ?

Why not scale-then-setup ?

❑ Setup-then-scale has two fold

advantages over scale-then-setup.

◼ l s MG w h u us rs’

involvement

◼ Scale-then-setup performs triple

matrix products (RAP) in FP16 range

even if with FP64 precision.

❑ In practice, 𝑄𝑖 is cost-efficient

compared to more #iter.

 0 0 0

 1 1 1

 2 2 2

 an e

 ccuracy

 0 0 0

 1 1 1

 2 2 2

 an e

 ccuracy

Kernel: SIMD to amortize fcvt overhead

◼ Mix-precision kernel introduces additional overhead of precision conversion (fcvt).

◼ Based on structured-specific MGs that use AOS (array of structure) format. Nonzero

entries within a row are stored contiguously.

21

◼ AOS is good enough for full-FP32

❑ Only one ldr instruction for each 4-byte

entry to prepare for multiplication.

◼ For matrices in FP16, data preparation

has 4-times-high arithmetic intensity

❑ One ldr, one fcvt for each 2-byte entry

Bandwidth efficiency drops !

Kernel: SIMD to amortize fcvt overhead

22

◼ Transforming from AOS to SOA enables vectorization

◼ Floating-point conversion overhead is amortized.

◼ Only one ldr, and two fcvt for every eight 2-byte entries when SIMD length is 128-bit.

Bandwidth

efficiency recovers.

Experiments

◼ Problems

❑ Covering scalar- and vector-type PDE, different and complex numerical features

❑ 3 benchmark problems: laplace27, laplace27*108, solid-3D

❑ 5 real-world problems: rhd, rhd-3D, oil, oil-4C, weather

23

Problem Type Domains

laplace27

Scalar

-type

PDE

Benchmark problem in HPCG

laplace27*108 Coefficients of laplace27 multiplied by 108

Rhd Radiation hydrodynamics

Oil Petroleum reservoir simulation. SPE1 and SPE10 benchmarks are combined via OpenCAEPoro.

Weather Atmospheric dynamics, from GRAPES-MESO of 2-km resolution of Chinese region in Dec 2018

rhd-3T Vector

-type

PDE

Radiation hydrodynamics. 3T: three temperatures (radiation, electron, and ion).

oil-4C Petroleum reservoir simulation. 4C: four components (oil, water, gas, and dissolved gas in oil).

solid-3D Linear elasticity in solid mechanics. 3D: three displacements associated with each element

24

Problem
Real-

world ?

Out-of-

FP16 ?
Distance Anisotropy

Cond.

Number
Precision Solver 𝑪𝐆 𝑪O

laplace27 No No Within None 3e+03 FP64/FP32/FP16 CG 1.14 1.14

laplace27*108 No Yes Far None 3e+03 FP64/FP32/FP16 CG 1.14 1.14

rhd Yes Yes Far Low 1e+08 FP64/FP32/FP16 CG 1.14 1.14

oil Yes No Within High 1e+04 FP64/FP32/FP16 GMRES 1.14 1.14

weather Yes Yes Near High 1e+05 FP32/FP32/FP16 GMRES 1.31 1.44

rhd-3T Yes Yes Far High 1e+15 FP64/FP32/FP16 CG 1.14 1.14

oil-4C Yes Yes Near High 1e+05 FP64/FP32/FP16 GMRES 1.14 1.14

solid-3D No Yes Far Low 1e+07 FP64/FP32/FP16 CG 1.14 1.26

Anisotropy (i.e., multi-scale property) statistics. Numerical distributions of nonzero entries.

Experiments

◼ Solvers

❑ Us rs’ l s rm h iterative precisions.

❑ StructMG [1] is used. Other structured-specific MGs can also be used, such as hypre’s

 MG, MG, ys MG, AMG, …

❑ Only one V-cycle is applied, with one pre- and post-smoothing.

25

◼ Machines

❑ ARM and X86 platforms

◼ Results are similar on two platforms.

◼ ARM with NEON, x86 with AVX2

❑ Best results among various

MPI/OpenMP ratios reported.

[1] https://doi.org/10.1145/3627535.3638482

https://doi.org/10.1145/3627535.3638482

Results & Analysis

◼ The results will be presented in a local-to-global perspective.

26

A controlled variables

experiment to verify

algorithmic effect.

Kernel performance to

demonstrate amortizing FP

conversion overhead

Overall speedups in

a single processor

Scalability

tests

Local Global

‘K’: iterative precision
‘ ’: computation precision of P.C.
‘D’: storage precision of P.C.

Full64
K64P32D32
K64P32D16-no-scaling
K64P32D16-scale-then-setup
K64P32D16-setup-then-scale

All 5 curves overlap.
4 curves overlap
 x ‘K64 32D16-no- ’

Results & Analysis: Algorithmic Effect

27

◼ Descending curves of residual norms in a

controlled variable comparison.

◼ 5 problems feature distinct numerical ranges

and distributions.

◼ Idealized problems cannot distinguish

candidates.

◼ FP16 delays convergence in complicated

problems.

◼ Setup-then-scale is better than scale-then-

setup in complicated problems.

Results & Analysis:

Kernel Optimization Effect

◼ Two essential kernels: SpTRSV and SpMV

◼ Baselines: ‘MG-fp32/fp32’

❑ full-FP32 kernels of AOS format, without fcvt

❑ ~3.5x and ~1.8x faster than ARMPL on ARM

❑ ~2.2x and ~1.2x faster than MKL on x86

◼ ‘Max-fp16/fp32’: maximum speedups in theory

◼ ‘MG-fp16/fp32(naive)’: straightforward

extensions of baselines

❑ severe bandwidth efficiency degradation

◼ ‘MG-fp16/fp32(opt)’: SOA format with SIMD

❑ time reduction proportional to memory volume reduction

❑ very close to the theoretical upper bounds 28

A single processor performance on ARM

Results & Analysis: End-to-end Improvement

◼ Setup-then-scale introduces limited setup overhead.

◼ Speedups are case-dependent.

❑ 3.70x in laplace27: close to the upper-bound (4.0x).

❑ The additional 𝑸𝒊 reduce speedups.

❑ Vector-type PDEs are more favored by FP16.

❑ Increases of #iter in rhd, rhd-3T, weather slow down

speeds.

◼ Speedups are 2.4x, 2.2x, 1.7x, 1.7x, 1.9x, 1.8x,

2.3x, 2.4x per iteration for eight problems.

29

Results & Analysis: Scalability Test

◼ Mix-precision weakens scalability

❑ FP16 in storage: computation time ↓, comm. proportion ↑.

❑ In most cases, leveraging FP16 acceleration at the cost of

scalability is still worthwhile.

◼ Parallel efficiencies reach 96%, 89%, 63%, 99%,

98%, 71%, 93%, 62% of the full-iterative-precision

counterpart.

◼ Nearly perfect scalability in medium and large sizes.

❑ Given enough workloads per core, speedups are as

expected based on reduction of memory volumes.

◼ Degraded scalability in small sizes.

❑ E.g., rhd, rhd-3T, solid-3D

❑ SIMD underutilization when too few workloads per core.

30

Discussion (skipped, see the article)

◼ 1. More numbers of times of V-cycle or smoothing, more significant speedups.

◼ 2. BF16 may probably be less suitable than FP16 for linear solvers.

◼ 3. Transformation from AOS to SOA extends to GPU.

◼ 4. A simple rollback is effective when underflow is severe.

31

Conclusion

◼ Average 2.7x speedups in MG preconditioner and 1.9x in E2E workflow of 8 problems.

◼ All is about balance between performance (𝑇single ↓) and convergence (#iter ↑).

❑ r rm m r s’ s r , r v r-and-rescale on the fly

❑ Convergence: setup-then-scale avoids damaging multi-level quality

◼ Guidelines, algorithms, and implementations form the balance together.

❑ Guidelines and algorithms also apply to unstructured multigrids with CSR format.

❑ Kernel implementations can be ported to hypre’s (s m -)structured-specific multigrids, such as SMG,

 MG, ys MG, AMG, …

32

Thanks for your listening!

Q & A

33

	默认节
	幻灯片 1: FP16 Acceleration in Structured Multigrid Preconditioner for Real-World Applications
	幻灯片 2: Background: Low-Precision Computation
	幻灯片 3: Background: Low Precision + Linear Solver
	幻灯片 4: Background: Low Precision + Linear Solver
	幻灯片 5: Background: Low Precision + Multigrid
	幻灯片 6: Background: Why multigrid (MG) ?
	幻灯片 7: Challenges
	幻灯片 8: Related work: Mix-precision in Multigrid
	幻灯片 9: Related work: Mix-precision in Multigrid
	幻灯片 10: FP16 Utilization Guidelines
	幻灯片 11: Guideline 1: Eagerly convert matrices to FP16
	幻灯片 12: Guideline 2: Use FP16 from the finest possible level
	幻灯片 13: Guideline 3: Avoid using FP16 for vectors
	幻灯片 14: Guideline 4: Prefer structured matrix formats that do not use per-element index arrays.
	幻灯片 15: Guidelines => Algorithms
	幻灯片 16: Algorithms notations
	幻灯片 17: Setup Algorithm: Setup-then-scale
	幻灯片 18: Solve Algorithm: Recover-and-rescale on the fly
	幻灯片 19: Solve Algorithm: Recover-and-rescale on the fly
	幻灯片 20: Practical Remarks
	幻灯片 21: Kernel: SIMD to amortize fcvt overhead
	幻灯片 22: Kernel: SIMD to amortize fcvt overhead
	幻灯片 23: Experiments
	幻灯片 24
	幻灯片 25: Experiments
	幻灯片 26: Results & Analysis
	幻灯片 27: Results & Analysis: Algorithmic Effect
	幻灯片 28: Results & Analysis: Kernel Optimization Effect
	幻灯片 29: Results & Analysis: End-to-end Improvement
	幻灯片 30: Results & Analysis: Scalability Test
	幻灯片 31: Discussion (skipped, see the article)
	幻灯片 32: Conclusion
	幻灯片 33: Thanks for your listening! Q & A
	幻灯片 34
	幻灯片 35: What about finer-grained precision control ?
	幻灯片 36: Somewhat limited scope ? Any possibility to extend to unstructured problems ?
	幻灯片 37: What about underflow ? Any rollback ?
	幻灯片 38: More numbers of times of V-cycle or smoothing ?
	幻灯片 39: Another format, BF16 ?
	幻灯片 40: GPU extensions ?
	幻灯片 41: Setup-then-scale v.s. scale-then-setup ?

