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Motivation and high-order phase-field fracture model
Virtual element method

- Motivation

- Virtual element method is a finite element method.
Numerical experiments

— Dynamic crack branching using different elements

— Quasi-static benchmark test
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Motivation

|
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* The physical processes that culminate in fracture (and the interplay between
them) are complex, and dependent on the material and the applied loading

» This complexity is most pronounced in problems which involve extreme
conditions, multi-physics and multi-scale aspects

* Predictive computational treatments, that are practical and amenable to
implementation, are currently unavailable
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Modeling of material failure (damage and fracture)

« Still, predictive modelling of crack initiation and propagation in materials and
structures remains one of the most significant challenges in solid mechanics
(Wu et al, 2019)

« Two general approaches to the representation of material failure in a
computational setting:
— The discrete approach: representing failure as a discontinuity
— The continuous approach: representing failure using damage variables

« Examples of the discrete approach include Cohesive Zone Models (CZM) and
Sub-grid Embedded / eXtended Finite Element Methods (EFEM/XFEM)

« Examples of the continuous approach include Continuum Damage Mechanics
(CDM), Peridynamics, and Phase-field Fracture Models (PFM).
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The phase-field method for brittle fracture

Sharp Crack Representation Diffusive Crack Representation
0 Approximation
' based on the
introduction of a
d crack phase field
d € [0,1]
0.0 d = 0: undamaged
s (d li Y : d
[ = 90 \ I'% T, = 80\ I, Ty = 8% \ T, d = 1: broken

« Based on the variational formulation of Bourdin et al (2008), crack propagation

can be expressed as an energy minimization problem: Crack density function

g pr— / -[’Ir"TE(F) dI/T +/ GC dA < 80—>0_ g ~ / I’fi’fe(F, d) dI/’ _'_/ GC "}/go ((i'| V(’f‘ Ad) dI/T
QO\FC FC Gamma QD QD

convergence ~ ~ - ~ -~ -
‘ra Los Alamos Elastic energy functional Surface energy functional
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High-order phase-field fracture model
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High-order term Pu - V ' U'('U‘J, d) — f — 0., on {) x (O,T],

|m:2/_\2d — a1 Ad + agd + ¢ (d)H:; =0, onQ x (0,77,

Stress: o(u,d) = g(d) [Atr(e) I +2ue].
Strain (small deformation): e(u) = (Vu+Vul) /2
Strain decomposition: €+ = ; (er)gnr®@mny,
History variable: He= max T (e).

Staggered scheme for solving the two equations

Generalized-alpha method for time integration



Motivation: Polytopal elements

» Polytopal (2D polygonal / 3D polyhedral)
elements greatly reduce the difficulty of
meshing geometrically complex domains

» This allows overly-stiff triangular/tetrahedral
elements to be avoided in such applications

* Microstructure of the materials

! QOW o:gﬁestbﬁqces/prope}tles/ o't;rlégtjrffbe cP.hir—n
(’A’ Y\ /'
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Finite element method

—Au=f inQ with u=0 on9dQ

Find u € H}(Q) such that

/VU.Vvdvszvdv Vv € Hy(Q)
Q Q

Find u, € V' c H}(Q) such that

/Vuh-Vvth=/fvth Vv € YK
Q Q

where Vc’,”" C Hy(Q) is the (conforming) finite element space.
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Finite element method

We introduce a set of basis functions: V" = span{t1, V2, ..., 9w}

We consider the expansion of the solution u, on the basis functions

N
un(X) =) u(x), U = degrees of freedom
j=1

Solving the linear system

Au=>b

(/Vlbf-ijdV)Lﬁ:[fwde Vi
Q \Q ,

J'=1 A v

A: STIFFNESS MATRIX b: R.H.S.

gives us the degrees of freedom {u;} of uj,

VEM follows the same procedure — VEM is a finite element method
;@LosAlamos

AAAAAAAAAAAAAAAAAA



Basis functions in simple geometric shapes

P1(E) P2(E) 1(E) Q2(E)

Polynomials basis functions supporting Lagrange interpolation:  ;(x;) = ¢;;
and reproducing polynomial functions exactly

fork=1: 1= Z?,bj()(), X= ij%bj(x)a
j J
fork=2: XZZZXJ,”()DJ,(X),
)

Finite element spaces are built on simple geometric shapes, e.g., triangles,
quadrilaterals, tetrahedra, hexahedra.
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Basis functions for polygons

Lagrange basis functions are not polynomials!
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On polygons/polyhedra, the
basis functions are not

polynomials Egzﬁnﬁ )
Generalized

In 1975 (and 2016), Eugene Barycentrics

Wachspress proposed to use of

rational basis functions

(1975) (2016)

Linear basis functions on triangles are linear Lagrange interpolants
— non-linear Lagrange interpolants on polygons reproducing linear
polynomials (Wachspress)

(direct) solution of a local elliptic PDE (harmonic lifting)
Av,=0 onE

In VEM we do not build or try to evaluate the basis functions or their
gradients directly, but we approximate them by polynomial projections.



The virtual element method: three basic concepts

(1) The Virtual Element Method is a Finite Element Method
We have all typical FEM ingredients:

» functional spaces and variational formulations

» convergence analysis to have error estimates

» Dbasis functions to compute stiffness and mass matrices

» local construction and global assembly of matrix operators

(2) The finite element space is “virtual”: we never compute the basis functions!
Instead, we use their polynomial projections

(3) We choose the degrees of freedom “smartly” so that these projections are
always computable without any approximation
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The conforming virtual element space

k=1 k=2 k=3
@ The conforming virtual element space on E:
VY (E) := {vh e H'(E) Vh|o£ is continuous on OE and
Avy € Px—2(E) inE

Vhie € Pk(e) onevery € € OE }

@ the degrees of freedom are unisolvent

@ polynomials of degree up to k form a subspace

1% Los Alamos @ the elliptic projection operator isjcomputable
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The elliptic projector My

Elliptic projection: I} v, € P«(E) of a virtual element function v;:
/Vﬂf vy - Vg dV = / Vv, - VaggdV Yk € Px(E),
E E

which defines M1} v, on each element E up to an additive constant

To fix the constant factor:

fork =1: f I'I1Vv,,d8= vy, dS
OE OE

for k > 1: /ﬂkvvth:fvth
E E

The breakthrough is that we can always choose the degrees of freedom of v,
so that its elliptic projection is|computable|

/vnfv,,-qudV:/wh-qudv
E E
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A useful decomposition

@ {4;}: “canonical” basis functions on element E
— the i-th degree of freedom is 1, the others are zero;

@ MY elliptic projection onto polynomials of degree k on element E;
— computable from the degrees of freedom;

@ Hence, ¢ = N7+ (1 — MY )i, Vi = VW + V(1 — Ny )i
—_—— - ~ J

computable non-computable

@ The integral of “mixed” terms is zero (by definition):

/ VI - V(1 =) dV =0
E

/Vl‘lfvh-qu dVZ/VVh-VC]k av Vak € Pk(E),
E E
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L ocal stiffness matrix Vi = VY + V(1 —NY )

+STABILIZATION

fw,--w,-dv = /vn;?'w,--vnm,-dv +[V(1—HF)¢,~V(1— eV
E E JE _

-

computable using DOFs non- able (urTIess we know 1;, ;)

+/vnffwf-v(1 —nf)w,-dv+/v(1 — NY) - VO 4 aV
JE JE

>

-~

mixed terms are zero

substitute [V(1 —N¥) - V(=N ) dV with  Se((1 =N )i, (1— 1K )y),
E

where Sg can be any continuous bilinear form that is

» symmetric and positive definite (SPD) on the kernel of MY
» computable from the degrees of freedom of its arguments

%@ Los Alamos

AAAAAAAAAAAAAAAAAA



Convergence theorem
Theorem

@ Under a few assumptions on the regularity of the mesh (which imply standard
approximation properties for interpolation and projection operators),

@ for each polygonal cell E, we are given

+ the virtual element bilinear form Ang(-,-) built using I‘If’E
+ the virtual RHS {fy, -). built using N5,
@ then, the solution of the variational problem: Find u, € V¥ such that
An(Un, vi) = (f,vn) Vv, € VP

exists and is unique with the following convergence estimate of the
approximation error:

P
U — Unll g1 @) < Ch||Ul| gt (@)
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Hi-conforming VEM degrees of freedom - displacement

Each function v, € V}'(E) is uniquely characterized by the following DOFs:

(D1) the values of v, at the vertices of E

(D2) the moments of v, of order up to k — 2 on each one-dimensional edge e € OE: =

1
ol /vhmds, Vm € Mi_»(e), Ve € OE
e

(k=2)
(D3) the moments of v, of order up to kK — 2 on E:

1
E/Evhmds; Vm € M;_»(E)

(k=3)

pu—V - -o(u,d)—f=0, onQ x (0,77,
#® Los Alamos o A%d — iy Ad + apd + ¢’ (d)He =0, on§ x (0,77,




H2-conforming VEM degrees of freedom — phase field

® ® ® ! ® @T-T@ ©T°T°T©

(D1): for k > 2, v(xv), Ov(xv), Oyv(xv) for any vertex v of 9E

(D2): for k > 4, % /qv ds for any g € Pr_4(e), and any edge e € JE
€ Je

(D3): for k > 3, /qanv ds for any g € P;_3(e), and any edge e € OE

e

and

(D4): for k > 2, ﬁ gvdV for any g € IPr_»(E)
E

pu—V - -o(u,d)—f=0, onQ x (0,77,
#® Los Alamos o A%d — iy Ad + apd + ¢’ (d)He =0, on§ x (0,77,




Meshes  Implemented in MFEM

(b) Dual of (a) N (c) Overap of (a) .‘ ()

-
o - “f“ ‘. ‘:‘ “:‘
h

B Loz Ames” = A e (e) Dual of (b) (f) Overlap of (d) and (e)
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Double cantilever beam experiment

Geometry, boundary conditions, and loading

p(t)
N HHHHHHHHH&
E pit —V -o(u,d)—f=0, onQ x (0,71,
S fo ) aaA%d — a1 Ad + apd + ¢'(d)H: = 0, on Q) x (0,T],
imHuuuxjuuuu&
" 50mm ) 50mm "
Pt
f Depending on the magnitude of the loading
L te=1lps
| * Single crack branching
* Multiple crack branching
tlr tlf ot
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Dynamic crack branching

d

0 02 04 06 0.8

695,210 elements

0 02 04 06 038

| I Ss—————
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Multiple crack branching with different elements types

Triangles

02 04 06 0.8 02 04 06 0.8 . 2 04 06 08

d \ d " d
02 04 06 038 02 04 06 038 2 04 06 08

Tria-Dual

Quads

d -
02 04 06 0.8 02 0.4 0.6 08 : .2 04 06 08

Quad-dual

02 04 06 08 02 04 06 08 \ i 2 04 06 0.8

(@)t = 30us (b) t = 40us (c)t =50us
¥ Los Alamos



Tensile test with different elements types

Y

Auy=5.109um

0.5 mm

0.5 mm

0.5 mm 0.5 mm
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(a) Triangular mesh (b) Dual of (a) (¢) Quadrilateral mesh (d) Dual of (¢)



Summary
* We have developed a virtual element framework in MFEM to solve dynamic fracture
problems governed by the high-order phase-field model on polygonal meshes.

* We have verified our numerical framework by simulating benchmark quasi-static tensile and

shear tests and applied it to dynamic fracture.

» For fast crack propagation, the details of the crack path is sensitive to element types

Y. Leng, L. Svolos, I. Boureima, G. Manzini, JY. N. Plohr, and H. Mourad. Arbitrary
order virtual element methods for high-order phase-field modeling of dynamic
fracture. International Journal for Numerical Methods in Engineering, page 7605, 2024.
doi:https://doi.org/10.1002/nme.7605.

H1_VEMCollection =*fec = new H1_VEMCollection(order);
ParFiniteElementSpace *fes = new ParFiniteElementSpace(&mesh, fec); d
HYPRE_BigInt total_num_dofs = fes->GlobalTrueVSize(); 0 02 04 0.6 0.8
if (Mpi::Root())
{

cout << "VEM Number of unknowns: " << total_num_dofs << endl;

}
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